Aromatic Patents (Class 203/69)
  • Patent number: 10233410
    Abstract: A novel minimum boiling binary azeotrope of n-undecane and n-butyl-3-hydroxybutyrate is shown to have utility as a solvent for degreasing of both nonpolar and polar contaminants. The components of the azeotrope are stable against degradation and the composition is largely invariant with pressure, yielding a unique solvent that can be used in cold cleaning and in vapor degreasing at elevated temperatures and over a wide range of pressures.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 19, 2019
    Assignee: Eastman Chemical Company
    Inventors: Travis Matthew Gott, Venkata Bharat Ram Boppana
  • Patent number: 9284243
    Abstract: Subject of the invention is a process for the production of methylbutynol, wherein the process comprises at least one pervaporation step. In a preferred embodiment, the process comprises the steps of (a) providing a feed composition comprising methylbutynol and water, (b) subjecting the feed composition to distillation in a distillation device, (c) removing a sidestream from the distillation device, the sidestream having a higher water content than the feed composition, and (d) subjecting said sidestream to pervaporation, thereby reducing the water content. The invention also relates to uses and devices relating to the inventive process.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 15, 2016
    Assignee: LONZA LTD
    Inventors: Stefan Ottiger, Thomas Scholl, Stefan Stoffel, Klaus Kalbermatter, Andreas Klein, Kishore Nedungadi
  • Patent number: 8354007
    Abstract: The invention relates to a process for purifying trifluoromethanesulfinic acid by azeotropic distillation with an aromatic solvent, to processes for preparing purified trifluoromethanesulfinic acid and to the use of the purified trifluoronnethanesulfinic acid for preparing trifluoromethylsulfinylated pyrazole derivatives, especially fipronil.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 15, 2013
    Assignee: BASF SE
    Inventors: Martin Sukopp, Alexander Korte, Stefan Fülster, Michael Keil, Michael Rack
  • Patent number: 8337671
    Abstract: Process for distillatively purifying polymerizable compounds using a high-boiling, inert, thermally long-term-stable substance as a boiling oil, characterized in that the boiling oil is disposed in the bottom of a rectification column.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: December 25, 2012
    Assignee: Evonik Röhm GmbH
    Inventors: Dirk Broell, Hermann Siegert
  • Patent number: 8323456
    Abstract: A process and system for removing bound water from bio-oil by azeotropic distillation. The process includes combining a bound-water-containing bio-oil with an azeotrope agent and subjecting the resulting treated bio-oil to azeotropic distillation under reduced pressure. The azeotropic distillation removes a substantial portion of the bound water from the bio-oil, thus producing a water-depleted bio-oil that is less corrosive, more stable, and more readily miscible with hydrocarbons.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 4, 2012
    Assignee: KiOR, Inc.
    Inventors: Ronny W. Lin, Robert Bartek
  • Patent number: 8172987
    Abstract: An energy-efficient extractive distillation process for producing anhydrous ethanol from aqueous/ethanol feeds containing any range of ethanol employs an extractive distillation column (EDC) that operates under no or greatly reduced liquid reflux conditions. The EDC can be incorporated into an integrated process for producing anhydrous ethanol used for gasoline blending from fermentation broth. By using a high-boiling extractive distillation solvent, no solvent, is entrained by the vapor phase to the EDC overhead stream, even under no liquid reflux conditions. The energy requirement and severity of the EDC can be further improved by limiting ethanol recovery in the EDC. In this partial ethanol recovery design, ethanol which remains in the aqueous stream from the EDC is recovered in a post-distillation column or the aqueous stream is recycled to a front-end pre-distillation column where the ethanol is readily recovered since the VLE curve for ethanol/water is extremely favorable for distillation.
    Type: Grant
    Filed: July 17, 2011
    Date of Patent: May 8, 2012
    Assignees: AMT International Inc., CPC Corporation, Taiwan
    Inventors: Fu-Ming Lee, Tzong-Bin Lin, Jyh-Haur Hwang, Hung-Chung Shen, Kuang-Yeu Wu, Lindsey Vuong, Fong-Cheng Su, Po-Sung Cheng, Tai-Ping Chang
  • Publication number: 20110190510
    Abstract: The invention relates to a process for purifying trifluoromethanesulfinic acid by azeotropic distillation with an aromatic solvent, to processes for preparing purified trifluoromethanesulfinic acid and to the use of the purified trifluoronnethanesulfinic acid for preparing trifluoromethylsulfinylated pyrazole derivatives, especially fipronil.
    Type: Application
    Filed: September 28, 2009
    Publication date: August 4, 2011
    Applicant: BASF SE
    Inventors: Martin Sukopp, Alexander Korte, Stefan Fülster, Michael Keil, Michael Rack
  • Publication number: 20090166176
    Abstract: Process for distillatively purifying polymerizable compounds using a high-boiling, inert, thermally long-term-stable substance as a boiling oil, characterized in that the boiling oil is disposed in the bottom of a rectification column.
    Type: Application
    Filed: March 14, 2007
    Publication date: July 2, 2009
    Applicant: EVONIK ROEHM GMBH
    Inventors: Dirk Broell, Hermann Siegert
  • Patent number: 7550065
    Abstract: A method for recovering a solvent from its mixture containing oligomers extracted from grafted polyolefins is disclosed. The method includes distilling the solvent from the mixture in the presence of a naphthalene compound. The method of the invention significantly increases the solvent recovering yield without causing the vessel fouling.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: June 23, 2009
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Majid Keyvani, Jude T. Ruszkay, Edward P. Carey
  • Publication number: 20080300373
    Abstract: The invention relates to a process for purifying (meth)acrylates.
    Type: Application
    Filed: October 11, 2006
    Publication date: December 4, 2008
    Applicant: Evonik Roehm GmbH
    Inventors: Bardo Schmitt, Joachim Knebel, Guenther Graeff
  • Publication number: 20080164139
    Abstract: A process for the removal of aromatic compounds from the olefin feed to a sulfuric acid paraffin alkylation by feeding a olefin containing hydrocarbon stream and a dilute alkylate stream from a paraffin alkylation to a distillation zone and removing unreacted material from said hydrocarbon stream as overheads and removing a more concentrated alkylate product stream and a portion of said aromatic compounds as bottoms and the improved alkylation process resulting therefrom.
    Type: Application
    Filed: January 8, 2007
    Publication date: July 10, 2008
    Inventor: William M. Cross
  • Publication number: 20080128264
    Abstract: A novel method for connecting multiple existing columns which are retrofitted into vapor-liquid contacting devices with trays or packings suitable for the operation of a three-phase (vapor-liquid-liquid) extractive distillation column for aromatics recovery. The retrofitted columns are connected by a vapor transfer line to transfer the vapor phase from the top of the lower column to the bottom of the upper column, and by a liquid transfer line to transfer the liquid phase from the bottom of the upper column to the top of the lower column of the three-phase extractive distillation column.
    Type: Application
    Filed: August 8, 2007
    Publication date: June 5, 2008
    Inventors: KUANG YEU WU, ADAM T. LEE, TZONG-BIN LIN, HUNG-CHUNG SHEN
  • Patent number: 7371309
    Abstract: The present invention provides extractive distillation processes for removing difluoromethane (HFC-32) from a mixture comprising HFC-32 and at least one of chlorodifluoromethane (CFC-12), 1,1,1-trifluoroethane (HFC-143a), chloropentafluoroethane (CFC-115), and pentafluoroethane (HFC-125) using hydrocarbon, chlorocarbon, and oxygen-containing extractive agents.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: May 13, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Sara W. Boehmer, Barry Asher Mahler, Ralph Newton Miller
  • Patent number: 7037412
    Abstract: The invention provides a method for producing purified N-vinyl-2-pyrrolidone free of odorous components. The method is composed of distilling with a distillation column a liquid, which is formed by adding to an odorous components-containing liquid having a N-vinyl-2-pyrrolidone purity of not lower than 90 wt %, a compound having boiling point lower than that of N-vinyl-2-pyrrolidone, and whereby removing the odorous components together with said low-temperature boiling compound as the distillate.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 2, 2006
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuaki Abe, Takashi Yodoshi, Hitoshi Yano
  • Patent number: 6984293
    Abstract: Cyclic esters of hydroxy organic acids can be produced and recovered via azeotropic distillation. In certain embodiments cyclic esters, such as glycolide and lactide, can be produced from a fermentation broth or other feed stream that contains a hydroxy organic acid, an ammonium salt of a hydroxy organic acid, an amide of a hydroxy organic acid, or an ester of a hydroxy organic acid using azeotropic distillation. The hydroxy organic acid of the feed stream or the hydroxy organic acid derived from the feed stream by decomposition is reacted to produce the cyclic ester. In other embodiments a crude composition of a cyclic ester of an organic ester can be purified using azeotropic distillation.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: January 10, 2006
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Patent number: 6982026
    Abstract: Disclosed herein are methods for the recovery of at least one of an organic acid or an organic acid amide, such as a heat stable lactic acid or lactamide, from a feed stream which contains the organic acid and/or organic acid amide. The feed stream is mixed with at least one azeotroping agent. The azeotroping agent is a hydrocarbon capable of forming at least one heteroazeotrope with the organic acid or the organic acid amide in the feed stream. The mixture of the feed stream and the azeotroping agent is heated to produce a vapor stream. The heteroazeotrope is a component of that vapor stream. The vapor stream can be heated further to separate components or it can be condensed into a liquid stream. The liquid stream is capable of being separated into a first phase and a second phase. The first phase contains the highest concentration of the organic acid and/or the organic acid amide and the azeotroping agent is part of the second phase.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: January 3, 2006
    Assignee: Tate & Lyle Ingredients Americas, Inc.
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Patent number: 6926810
    Abstract: Disclosed herein are methods for the recovery of an organic acid, such as a heat stable lactic acid, from a feed stream which contains at least one of an organic acid amide, an organic acid ammonium salt, or an alkylamine-organic acid complex. The feed stream is mixed with at least one azeotroping agent. The azeotroping agent is a hydrocarbon capable of forming at least one azeotrope with the organic acid that is produced by the thermal decomposition of the amide, ammonium salt, or complex in the feed stream. Preferably the azeotrope is a heteroazeotrope. The mixture of the feed stream and the azeotroping agent is heated to produce a vapor stream. The azeotrope is a component of the vapor stream. The vapor stream can be condensed to a liquid stream, and the organic acid is recovered in the liquid stream that is produced. When the azeotrope is a heteroazeotrope, the vapor stream can be condensed into a liquid stream, which can be separated into a first phase and a second phase.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: August 9, 2005
    Assignee: A. E. Staley Manufacturing Co.
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Patent number: 6787001
    Abstract: A method for distilling a raw material liquid containing (meth)acrylic acid substantially free from azeotropic solvents, collected with a collection agent from a mixed gas obtained by gas phase catalytic oxidation reactions which includes feeding to a distillation column the raw material liquid which temperature is substantially equal to that of the entrance place in the column.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: September 7, 2004
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Kazuhiko Sakamoto, Sei Nakahara, Yukihiro Matsumoto, Kenji Sanada, Masatoshi Ueoka
  • Publication number: 20030150705
    Abstract: A method of recovering acrylic acid from a mixture comprising acrylic acid, water and acetic acid is disclosed, which includes:
    Type: Application
    Filed: December 30, 2002
    Publication date: August 14, 2003
    Inventors: Sanjeev D. Deshpande, Tao Wang, Olan Stanley Fruchey, Roger L. Roundy, Nathan K. Powell, Rafael G. Morales, Joseph E. Goins
  • Publication number: 20030146081
    Abstract: A method of recovering acrylic acid from a mixture comprising acrylic acid, water and acetic acid is disclosed, which includes: (a) extracting acrylic acid from the mixture with a solvent mixture comprising ethyl acrylate as the preponderant component thereof and an organic co-solvent selected from the group consisting of toluene, heptane, 1-heptene, methylcyclohexane, cycloheptane, cycloheptadiene, cycloheptatriene, 2,4-dimethyl-1,3 pentadiene, methylcyclohexene and methylenecyclohexene to form an extracted composition; and (b) azeotropically distilling the extracted composition to recover acrylic acid.
    Type: Application
    Filed: January 8, 2002
    Publication date: August 7, 2003
    Inventors: Salvador Aldrett, Diane Elizabeth Allen, Nathan K. Powell, Christopher Lawrence Wilkins, Edmund Jungpiao Yang
  • Publication number: 20030116421
    Abstract: A process for reducing the level(s) of water and/or other impurities from cyclosiloxanes by either azeotropic distillation, or by contacting the cyclosiloxane compositions with an adsorbent bed material. The purified cyclosiloxane material is useful for forming low-dielectric constant thin films having dielectric constants of less than 3.0, more preferably 2.8 to 2.0.
    Type: Application
    Filed: December 13, 2001
    Publication date: June 26, 2003
    Inventors: Chongying Xu, Thomas H. Baum, Alexander S. Borovik, Ziyun Wang, James T.Y. Lin, Scott Battle, Ravi K. Laxman
  • Publication number: 20030102206
    Abstract: A process for purifying propylene oxide, which comprises distilling propylene oxide containing impurities in the presence of a hydrocarbon having 5 carbon atoms or less. According to the present invention, a process for purifying propylene oxide which has a feature that impurities contained in a solution containing propylene oxide to be purified can be efficiently removed, especially, oxygen-containing impurities can be very efficiently removed, is provided.
    Type: Application
    Filed: October 24, 2002
    Publication date: June 5, 2003
    Inventors: Noriaki Oku, Masaru Ishino
  • Publication number: 20030029712
    Abstract: Disclosed herein are methods for the recovery of at least one of an organic acid or an organic acid amide, such as a heat stable lactic acid or lactamide, from a feed stream comprising the organic acid and/or organic acid amide. The feed stream that comprises the organic acid and/or organic acid amide is mixed with at least one azeotroping agent. The azeotroping agent is a hydrocarbon capable of forming at least one heteroazeotrope with the organic acid or the organic acid amide. The mixture comprising the feed stream and the azeotroping agent is heated to produce a vapor stream that comprises the heteroazeotrope. The vapor stream can be heated further to separate components or it can be condensed into a liquid stream. The liquid stream is capable of being separated into a first phase and a second phase. The first phase contains the highest concentration of the organic acid and/or the organic acid amide and the second phase comprises the azeotroping agent.
    Type: Application
    Filed: March 15, 2001
    Publication date: February 13, 2003
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Publication number: 20030029711
    Abstract: Disclosed herein are methods for the recovery of an organic acid, such as a heat stable lactic acid, from a feed stream comprising at least one of an organic acid amide, an organic acid ammonium salt, or an alkylamine-organic acid complex. The feed stream that comprises the organic acid amide, organic acid ammonium salt, or alkylamine-organic acid complex is mixed with at least one azeotroping agent. The azeotroping agent is a hydrocarbon capable of forming at least one azeotrope with the organic acid that is produced by the thermal decomposition of the amide, ammonium salt, or complex in the feed stream. Preferably the azeotrope is a heteroazeotrope. The mixture comprising the feed stream and the azeotroping agent is heated to produce a vapor stream that comprises the azeotrope. The vapor stream can be condensed to a liquid stream, and the organic acid is recovered in the liquid stream that is produced.
    Type: Application
    Filed: March 15, 2001
    Publication date: February 13, 2003
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Publication number: 20020166759
    Abstract: A modular solvent recovery device (30) includes an enclosure (34) mounted to a frame (32) to enclose a tank (70) having a solvent section (72) and a waste fluid section (73), a still (40) in which waste photopolymer fluid is distilled by application of heat and vacuum pressure to the waste photopolymer fluid to distill a solvent from the waste photopolymer fluid and reduce the waste photopolymer fluid to a coalescing concentrated residue, and a flash-point-increasing agent delivery system (95) to supply a flash-point-increasing agent to the concentrated residue in an amount sufficient to raise the flash point temperature of the coalescing concentrated residue to a predetermined temperature. The still has a manhole device (46) comprising a pivotally and telescopically mounted closure (47) having wheels (51) rotatably mounted thereto and tracks (52) mounted to the still to engage the wheels and raise the closure vertically above a manhole (42) of the still upon pivotal movement of the closure.
    Type: Application
    Filed: November 5, 2001
    Publication date: November 14, 2002
    Inventors: Michael D. Mabry, Donald R. McAllister
  • Publication number: 20020157937
    Abstract: Cyclic esters of hydroxy organic acids can be produced and recovered via azeotropic distillation. In certain embodiments cyclic esters, such as glycolide and lactide, can be produced from a fermentation broth or other feed stream that comprises a hydroxy organic acid, an ammonium salt of a hydroxy organic acid, an amide of a hydroxy organic acid, or an ester of a hydroxy organic acid using azeotropic distillation. The hydroxy organic acid of the feed stream or the hydroxy organic acid derived from the feed stream by decomposition is reacted to produce the cyclic ester. In other embodiments a crude composition of a cyclic ester of an organic ester can be purified using azeotropic distillation.
    Type: Application
    Filed: March 15, 2001
    Publication date: October 31, 2002
    Inventors: Michael Charles Milner Cockrem, Istvan Kovacs
  • Patent number: 6461481
    Abstract: A method of removing water from wet organoborane by dissolving the wet organoborane in an organic solvent in which water is incompletely soluble, decanting any insoluble water, and distilling the organic phase to remove water which may be contained therein.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: October 8, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Willie Jon Barnette, Bruce Edwin Murphree, John Joseph Ostermaier
  • Publication number: 20020134660
    Abstract: A method for distilling a raw material liquid containing (meth)acrylic acid substantially free from azeotropic solvents, collected with a collection agent from a mixed gas obtained by gas phase catalytic oxidation reactions which includes feeding to a distillation column the raw material liquid which temperature is substantially equal to that of the entrance place in the column.
    Type: Application
    Filed: March 1, 2002
    Publication date: September 26, 2002
    Inventors: Kazuhiko Sakamoto, Sei Nakahara, Yukihiro Matsumoto, Kenji Sanada, Masatoshi Ueoka
  • Patent number: 6444096
    Abstract: A process for the recovery and purification of cyclobutanone from a crude product mixture obtained from an oxidation product mixture resulting from the oxidation of cyclobutanol to cyclobutanone in the presence of water. The process provides for the recovery of cyclobutanone in a purity of at least 90 weight percent by a combination of distillation steps.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: September 3, 2002
    Assignee: Eastman Chemical Company
    Inventors: Scott Donald Barnicki, Timothy Richard Nolen, Robert Sterling Kline, Dewey Wayne Fuller, Jr., Mary Kathleen Foster, Stephen Neal Falling
  • Patent number: 6352618
    Abstract: A process is disclosed for manufacturing a concentrated residue from a photopolymer fluid which includes photopolymer and photopolymer solvent. The photopolymer fluid may be derived by chemically etching a photopolymer layer of a printing plate with a solvent. The process includes distilling the photopolymer fluid to recover the solvent and concentrate the photopolymer fluid to form a concentrated photopolymer residue, and mixing a flash-point-increasing agent with the concentrated photopolymer residue in an amount sufficient to raise the flash point temperature of the concentrated photopolymer residue to a pre-selected temperature to form the concentrated residue. The flash-point-increasing agent may be mixed with the waste photopolymer fluid prior, during, or after distillation. Also, the flash-point-increasing agent includes oils, such as paraffinic and naphthenic oils and a blend thereof.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: March 5, 2002
    Assignee: IHS Solvent Solutions, Inc.
    Inventors: Michael D. Mabry, Donald R. McAllister
  • Patent number: 6299737
    Abstract: A process for recovering glycols from used glycol-containing technical fluids, especially from used antifreeze comprises adding to the used glycol-containing technical fluids an organic solvent which forms with the glycol to be separated off an azeotropic mixture which has a lower boiling point than the glycol itself and distilling off this azeotropic mixture.
    Type: Grant
    Filed: April 11, 1995
    Date of Patent: October 9, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Jürgen Mohr, Wolf-Dieter Balzer
  • Patent number: 6166270
    Abstract: High purity tertiary butyl alcohol is obtained from mixtures comprised of tertiary butyl alcohol and tertiary butyl acetate by extractive distillation using a hydrocarbon extractive solvent such as decane.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: December 26, 2000
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Vijai P. Gupta, Michael J. Szady
  • Patent number: 6159345
    Abstract: A method and apparatus for recycling and recovering potentially explosive solvents includes providing a contaminated solvent to a distillation tank, vaporizing the solvent in the distillation tank, thereby producing solvent vapor, condensing the solvent vapor, and adding a free radical scavenger substance to the distillation tank during the heating step. The vapor is then condensed and collected in a clean solvent tank where additional free radical scavenger substance is added to the clean solvent tank. Preferably, contaminated solvent is introduced into the solvent recovery system by providing contaminated solvent into contaminated solvent tank which is connected to the distillation tank, and an oxygen displacer substance is provided to the contaminated solvent tank and the clean solvent tank so as to minimize the amount of free oxygen in the tanks.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: December 12, 2000
    Assignee: Mitsubishi Chemical America, Inc.
    Inventors: John C. Donnelly, Guerry L. Grune, Gregory A. Frick, Kenneth L. Marsh
  • Patent number: 6120652
    Abstract: The invention relates to a method for purifying a crude 1,1,1,3,3-pentafluoropropane (HFC-245fa) containing HFC-245fa and 1-chloro-3,3,3-trifluoro-trans-1-propene (HCFC-1233zd(t)), by distillation. This method is characterized in that the distillation is conducted in the presence of a solvent having a boiling point which is higher than that of HCFC-1233zd(t), thereby to substantially remove HCFC-1233zd(t) from the crude HFC-245fa. This solvent may be selected from carbon chlorides, chlorohydrocarbons, fluorochlorohydrocarbons, saturated hydrocarbons, and mixtures thereof. With the use of this solvent, it becomes possible to substantially easily separate HFC-245fa from HCFC-1233zd(t).
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: September 19, 2000
    Assignee: Central Glass Company
    Inventors: Yasuo Hibino, Ryouichi Tamai
  • Patent number: 6042697
    Abstract: 9,11- Diene C18 fatty acid cannot be separated from 10,12-Diene C18 fatty acid by conventional rectification because of the proximity of their boiling points. 9,11-Diene C18 fatty acid can be readily separated from 10,12-Diene fatty acid by azeotropic distillation. Effective agents are propyl formate, butyl ether, methyl pivalate and cyclopentanone.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: March 28, 2000
    Inventor: Lloyd Berg
  • Patent number: 6039846
    Abstract: 3-Methyl-2-pentenal cannot be separated from 1-butanol by conventional rectification because of the proximity of their boiling points. 3-methyl-2-pentenal can be readily separated from n-butanol by azeotropic distillation. Effective agents are dimethoxymethane, petroleum ether and tetramethylortho-silicate.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: March 21, 2000
    Inventor: Lloyd Berg
  • Patent number: 6024841
    Abstract: 2-Methyl-1-butanol and 3-methyl-1-butanol are difficult to separate from 1 pentanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-butanol and 3-methyl-1-butanol can be easily separated from 1-pentanol by extractive distillation. Effective agents are 3-carene, propylene glycol phenyl ether and dimethylsulfoxide.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: February 15, 2000
    Inventor: Lloyd Berg
  • Patent number: 6004435
    Abstract: Cumene cannot be separated from 3-ethyl toulene by distillation because of the proximity of their boiling points. They are readily separated by azeotropic distillation. Effective agents are methyl salicylate, diethylene glycol butyl ether and 3-nitrotoluene.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: December 21, 1999
    Inventor: Lloyd Berg
  • Patent number: 5993610
    Abstract: Ethyl acetate cannot be separated from ethanol by distillation or rectification because of the closeness of their boiling points. Ethyl acetate is readily separated from ethanol by azeotropic distillation. Effective agents are ethyl ether, methyl formate and cyclohexane.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: November 30, 1999
    Inventor: Lloyd Berg
  • Patent number: 5964987
    Abstract: Natural cresylic acid is processed to remove neutral oil impurities by countercurrent liquid/liquid extraction using a heavy phase solvent of a mixture of glycerol and another polyhydric alcohol, preferably triethylene glycol. The light phase solvent is a light paraffinic or cycloparaffinic hydrocarbon.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: October 12, 1999
    Assignee: Dakota Gasification Company
    Inventors: David H. Duncan, Gene G. Baker, Dana J. Maas, Kevin M. Mohl, Alfred K. Kuhn
  • Patent number: 5908538
    Abstract: 2-Methyl-1-propanol cannot be separated from t-amyl alcohol by distillation or rectification because of the closeness of their boiling points. 2-Methyl-1-propanol is readily separated from t-amyl alcohol by azeotropic distillation. Effective agents are butyl propionate, cyclohexane and 2,2-dimethoxypropane.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: June 1, 1999
    Inventor: Lloyd Berg
  • Patent number: 5897750
    Abstract: Acetone cannot be separated from a mixture of isopropanol and water because of the closeness of their boiling points. Acetone can be easily separated from isopropanol and water by extractive distillation. Effective extractive agents are 1-nitropropane, 3-carene, dimethylsulfoxide and 3-pentanone.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: April 27, 1999
    Inventor: Lloyd Berg
  • Patent number: 5882485
    Abstract: A process for the separation of dimethyl ether and chloromethane in mixturesA process for the separation of dimethyl ether and chloromethane in mixtures by two distillation steps. In the first step, the mixture is subjected to an extractive distillation with water, aqueous salt solutions or organic liquids as extractant, the top product being chloromethane. In the second step, the dimethyl ether is separated from the extractant.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: March 16, 1999
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Peter Roth, Erhard Leistner, Hans Haverkamp, Wolfgang Wendel, Michael Kleiber
  • Patent number: 5879517
    Abstract: 2-Butanol cannot be sparated from t-amyl alcohol by distillation or rectification because of the closeness of their boiling points. 2-Butanol is readily separated from t-amyl alcohol by extractive distillation. Effective agents are butyl ether, benzyl acetate and 1,2,4-trimethyl benzene.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: March 9, 1999
    Inventor: Lloyd Berg
  • Patent number: 5876569
    Abstract: Methyl ethyl ketone cannot be separated from ethanol by distillation or rectification because of the closeness of their boiling points. Methyl ethyl ketone is readily separated from ethanol by extractive distillation. Effective agents are methyl benzoate, phenol, glycerol and nitroethane.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: March 2, 1999
    Inventor: Lloyd Berg
  • Patent number: 5840160
    Abstract: 3-Carene is difficult to separate from limonene by conventional distillation or rectification because of the proximity of their boiling points. 3-Carene can be readily separated from limonene by extractive distillation. Effective agents are o-cresol, 2,6-dimethyl-4-heptanone and triethylene glycol.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: November 24, 1998
    Inventor: Lloyd Berg
  • Patent number: 5834585
    Abstract: A method for separating hexamethylcyclotrisiloxane that does not require the use of a distillation set up adapted for use with solids and that collects the hexamethylcyclotrisiloxane in the form of an easy-to-handle solution. The method comprising inducing the ascent in the gaseous state of a hexamethylcyclotrisiloxane-containing mixture of polydimethylcyclosiloxanes in a distillation column provided with a sidestream element in the middle region of the column so as to induce the ascent of gaseous hexamethylcyclotrisiloxane to at least the level of the sidestream element, supplying into said distillation column solvent having a boiling point below that of hexamethylcyclotrisiloxane and capable of dissolving hexamethylcyclotrisiloxane, so as to form a liquid mixture of hexamethylcyclotrisiloxane and said solvent in the vicinity of the sidestream element, and withdrawing the said liquid mixture from the sidestream element.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: November 10, 1998
    Assignee: Dow Corning Toray Silicone Co., Ltd.
    Inventor: Toshi Nomura
  • Patent number: 5800681
    Abstract: Ethanol, isopropanol and water cannot be separated from each other by distillation or rectification because of minimum azeotropes. They are readily separated by extractive distillation. Effective agents are: dimethylsulfoxide for ethanol, phenol for isopropanol.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: September 1, 1998
    Inventor: Lloyd Berg
  • Patent number: 5795447
    Abstract: 2-Butanol cannot be separated from isobutanol by distillation or rectification because of the closeness of their boiling points. 2-Butanol is readily separated from isobutanol by extractive distillation. Effective agents are propylene glycol propyl ether, 2-methoxyethanol and ethyl acetate.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 18, 1998
    Inventor: Lloyd Berg
  • Patent number: 5779862
    Abstract: 2-Methyl-1-butanol and 3-methyl-1-butanol are difficult to separate from 1-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-butanol and 3-methyl-1-butanol can be easily separated from 1-pentanol by azeotropic distillation. Effective agents are toluene, methyl acetate and tetrahydrofuran.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: July 14, 1998
    Inventor: Lloyd Berg