Ester Patents (Class 203/60)
  • Patent number: 5658435
    Abstract: 2-Methyl-1-propanol is difficult to separate from 2-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be easily separated from 2-butanol by azeotropic distillation. Effective agents are sulfolane, acetonitrile and acetal.
    Type: Grant
    Filed: September 17, 1996
    Date of Patent: August 19, 1997
    Inventor: Lloyd Berg
  • Patent number: 5645695
    Abstract: 2-Methyl-1-propanol is difficult to separate from 2-methyl-1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be readily separated from 2-methyl-1-butanol by azeotropic distillation. Effective agents are tetrahydrofuran, methyl acetate and toluene.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: July 8, 1997
    Inventor: Lloyd Berg
  • Patent number: 5645696
    Abstract: The present invention relates to a process for continuously preparing unsaturated carboxylic acid esters by esterifying an (aliphatic) alcohol having 1 to 8 carbon atoms with an unsaturated carboxylic acid in the presence of a cation exchange resin catalyst, characterized in that the process is conducted by continuously circulating said reactants in contact with said catalyst from the top to the bottom through a reactor which is composed in the form of a fixed bed divided into 1 to 10 steps wherein each step comprises a catalyst bed, a filter and a air inlet, and has a thermal insulating outer wall, supplying a vaporizing heat for extraction of water, which is produced during the reaction, through a heat exchanger outside the reactor, circulating the reactants between the reactor and the heat exchanger by means of a circulating pump, contacting an azeotropic mixture of water vaporized by the heat exchanger and an alcohol with an alcohol circulating in a column tower or a raw alcohol supplied from an alcohol i
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: July 8, 1997
    Assignee: Lucky Ltd.
    Inventors: Boo Gon Woo, Kwang Ho Park, Hwa Myung Joo, Han Sun Lee
  • Patent number: 5602294
    Abstract: o-Xylene cannot be separated from p-xylene and m-xylene by conventional distillation or rectification because of the proximity of their boiling points. o-Xylene can be readily separated from mixtures of p-xylene and m-xylene by extractive distillation. Effective agents are o-cresol, dichloroacetic acid, methyl salicylate and 1-tetradecanol.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: February 11, 1997
    Inventor: Lloyd Berg
  • Patent number: 5597455
    Abstract: 3-Carene and limonene cannot be separated from each other by rectification because of the closeness of their boiling points. They are readily separated by extractive distillation. Effective agents are: diethylene glycol phenyl ether, nonyl phenol, tripropylene glycol methyl ether, ethyl salicylate, 4-ethylphenol and 2-phenoxyethanol.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: January 28, 1997
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5582693
    Abstract: 3-Carene and limonene cannot be separated from each other by rectification because of the closeness of their boiling points. They are readily separated by azeotropic distillation. Effective agents are: cyclopentanol, 2-nitropropane, ethyl formate amyl acetate dimethyl carbonate, tetrahydrofuran, acetic acid and 2-amino-amethyl-1-propanol.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: December 10, 1996
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5580427
    Abstract: Butyraldehyde cannot be separated from ethanol by conventional distillation or rectification because they form a minimum boiling azeotrope. Butyraldehyde can be readily separated from ethanol by azeotropic distillation. Effective agents are ethyl formate, hexane and isopropyl ether.
    Type: Grant
    Filed: November 7, 1995
    Date of Patent: December 3, 1996
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5562863
    Abstract: Vinyl aromatic monomer polymerization methods utilizing a composition of 2,6-di-tert-butyl-4-methylphenol and a substituted benzoquinonediimide compound are disclosed. Preferably, the composition is employed in an amount of 1 part to 10,000 parts per million parts monomer during distillation of styrene.
    Type: Grant
    Filed: July 18, 1995
    Date of Patent: October 8, 1996
    Assignee: Betz Laboratories, Inc.
    Inventor: Graciela B. Arhancet
  • Patent number: 5470440
    Abstract: Vinyl aromatic monomer polymerization methods utilizing a composition of 2,6-di-tert-butyl-4-methylphenol and a substituted benzoquinonediimide compound are disclosed. Preferably, the composition is employed in an amount of 1 part to 10,000 parts per million parts monomer during distillation of styrene.
    Type: Grant
    Filed: April 19, 1994
    Date of Patent: November 28, 1995
    Assignee: Betz Laboratories, Inc.
    Inventor: Graciela B. Arhancet
  • Patent number: 5470443
    Abstract: Isopropanol is difficult to separate from 2-butanone by conventional distillation or rectification because of the proximity of their boiling points. Isopropanol can be readily separated from 2-butanone by extractive distillation. Effective agents are o-cresol, ethylene glycol and nitroethane.
    Type: Grant
    Filed: January 10, 1995
    Date of Patent: November 28, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5466345
    Abstract: o-Xylene cannot be separated from p-xylene and m-xylene by conventional distillation or rectification because of the proximity of their boiling points. o-Xylene can be readily separated from mixtures of p-xylene and m-xylene by azeotropic distillation. Effective agents are 3-methyl-1-butanol, methyl propionate and 3-pentanone.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: November 14, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5460700
    Abstract: 1-Hexene is difficult to separate from hexane by conventional distillation or rectification because of the proximity of their boiling points. 1-Hexene can be readily separated from hexane by extractive distillation. Effective agents are hexyl acetate, methyl amyl alcohol and acetophenone.
    Type: Grant
    Filed: May 19, 1994
    Date of Patent: October 24, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5458741
    Abstract: Benzene is difficult to separate from cyclohexane or cyclohexene by conventional distillation or rectification because of the close proximity of their boiling points. Benzene can be readily separated from cyclohexane or cyclohexene by using extractive distillation. Effective agents are: for benzene from cyclohexane, methyl acetoacetate; for benzene from cyclohexene, ethyl acetoacetate.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: October 17, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5453167
    Abstract: p-Xylene cannot be separated from m-xylene by distillation or rectification because of the proximity of their boiling points. p-Xylene can be separated from m-xylene by means of extractive distillation. Effective agents are 3-ethylphenol and isopropyl palmitate. Effective agents for separating mixtures of p-xylene, m-xylene and o-xylene are 2-butoxyethyl acetate and 1,1,1-trichloroethane.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: September 26, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5453166
    Abstract: Ethanol is impossible to separate from 2-butanone by conventional distillation or rectification because of the minimum boiling azeotrope between these two. Ethanol can be readily separated from 2-butanone by extractive distillation. Effective agents are dipromyl amine, phenol and dimethylsulfoxide.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: September 26, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5447608
    Abstract: 3-Methyl-2-butanol, 2-pentanol and 1-butanol are difficult to separate by conventional distillation or rectification because of the proximity of their boiling points. Mixtures of these three can be readily separated from each other by azeotropic distillation. Effective agents are hexyl acetate, hexane and 3-methyl pentane.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: September 5, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5445716
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by extractive distillation. Effective agents are dipentene, anisole and ethyl benzene.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: August 29, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5445715
    Abstract: m-Xylene is very difficult to separate from mixtures of p-xylene and o-xylene by conventional distillation or rectification because of the proximity of their boiling points. m-Xylene can be readily separated from p-xylene and mixtures of p-xylene and o-xylene by azeotropic distillation. An effective agent is tetraethyl ortho silicate.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: August 29, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5443697
    Abstract: Heptane is difficult to separate from 1-heptene by conventional distillation or rectification because of the proximity of their boiling points. Heptane can be readily separated from 1-heptene by extractive distillation. Effective agents are diacetone alcohol, ethyl butyrate and dimethylsulfoxide.
    Type: Grant
    Filed: May 19, 1994
    Date of Patent: August 22, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5441608
    Abstract: p-Xylene cannot be separated from m-xylene by distillation or rectification because of the proximity of their boiling points. p-Xylene can be separated from m-xylene by means of extractive distillation. Effective agents are 3-ethylphenol and 1,1,2-trichloroethane. Effective agents for separating mixtures of p-xylene, m-xylene and o-xylene are 2-butoxyethyl acetate and 1,1,1-trichloroethane.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: August 15, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5439561
    Abstract: 3-Methyl-2-butanol is difficult to separate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 2-pentanol by azeotropic distillation. Effective agents are 2,2-dimethyl butane, ethyl acetate and dioxane.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: August 8, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5437770
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by azeotropic distillation. Effective agents are sec. butyl acetate, hexene-1 and 1,3-dioxolane.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: August 1, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5425854
    Abstract: Methylene chloride is difficult to separate from tetrahydrofuran by conventional distillation or rectification because of the proximity of their vapor pressures. Methylene chloride can be readily separated from tetrahydrofuran by extractive distillation. Effective agents are 1-pentanol, 1,2-butanediol and 3-nitrotoluene.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: June 20, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5423953
    Abstract: A process for recovering column bottom residues produced by distillation of ethylene glycol resulting from an aromatic polyester production process, involving treating the residues with an aromatic mono-alkyl ester and distilling the reaction product.
    Type: Grant
    Filed: January 27, 1994
    Date of Patent: June 13, 1995
    Assignee: Montefibre S.p.A.
    Inventors: Socrate Contessa, Riccardo Tesser, Salvatore Barrella
  • Patent number: 5423954
    Abstract: 2-Butanone is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Butanone can be readily separated from isopropanol by azeotropic distillation. Effective agents are 3-methyl pentane, methyl t-amyl ether and acetonitrile.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: June 13, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5421965
    Abstract: Glycerine is difficult to separate from bis(hydroxymethyl)tetrahydrofuran by conventional distillation or rectification because of the proximity of their boiling points. Glycerine can be readily separated from bis(hydroxymethyl)tetrahydrofuran by azeotropic distillation. Effective agents are m-xylene, beta-pinene and dicyclopentadiene.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: June 6, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5417812
    Abstract: Ethyl benzene is difficult to separate from xylenes by conventional distillation or rectification because of the proximity of their boiling points. Ethyl benzene can be readily separated from xylenes by azeotropic distillation. Effective agents for separating ethyl benzene from p-xylene are methyl formate, n-butanol and cyclopentanol; from p-xylene and m-xylene, n-butanol.
    Type: Grant
    Filed: January 10, 1994
    Date of Patent: May 23, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5417813
    Abstract: 1-Butanol is difficult to semarate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 1-Butanol can be readily separated from 2-pentanol by azeotropic distillation. Effective agents are 1-octene, hexane and methyl cyclohexane.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: May 23, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5417814
    Abstract: 3-Methyl-2-butanol is difficult to separate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 2-pentanol by extractive distillation. Effective agents are acetamide or 2,2,2-trichloroethanol.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: May 23, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5415741
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by azeotropic distillation. Effective agents are acetonitrile and methylene chloride.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: May 16, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5407542
    Abstract: 3-Methyl-2-butanol is difficult to separate from 1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 1-butanol by azeotropic distillation. Effective agents are methyl acetoacetate and dioxane.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: April 18, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5407540
    Abstract: 3-Methyl-2-butanol is difficult to separate from 1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 1-butanol by extractive distillation. Effective agents are ethyl n-valerate, dimethylacetamide and dimethylsulfoxide.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: April 18, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5405505
    Abstract: Benzene is difficult to separate from cyclohexane or cyclohexene by conventional distillation or rectification because of the close proximity of their boiling points. Benzene can be readily separated from cyclohexane or cyclohexene by using azeotropic distillation. Effective agents are: for benzene from cyclohexane, dimethoxymethane; for benzene from cyclohexene, methanol.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: April 11, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5405504
    Abstract: 1-Decene is impossible to separate from 2-octanone by conventional distillation or rectification because the two compounds form a minimum boiling azeotrope. 1-Decene can be readily separated from 2-octanone by azeotropic distillation. Effective agents are 1-propanol, 2-ethoxyethanol, and methanol.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: April 11, 1995
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Randy W. Wytcherley
  • Patent number: 5403448
    Abstract: 1-Decene is difficult to separate from 2-octanone by conventional distillation or rectification because of the proximity of their boiling points. 1-Decene can be readily separated from 2-octanone by azeotropic distillation. Effective agents are butyl propionate and 1-propanol.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: April 4, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5399244
    Abstract: Benzene and other aromatics are separated from a stream of mixed hydrocarbons containing both aromatics and non-aromatics by extractive distillation with a solvent system containing dimethyl sulfoxide and optionally a co-solvent, preferably water, followed by distillation stripping of the aromatics from the enriched solvent system, and recycle of the lean solvent system to the extractive distillation step.
    Type: Grant
    Filed: December 6, 1993
    Date of Patent: March 21, 1995
    Assignee: Glitsch, Inc.
    Inventors: Joseph C. Gentry, Lloyd Berg, John C. McIntyre, Randa W. Wytcherley
  • Patent number: 5399751
    Abstract: Disclosed is a method for recovering carboxylic acids having from one to ten carbon atoms, and particularly formic acid, acetic acid and mixtures of formic and acetic acids, from aqueous solutions, in which the aqueous solution is contacted with solvent consisting essentially of mixed trialkylphosphine oxides in counter-current liquid-liquid extraction flow in a contacting step to thereby transfer the acids from the aqueous solution to the solvent, thus producing a raffinate relatively low in acid content and a rich solvent. The rich solvent is preferably dehydrated to separate water therefrom and yield a dehydrated rich solvent. The dehydrated rich solvent then has the acids stripped from it and the resulting lean solvent is then returned to the liquid-liquid extraction step, while the separated acids are split into their constituent components in a distillation operation.
    Type: Grant
    Filed: November 5, 1993
    Date of Patent: March 21, 1995
    Assignee: Glitsch, Inc.
    Inventors: Joseph C. Gentry, John C. McIntyre, Timothy L. Holmes, Ronald G. Gualy
  • Patent number: 5393385
    Abstract: Hexane is difficult to separate from vinyl acetate and/or methyl acrylate by conventional distillation or rectification because of the closeness of their boiling points. Hexane can be readily separated from vinyl acetate and/or methyl acrylate by extractive distillation. Effective agents are dimethylsulfoxide and dimethylformamide.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: February 28, 1995
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Randi W. Wytcherley
  • Patent number: 5391263
    Abstract: Separation of ethylene glycol and diethylene glycol from dimethyl terephthalate is accomplished by distillation using methyl benzoate or the methyl ester of p-toluic acid as an azeotropic agent.
    Type: Grant
    Filed: January 26, 1994
    Date of Patent: February 21, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Richard R. Hepner, Robert E. Michel, Robert E. Trotter
  • Patent number: 5391264
    Abstract: alpha-Phellandrene is difficult to separate from d-limonene by conventional distillation or rectification because of the proximity of their boiling points. alpha-Phellandrene can be readily separated from d-limonene by azeotropic distillation. Effective agents are n-butyl acetate and sulfolane.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: February 21, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5382329
    Abstract: 1-Decene is difficult to separate from decane by conventional distillation or rectification because of the proximity of their boiling points. 1-Decene can be readily separated from decane by azeotropic distillation. Effective agents are methyl propionate, ethyl butyrate and methyl t-butyl ether.
    Type: Grant
    Filed: March 11, 1994
    Date of Patent: January 17, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5382330
    Abstract: 1-Octene is difficult to separate from octane by conventional distillation or rectification because of the proximity of their boiling points. 1-Octene can be readily separated from octane by azeotropic distillation. Effective agents are ethyl formate, ethyl acetate and t-amyl methyl ether.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: January 17, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5380405
    Abstract: alpha-Phellandrene is difficult to separate from 3-carene by conventional distillation or rectification because of the proximity of their boiling points. alpha-phellandrene can be readily separated from 3-carene by azeotropic distillation. Effective agents are methyl formate, nitroethane and acetal.
    Type: Grant
    Filed: January 24, 1994
    Date of Patent: January 10, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5360520
    Abstract: 2-Butanol is difficult to separate from t-amyl alcohol by conventional distillation or rectification because of the proximity of their boiling points. 2-Butanol can be readily separated from t-amyl alcohol by extractive distillation. Effective agents are methyl caproate, adiponitrile and cyclopentanone.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: November 1, 1994
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5358608
    Abstract: 1-Propanol is difficult to separate from 2-butanol by conventional distillation or rectification because of the proximity of their boiling points. 1-Propanol can be readily separated from 2-butanol by extractive distillation. Effective agents are isobutyl acetate, isobornyl methyl acetate and ethyl butyrate.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: October 25, 1994
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5348625
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by extractive distillation. Effective agents are methyl caproate, cyclopentane and isobutyl acetate.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: September 20, 1994
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5338410
    Abstract: 2-Butanol is difficult to separate from t-amyl alcohol by conventional distillation or rectification because of the proximity of their boiling points. 2-Butanol can be readily separated from t-amyl alcohol by azeotropic distillation. Effective agents are ethyl acetoacetate, nitroethane and 3-pentanone.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: August 16, 1994
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5338411
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by azeotropic distillation. Effective agents are methyl ethyl ketone, cyclopentane and 2-pyrrolidinone.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: August 16, 1994
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5332478
    Abstract: 1-Propanol is difficult to separate from 2-butanol by conventional distillation or rectification because of the proximity of their boiling points. 1-Propanol can be readily separated from 2-butanol by azeotropic distillation. Effective agents are t-butyl methyl ether, 1,4-dioxane and ethyl formate.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: July 26, 1994
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5288370
    Abstract: For the separation of butenes and butanes by extractive distillation, a charge mainly containing butenes and butanes is contacted in an extractive distillation column under pressure with a first selective polar solvent, S1 (e.g., dimethyl formamide), the butanes being collected at the top. The solvent S1 containing the butenes and passing out at the bottom is mixed with a second solvent, S2, having a boiling point intermediate between that of butenes and that of the solvent S1, the mixture passing into a desorption column under pressure, where the butenes are collected at the top. The mixture of solvent S1 and S2 is separated in a purification column under atmospheric pressure, the solvent S2 passing out at the top is recycled to the desorption column, and the solvent S1 passing out at the bottom is recycled to the extractive distillation column.
    Type: Grant
    Filed: March 20, 1992
    Date of Patent: February 22, 1994
    Assignee: Institut Francais Du Petrole
    Inventors: Lionel Asselineau, Alexandre Rojey