Ester Patents (Class 203/60)
  • Patent number: 5006205
    Abstract: Formic acid cannot be completely removed from formic acid and water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from formic acid - water mixtures by extractive distillation in which the extractive agent is a mono carboxylic acid mixed with certain high boiling organic compounds. Examples of effective agents are: hexanoic acid and butyl benzoate; octanoic acid and nitrobenzene; heptanoic acid, benzyl benzoate and pelargonic acid.
    Type: Grant
    Filed: January 17, 1989
    Date of Patent: April 9, 1991
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Kraig M. Wendt, Rudolph J. Szabados
  • Patent number: 4994151
    Abstract: 4-Methyl-2-pentanone cannot be easily separated from formic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from formic acid by extractive distillation using dimethylamides. Typical effective agents are dimethylformamide; dimethylacetamide and acetyl salicyclic acid; dimethylacetamide, heptanoic acid and methyl benzoate.
    Type: Grant
    Filed: July 14, 1989
    Date of Patent: February 19, 1991
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, George Bentu
  • Patent number: 4975157
    Abstract: The lower lactate esters are difficult to separate one from another by conventional distillation or rectification because of the close proximity of their boiling points. Lactate esters can be readily separated from each other by extractive distillation. Typical examples of effective agents are: for methyl lactate from ethyl lactate, ethylene glycol; ethyl lactate from isopropyl lactate, diethylene glycol; isopropyl lactate from n-propyl lactate, isophorone; n-propyl lactate from butyl lactate, 2-hydroxyacetophenone.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: December 4, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4969977
    Abstract: 2-Methyl butanol-1 cannot be completely removed from 2-methyl butanol-1-pentanol-1 mixtures by distillation because of the proximity of their boiling points. 2-methyl butanol-1 can be readily removed from mixtures of these alcohols by using extractive distillation in which the extractive agent is a mixture of aromatic carboxylic acids or aromatic carboxylic esters. Typical examples of effective agents are: benzoic acid, ethyl salicylate and salicylic acid; methyl benzoate, methyl p-hydroxy benzoate and phenyl salicylate.
    Type: Grant
    Filed: January 30, 1989
    Date of Patent: November 13, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4959128
    Abstract: Ethyl benzene cannot be easily removed from styrene by distillation because of the closeness of their boiling points. Ethyl benzene can be readily separated from styrene by means of extractive distillation using certain nitrogenous organic compounds. Typical effective agents are adiponitrile, methyl glutaronitrile and nitrobenzene.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: September 25, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4957595
    Abstract: 3-Methyl-2-butanone cannot be separated from formic acid by distillation because of the presence of the maximum boiling azotrope. 3-Methol-2-butanoe can be readily removed from formic acid by extractive distillation using sulfolane. Typical effective agents are: sulfolane and ethylene glycol diacetate; sulfolane, m-toluic acid and anisole.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: September 18, 1990
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, George Bentu
  • Patent number: 4948471
    Abstract: 4-Methyl-2-pentanone cannot be easily separated from formic acid or acetic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from formic acid or acetic acid by extractive distillation. Typical effective agents are sulfolane; sulfolane and heptanoic acid; sulfolane, azelaic acid and ethylene glycol diacetate.
    Type: Grant
    Filed: August 1, 1989
    Date of Patent: August 14, 1990
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, George Bentu
  • Patent number: 4948469
    Abstract: Dioxane cannot be completely removed from dioxane and formic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane - formic acid mixtures by extractive distillation in which the extractive agent is dimethylformamide, dimethylacetamide or these with certain high boiling organic compounds.
    Type: Grant
    Filed: December 5, 1988
    Date of Patent: August 14, 1990
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Richard R. Rall
  • Patent number: 4935102
    Abstract: A complex mixture of polyols cannot be easily separated by atmospheric or reduced pressure distillation because of the closeness of their boiling points. A mixture of polyols can be readily separated by azeotropic distillation. Typical effective agents are: p-xylene for propylene glycol from 2,3-butanediol and 1,2-butanediol; diisobutyl ketone for ethylene glycol from 1,2-butanediol and 1,3-butanediol; dipentene for glycerine from triethylene glycol and 1,2,4-butanetriol; propylene glycol isobutyl ether for 2,3-butanediol from propylene glycol.
    Type: Grant
    Filed: December 27, 1989
    Date of Patent: June 19, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4935103
    Abstract: n-Propanol and t-amyl alcohol cannot be separated from each other by distillation because of the proximity of their boiling points. n-Propanol can be readily separated from t-amyl alcohol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl salicylate; benzyl benzoate and hexahydrophthalic anhydride; methyl salicylate, benzoic acid and hexahydrophthalic anhydride.
    Type: Grant
    Filed: October 10, 1989
    Date of Patent: June 19, 1990
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Robert W. Christensen
  • Patent number: 4935100
    Abstract: Formic acid cannot be completely removed from formic acid and water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from formic acid - water mixtures by extractive distillation in which the extractive agent is a benzoic acid derivative mixed with certain higher boiling organic compounds. Examples of effective agents are: o-toluic acid and heptanoic acid; 2-benzoylbenzoic acid and methyl salicylate; p-hydroxybenzoic acid, pelargonic acid and 2-hydroxyacetophenone.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: June 19, 1990
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Kraig M. Wendt, Rudolph J. Szabados
  • Patent number: 4925533
    Abstract: Vinyl acetate cannot be easily removed from ethyl acetate by distillation because of the closeness of their boiling points. Vinyl acetate can be readily separated from ethyl acetate by means of extractive distillation. Typical effective agents are formic acid, formamide and formic acid-formamide mixture.
    Type: Grant
    Filed: March 6, 1989
    Date of Patent: May 15, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4909907
    Abstract: Formic acid cannot be easily removed from acetic acid by distillation because of the closeness of their vapor pressures. Formic acid can be readily removed from acetic acid by extractive distillation. Typical extractive distillation agents are acetyl salicylic acid and butyl benzoate; acetyl salicylic acid and ethylene carbonate.
    Type: Grant
    Filed: January 17, 1989
    Date of Patent: March 20, 1990
    Assignee: Hoechst Celanese Chemical Co.
    Inventor: Lloyd Berg
  • Patent number: 4904346
    Abstract: Meta and para-diisopropyl benzenes cannot be easily separated from each other by distillation because of the closeness of their vapor pressures. m-Diisopropyl benzene can be readily removed from p-diisopropyl benzene by extractive distillation using certain high boiling organic compounds. Effective extractive agents are diphenyl ether, dimethyl adipate, diisononyl adipate, tributyl phosphate and ethylene glycol phenyl ether.
    Type: Grant
    Filed: September 15, 1989
    Date of Patent: February 27, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4891101
    Abstract: Primary and secondary hydroperoxide contaminants in a tertiary hydroperoxide composition obtained by oxidation of a branched hydrocarbon are removed by contacting the tertiary hydroperoxide with a carboxylic acid derivative such as an anhydride and a basic compound such as sodium hydroxide. A tertiary hydroperoxide such as tertiary butyl hydroperoxide is purified with minimal loss of the desired tertiary hydroperoxide.
    Type: Grant
    Filed: November 23, 1988
    Date of Patent: January 2, 1990
    Assignee: Arco Chemical Technology, Inc.
    Inventor: Carl J. Sullivan
  • Patent number: 4880505
    Abstract: Meta and para-diisopropylbenzenes cannot be easily separated from each other by distsillation because of the closeness of their vapor pressures. m-Diisopropylbenzene can be readily removed from p-diisopropylbenzene by azeotropic distillation using certain esters. Typical effective azeotropic distillation agents are methyl benzoate and diethylene glycol ethyl ether acetate.
    Type: Grant
    Filed: November 23, 1988
    Date of Patent: November 14, 1989
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4877490
    Abstract: Formic acid cannot be completely removed from formic acid and water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from formic acid--water mixtures by extractive distillation in which extractive agent is a dicarboxylic acid mixed with certain high boiling organic compounds. Examples of effective agents are: itaconic acid and diethylene glycol diethyl ether; azelaic acid, heptanoic acid and 2-hydroxyacetophenone.
    Type: Grant
    Filed: January 23, 1989
    Date of Patent: October 31, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Kraig M. Wendt, Rudolph J. Szabados
  • Patent number: 4874473
    Abstract: Diastereomers can be separated with good industrial success with the aid of extractive distillation. The separation process is characterized in that an auxiliary which changes the partial pressure of the various diastereomers to be separated to a different degree and thus allows easier separation of the diastereomers by distillation is added during the distillation. Using the present process diastereomic cis/trans-permetric acid methyl esters and mixtures of menthol and isomenthol can be separated with isolation of 99% pure product.
    Type: Grant
    Filed: April 16, 1987
    Date of Patent: October 17, 1989
    Assignee: Bayer Aktiengesellschaft
    Inventors: Dieter Arlt, Ulrich Schwartz, Hans-Walter Brandt, Wolfgang Arlt, Andreas Nickel
  • Patent number: 4865973
    Abstract: A process for producing a variety of chemical products, e.g., ethanol, by fermentation in which the product is removed from the fermentation medium as it is formed by liquid-liquid extraction using an extractant for the product which is immiscible with water. The extractant employed is chosen from the following groups: (A) double bond unsaturated aliphatic alcohols having 12 or more carbon atoms; (B) saturated branched chain aliphatic alcohols having 14 or more carbon atoms or mixtures thereof; (C) double bond unsaturated aliphatic acids having 12 or more carbon atoms; (D) aliphatic and aromatic mono-, di- or tri-esters having 12 or more carbon atoms, other than dibutyl phthalate; (E) aliphatic noncyclic ketones and aliphatic aldehydes having 12 or more carbon atoms; and (F) mixtures of extractants from groups (A) to (E) above or mixtures of at least one of the above extractants and at least one other extractant.
    Type: Grant
    Filed: August 13, 1986
    Date of Patent: September 12, 1989
    Assignee: Queen's University at Kingston
    Inventors: Finn Kollerup, Andrew J. Daugulis
  • Patent number: 4859285
    Abstract: 2-Pentanone cannot be completely removed from 2-pentanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope. 2-Pentanone can be readily removed from 2-pentanone-formic acid mixtures by extractive distillation in which the extractive agent is a ketone, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are cyclohexanone; diisobutyl ketone and octanoic acid; isophorone, hexanoic acid and butyl ether.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: August 22, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Rudolph J. Szabados, Thomas H. Flower
  • Patent number: 4851087
    Abstract: Meta and para-diisopropylbenzenes cannot be easily separated from each other by distillation because of the closeness of their vapor pressures. m-Diisopropylbenzene can be readily removed from p-diisopropylbenzene by azeotropic distillation using certain nitrogenous compounds. Typical effective azeotropic distillation agents are ethanolamine and benzonitrile.
    Type: Grant
    Filed: November 28, 1988
    Date of Patent: July 25, 1989
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4840707
    Abstract: 3-Methyl-2-butanone cannot be removed from 3-methyl-2-butanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope between 3-methyl-2-butanone and formic acid. 3-Methyl-2-butanone can be readily removed from 3-methyl-2-butanone - formic acid mixtures by extractive distillation in which the extractive agent is dimethylacetamide, dimethylformamide or these with certain high boiling organic compounds.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: June 20, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Richard R. Rall
  • Patent number: 4826576
    Abstract: Isopropyl acetate cannot be completely removed from isopropyl acetate--isopropanol--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropyl acetate can be readily removed from mixtures containing it, isopropanol and water by using extractive distillation in which the extractive agent is a mixture of a polyol and one or higher boiling oxygenated, nitrogenous and/or sulfur containing organic compounds. Typical examples of effective agents are 1,3-butanediol and dimethylsulfoxide; 1,2,6-hexanetriol, dimethylsulfoxide and dimethylformamide.
    Type: Grant
    Filed: June 2, 1986
    Date of Patent: May 2, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4806209
    Abstract: Dioxane cannot be completely removed from dioxane and formic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane - formic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or admixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, neodecanoic acid and methyl salicylate.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: February 21, 1989
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4801358
    Abstract: Dioxane cannot be completely removed from dioxane and acetic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane - acetic acid mixtures by extractive distillation in which the extractive agent is N,N-dimethylacetamide or dimethylformamide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are N,N-dimethylacetamide; dimethylformamide and heptanoic acid; N,N-dimethylacetamide, heptanoic acid and diethylene glycol diethyl ether.
    Type: Grant
    Filed: July 28, 1988
    Date of Patent: January 31, 1989
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4801357
    Abstract: Dioxane cannot be completely removed from dioxane and acetic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane-acetic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, hexanoic acid and isophorone.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: January 31, 1989
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4793901
    Abstract: 2-Pentanone cannot be completely removed from 2-pentanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope. 2-Pentanone can be readily removed from 2-pentanone formic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, hexanoic acid and isophorone.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: December 27, 1988
    Assignee: Hoechst Celanese Chemical Co.
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4786370
    Abstract: Formic acid cannot be completely removed from formic acid and water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from formic acid - water mixtures by extractive distillation in which the extractive agent is ethylene carbonate or propylene carbonate, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are ethylene carbonate and heptanoic acid; propylene carbonate, benzoic acid and isophorone; propylene carbonate, heptanoic acid and 2-hydroxyacetophenone.
    Type: Grant
    Filed: January 4, 1988
    Date of Patent: November 22, 1988
    Inventor: Lloyd Berg
  • Patent number: 4767869
    Abstract: A process is described for the production of substantially pure gamma-butyrolactone from a feed mixture containing a major amount of gamma-butyrolactone and a minor amount of diethyl succinate which comprises fractionally distilling the mixture in a fractionation zone in the presence of added diethyl maleate and recovering from the fractionation zone an overhead vaporous product comprising gamma-butyrolactone which is substantially free from diethyl succinate and a liquid bottom product comprising diethyl maleate and diethyl succinate in admixture one with another. This procedure can be used to separate a gamma-butyrolactone rich fraction obtained by distillation in one or more stages of a crude reaction product obtained by hydrogenation of a C.sub.
    Type: Grant
    Filed: July 31, 1987
    Date of Patent: August 30, 1988
    Assignee: Davy McKee Limited
    Inventors: George E. Harrison, Norman Harris
  • Patent number: 4756803
    Abstract: 2-Butanol cannot be completely removed from 2-butanol - t-amyl alcohol mixtures by distillation because of the proximitry of their boiling points. 2-Butanol can be readily removed from mixtures containing it and t-amyl alcohol by using extractive distillation in which the extractive agent is a higher boiling benzoate. Typical examples are methyl benzoate; methyl benzoate and salicylic acid; methyl benzoate, cinnamic acid and hexahydrophthalic anhydride.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: July 12, 1988
    Inventor: Lloyd Berg
  • Patent number: 4738755
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional rectification or distillation because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is ethyl-2-hydroxybenzoate; methyl benzoate plus benzophenone; methyl benzoate, butyl benzoate and dimethylsulfoxide.
    Type: Grant
    Filed: March 10, 1987
    Date of Patent: April 19, 1988
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4735690
    Abstract: Impure formic acid cannot be completely removed from formic acid-water-impurity mixtures by distillation because of the presence of the maximum azeotrope between formic acid and water. Formic acid can be readily removed from mixtures containing it, water and impurities of the ether, ester, ketone or diketone type by using extractive distillation in which the extractive agent is a higher boiling oxygenated, nitrogenous or sulfur containing organic compound or a mixture of these. Examples of effective agents are adiponitrile; sulfolane and salicyclic acid; dimethylformamide, N,N-dimethylacetamide and ethylene glycol ethyl ether acetate.
    Type: Grant
    Filed: April 28, 1986
    Date of Patent: April 5, 1988
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4732653
    Abstract: Ethanol and t-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. Ethanol can be readily separated from t-butanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; benzyl benzoate and benzoic acid; methyl salicylate, hexahydrophthalic anhydride and salicylic acid.
    Type: Grant
    Filed: October 7, 1985
    Date of Patent: March 22, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4729818
    Abstract: Acetic acid cannot be easily removed from acetic acid--water mixtures by distillation because of the closeness of their boiling points and the deviation from ideal solution behavior. Acetic acid can be readily removed from mixtures containing it and water by using extractive distillation in which the extractive distillation agent is a mono carboxylic acid, either singly or admixed with high boiling organic compounds. Typical examples of effective agents are pelargonic acid; heptanoic acid and isophorone; neodecanoic acid, acetophenone and nitrobenzene.
    Type: Grant
    Filed: April 16, 1987
    Date of Patent: March 8, 1988
    Inventor: Lloyd Berg
  • Patent number: 4724049
    Abstract: Isobutyl acetate cannot be completely removed from isobutyl acetate - isobutanol - water mixtures by distillation because of the presence of the minimum ternary axeotrope. Isobutyl acetate can be readily removed from mixtures containing it, isobutanol and water by using extractive distillation in which the extractive distillation agent is a higher boiling oxygenated, nitrogenous and/or sulfur containing organic compound or a mixture of these. Typical examples of effective agents are dimethylsulfoxide; dimethylsulfoxide and dimethylformamide; dimethylsulfoxide, dimethylformamide and N,N-dimethylacetamide.
    Type: Grant
    Filed: June 26, 1986
    Date of Patent: February 9, 1988
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4718989
    Abstract: Isopropanol cannot be completely removed from isopropanol-isopropyl acetate-water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling ester of phthalic acid. Typical examples of effective agents are diisooctyl phthalate and methyl benzoate, dibutyl phthalate, methyl benzoate and nitromethane.
    Type: Grant
    Filed: February 26, 1987
    Date of Patent: January 12, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4718988
    Abstract: 2-Butyl acetate cannot be completely removed from 2-butyl acetate-2-butanol-water mixtures by distillation because of the presence of the minimum ternary azeotrope. 2-butyl acetate can be readily removed from mixtures containing it, 2-butanol and water by using extractive distillation in which the extractive distillation agent is a higher boiling oxygenated, nitrogenous and/or sulfur containing organic compound or a mixture of these. Typical examples of effective agents are N,N-dimethylacetamide; dimethylformamide and ethylene glycol; acetamide, dimethylsulfoxide and ethylene glycol.
    Type: Grant
    Filed: March 27, 1986
    Date of Patent: January 12, 1988
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4718987
    Abstract: Isopropanol cannot be completely removed from isopropanol--isopropyl acetate--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling benzoate mixed with certain oxygenated or nitrogeneous organic compounds. Typical examples are butyl benzoate and ethylene carbonate; methyl benzoate, 2-nitropropane and n-decanol.
    Type: Grant
    Filed: February 12, 1987
    Date of Patent: January 12, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4715933
    Abstract: n-Propanol and 2-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. n-Propanol can be readily separated from 2-butanol using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; benzoic acid and methyl benzoate; cinnamic acid, phthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: September 16, 1985
    Date of Patent: December 29, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4710275
    Abstract: Isopropanol and t-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. Isopropanol can be readily separated from t-butanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; methyl benzoate and hexahydrophthalic anhydride; phthalic anhydride, hexahydrophthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: September 20, 1985
    Date of Patent: December 1, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4710274
    Abstract: Ethanol and isopropanol cannot be separated from each other by distillation because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl salicylate; salicylic acid and hexahydrophthalic anhydride; salicylic acid, hexahydrophthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: August 4, 1986
    Date of Patent: December 1, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4698137
    Abstract: Isopropyl acetate cannot be completely removed from isopropyl acetate - isopropanol - water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropyl acetate can be readily removed for mixtures containing it, isopropanol and water by using extractive distillation in which the extractive agent is higher boiling oxygenated or nitrogenous organic compound or a mixture of these. Typical examples of effective agents are dimethylformamide; dimethylformamide and triethanolamine; N,N-dimethylacetamide and N-methyl pyrrolidone.
    Type: Grant
    Filed: March 5, 1986
    Date of Patent: October 6, 1987
    Inventor: Lloyd Berg
  • Patent number: 4695350
    Abstract: n-Hexyl acetate cannot be completely removed from n-hexyl acetate- n-hexyl alcohol- water mixtures by distillation because of the presence of the minimum ternary azeotrope. n-Hexyl acetate can be readily removed from mixtures containing it, n-hexyl alcohol and water by using extractive distillation in which the extractive distillation agent is dimethylsulfoxide or a mixture of DMSO with a higher boiling organic compound. Typical examples of effective agents are DMSO; DMSO and tetraethylene glycol; DMSO, dimethylformamide and hexylene glycol.
    Type: Grant
    Filed: January 27, 1986
    Date of Patent: September 22, 1987
    Inventor: Lloyd Berg
  • Patent number: 4693788
    Abstract: t-Amyl alcohol and isobutanol cannot be separated from each other by distillation because of the proximity of their boiling points. t-Amyl alcohol can be readily separated from isobutanol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: dimethylformamide; N,N-dimethylacetamide; N,N-dimethylacetamide and dimethylsulfoxide; dimethylformamide, N,N-dimethylacetamide and phthalic anhydride.
    Type: Grant
    Filed: March 17, 1987
    Date of Patent: September 15, 1987
    Inventors: Lloyd Berg, Michael J. Shanahan
  • Patent number: 4693787
    Abstract: t-Amyl alcohol and isobutanol cannot be separated from each other by distillation because of the proximity of their boiling points. t-Amyl alcohol can be readily separated form isobutanol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: dimethylsulfoxide; dimethylsulfoxide and N,N-dimethylacetamide; dimethylsulfoxide, dimethylformamide and phthalic anhydride.
    Type: Grant
    Filed: March 2, 1987
    Date of Patent: September 15, 1987
    Inventors: Lloyd Berg, Michael J. Shanahan
  • Patent number: 4692219
    Abstract: Formic acid cannot be easily removed from acetic acid by distillation because of the closeness of their vapor pressures. Formic acid can be readily removed from acetic acid by extraction distillation. Typical extractive distillation agents are carboxylic acids in the range of hexamoic acid to neodecanoic acid with or without solvents such as methyl benzoate, acetophenone and nitrobenzene.
    Type: Grant
    Filed: December 3, 1986
    Date of Patent: September 8, 1987
    Assignee: Celanese Chemical Co.
    Inventor: Lloyd Berg
  • Patent number: 4690734
    Abstract: n-Amyl acetate cannot be completely removed from n-amyl acetate - n-amyl alcohol - water mixtures by distillation because of the presence of the minimum ternary azeotrope. n-Amyl acetate can be readily removed from mixtures containing it, n-amyl alcohol and water by using extractive distillation in which the extractive distillation agent is a higher boiling organic compound or a mixture of these. Typical examples of effective agents are ethylene glycol; propylene glycol and dimethylsulfoxide; 1,3-butanediol, dimethylformamide and acetamide.
    Type: Grant
    Filed: November 25, 1985
    Date of Patent: September 1, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4676875
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional rectification or distillation because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is dimethylformamide; dimethylformamide and 1,4-butanediol; dimethylformamide, adiponitrile and dihexyl phthalate.
    Type: Grant
    Filed: January 6, 1986
    Date of Patent: June 30, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4676872
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional distillation or rectification because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is adiponitrile or a mixture of it with certain high boiling organic compounds. Typical examples of effective agents are: adiponitrile; adiponitrile and 1,4-butanediol; adiponitrile, ethylene carbonate and benzyl alcohol.
    Type: Grant
    Filed: April 21, 1986
    Date of Patent: June 30, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4675080
    Abstract: Isopropanol cannot be completely removed from isopropanol-isopropyl acetate-water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling ester of phthalic acid. Typical examples of effective agents are diethyl phthalate, diisooctyl phthalate and methyl benzoate, dibutyl phthalate, methyl benzoate and nitromethane.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: June 23, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh