Dielectric Coating, Covering, Or Shield Patents (Class 204/196.19)
-
Patent number: 11732367Abstract: A selectively removable engine anode having a metallic anode base with a threaded configuration disposed proximal to a lower end thereon and on an outer surface, a flanged platform extending radially along a longitudinal length of the base to define an outer flange diameter, and a cantilevered retention member directly coupled to the flanged platform and having a diameter less than the outer flange diameter. The anode includes a galvanic anode with a first anode end coupled to the flanged platform, a second anode free end opposing the first anode end, and an anode length separating the first anode end and the second anode free end, wherein the galvanic anode and the flanged platform encapsulate the cantilevered retention member, the anode base is selectively removably couplable to a plug that is operably configured to be selectively coupled to a marine engine.Type: GrantFiled: December 5, 2019Date of Patent: August 22, 2023Assignee: ZIMAR INTERNATIONAL, INCInventors: Jose Alegre, Juan Carlos Alegre
-
Patent number: 10240814Abstract: A double glass coated steel tank for a high temperature water heater and its method of fabrication is described. The tank is constructed of steel welded parts and fittings are secured to the tank without the presence of sharp edges being formed on the inner surface of the tank not to form any weakness in the composite glass coating to be applied. A first water resistant base coat of cobalt glass enriched with ZIRCON (trademark) is applied to the inner surface and the tank is heat fired at a high temperature in the order of about 1600 degrees F. A second high temperature water resistant glass coat, having a fine gas bubble size not exceeding 10 microns, is applied over the first coat and the tank is heat fired a second time. The composite glass coating thus formed is highly water and corrosion resistant in a water environment of up to at least 190 degrees F.Type: GrantFiled: September 25, 2017Date of Patent: March 26, 2019Assignee: MICLAU—S.R.I.INC.Inventor: Claude Lesage
-
Patent number: 8361286Abstract: An improved sacrificial galvanic anode assembly for cathodic protection of a steel reinforced concrete structure. A galvanic cathodic protection device uses an embedded sacrificial anode of metallic foam for increased reactive surface area covered with a flexible penetrating coating to provide a continuous electrolyte to keep it active. The formulated coating paste is inert to cement embedment material and is pre-applied on the anode body prior to encapsulation. An integrated conductive contact band extends from the coated anode to attachment to a reinforcement bar for establishing electrical conductively therewith within the concrete structure transferring galvanic corrosion to the anode.Type: GrantFiled: May 2, 2011Date of Patent: January 29, 2013Inventor: Roberto Giorgini
-
Patent number: 8361285Abstract: An electrochemical antifouling system for preventing fouling organisms from adhering to seawater-wetted structures includes a direct current circuit for creating an electrolytic environment in seawater, the direct current circuit having an adjustable direct current source, a lattice electrode having a single metallic component so as to provide a dimensionally stable lattice structure, the lattice electrode electrically insulated from a surface of a seawater-wetted structure, at least one corrosion-resistant counter electrode having polarity opposite to the lattice electrode and disposed at a distance therefrom, and a switching device configured to alternatively switch the lattice electrode to (a) a continuous operating mode, and (b) a temporary depletion mode, wherein the lattice electrode is disposed in a distance range from the surface of the seawater-wetted structure so that the surface lies within an area of influence of an increase in pH value of the seawater caused by electrolysis.Type: GrantFiled: October 27, 2010Date of Patent: January 29, 2013Assignee: Stiftung Alfred-Wegener-Institut fuer Polar-und MeeresforschungInventors: Roland Krone, Markus Paster
-
Patent number: 8236145Abstract: An electrolysis prevention device, for preventing corrosion caused by electrolysis, includes a sacrificial anode made of an active metal and an anode holder supporting the sacrificial anode. The holder is adapted to fit around the inlet connection of an engine heat exchange component, such as a radiator or heater core, in such a way as to allow for a hose to be attached overtop the device. The device may be included in an originally-manufactured engine heat exchange component or may be installed later.Type: GrantFiled: December 7, 2009Date of Patent: August 7, 2012Inventor: Frank Petrosino
-
Patent number: 7998321Abstract: An improved sacrificial galvanic anode assembly for cathodic protection of a steel reinforced concrete structure. A galvanic cathodic protection device uses a multi-layered embedded sacrificial anode such as zinc covered with a flexible layer of paste to provide a continuous electrolyte to keep it active. The formulated paste is inert to cement embedment material and is pre-coated on the anode body prior to encapsulation. An integrated conductive contact band extends from within the coated anode to attachment to a reinforcement bar for establishing electrical conductively therewith in the concrete structure transferring galvanic corrosion to the anode.Type: GrantFiled: July 27, 2009Date of Patent: August 16, 2011Inventor: Roberto Giorgini
-
Patent number: 7914661Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. The anode body is formed, by pressing together finely divided powder, flakes or fibers of a sacrificial anode material such as zinc to define a porous body having pores therein. The sacrificial anode material of the anode member is directly in contact with the covering material by being buried or inserted as a tight fit into a drilled hole so that any expansion forces therefrom would be applied to the concrete with the potential of causing cracking. The pores are arranged however such that corrosion products from corrosion of the anode body are received into the pores sufficiently to prevent expansion of the anode body to an extent which would cause cracking of the covering material.Type: GrantFiled: September 12, 2007Date of Patent: March 29, 2011Inventor: David Whitmore
-
Patent number: 7749362Abstract: A method of protecting steel in concrete is disclosed. It consists of connecting the steel (6) to a discrete sacrificial anode assembly (7) comprising a base metal (1), a relatively small quantity of catalytic activating agent in contact with the base metal and a substantially inert porous layer (3) that surrounds the base metal and catalytic activating agent. The inert porous layer efficiently maintains a sustainable concentration gradient of the catalytic activating agent between the base metal and the surrounding environment as a result of the electric field across this layer. The preferred porous layer comprises a material that exhibits a net repulsion of negative ions from its pore system and the preferred catalytic activating agent comprises doubly charged sulphate ions as small electric fields maintain very high concentration gradients of these ions resulting in high concentrations at the base metal surface and insignificant concentrations at the assembly periphery.Type: GrantFiled: October 17, 2005Date of Patent: July 6, 2010Inventors: Gareth Glass, Adrian Roberts
-
Patent number: 7438787Abstract: A cathodic protection system has electrodes disposed in a coolant passage of an engine filled with a conductive coolant. The electrodes are electrically insulated from the engine. A power supply device provides for a protective electric current to form from the electrodes to the engine through the coolant. The cathodic protection system reduces engine manufacturing and maintenance costs and provides an anticorrosive effect without increasing the size of the engine.Type: GrantFiled: March 24, 2006Date of Patent: October 21, 2008Assignee: Yamaha Marine Kabushiki KaishaInventors: Masahiro Mizuno, Yuji Tateishi, Toshiyuki Mizushima
-
Patent number: 7431809Abstract: An electrode for a cathodic protection device that has one or more electrode bodies formed of a conductive wire. The electrode includes a pair of films made of an insulating material which are bonded to each other while sandwiching the electrode body therebetween. Preferably at least one of the pair of films is bonded to an engine body. The electrode body is exposed to the outside through one or more through-holes formed in at least one of the films. The electrode is less susceptible to short-circuiting or wire breakage when bent and is also easier to manufacture than conventional electrodes.Type: GrantFiled: March 24, 2006Date of Patent: October 7, 2008Assignee: Yamaha Marine Kabushiki KaishaInventors: Masahiro Mizuno, Yuji Tateishi, Toshiyuki Mizushima
-
Patent number: 7374643Abstract: The invention relates to composite sacrificial anodes, particularly but not exclusively, based on magnesium, and to methods for their production. The composite sacrificial anode (10) for immersion in a corrosive environment comprises a plurality of castings (12) of a sacrificial material each disposed around a corresponding electrical connector for attachment to a structure to be protected, at least a part of the surface of each segment (12) being protected from corrosion by the environment by being adjacent at least one other segment (12), wherein the castings are connected together electrically only via their electrical connectors.Type: GrantFiled: November 14, 2003Date of Patent: May 20, 2008Assignee: Magnesium Elektron LimitedInventors: Hossein Karimzadeh, Timothy E. Wilks
-
Patent number: 7329336Abstract: A cathodic protection system for protecting an underwater structure includes a plurality of blocks which are capable of conforming to various structures. Each of the blocks include: a flexible wire rope, the rope constructed and arranged to pass through the center of each block in two directions, and embedded therein to fasten the blocks to each other by rows and columns; a sacrificial anode embedded in at least one of the blocks, and electrically attached inside the block to the flexible wire rope; and a connecting system electrically attached to the wire rope and to the underwater structure. Each block has a non-abrasive pad attached to it. The pad provides spacing between the block and the underwater structure. The system includes means for collecting performance data from the system. The sacrificial anode is made of a composition taken from the group comprising alloys of: zinc, aluminum, or magnesium.Type: GrantFiled: April 20, 2006Date of Patent: February 12, 2008Assignee: Deepwater Corrosion Services, Inc.Inventor: Jim Britton
-
Patent number: 7303659Abstract: Plural composite panels are aligned in multiple horizontal rows. Each composite panel includes a titanium panel (anode), an electrical insulating member and a stainless-steel band member. The titanium panels (also, stainless-steel band members) of horizontally adjacent panels overlap each other to be in face-to-face contact. The stainless-steel band members are horizontally connected at different levels to form long negative electrodes (cathode) extending in seawater-flowing direction in an inlet channel. Each stainless-steel band member is exposed to seawater through a gap between vertically adjacent composite panels.Type: GrantFiled: September 14, 2005Date of Patent: December 4, 2007Assignees: Kabushiki Kaisha Toshiba, Tokyo Energy & Systems Inc.Inventors: Shuichi Inagaki, Liang Yan, Kenji Sato, Akira Nemoto, Yoshiharu Mikami, Nobuo Yamaga, Tadahiko Oba, Makoto Gomi, Takeo Shimazaki, Kouichi Furugaki, Kenji Kaneda
-
Patent number: 7276144Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. The anode body is formed, by pressing together finely divided powder, flakes or fibers of a sacrificial anode material such as zinc to define a porous body having pores therein. The sacrificial anode material of the anode member is directly in contact with the covering material by being buried or inserted as a tight fit into a drilled hole so that any expansion forces therefrom would be applied to the concrete with the potential of causing cracking. The pores are arranged however such that corrosion products from corrosion of the anode body are received into the pores sufficiently to prevent expansion of the anode body to an extent which would cause cracking of the covering material.Type: GrantFiled: July 24, 2002Date of Patent: October 2, 2007Inventor: David Whitmore
-
Patent number: 7264697Abstract: A sacrificial marine anode with a water proof encased current tester to alert an operator of proper connectivity, current status of the cathodic protection system for an associated marine structure, and status of current tester power supply is disclosed.Type: GrantFiled: September 24, 2004Date of Patent: September 4, 2007Assignee: California Corrosion Concepts, Inc.Inventors: Mohammed Ali, J. Darby Howard, Jr., Chris Lisson
-
Patent number: 7226532Abstract: Cathodic protection of an existing concrete structure, including a steel member at least partly buried, such as steel rebar, in the concrete structure, is provided by embedding anodes into a fresh concrete layer applied over an excavated patch and/or as a covering overlay. The anodes are embedded at spaced positions or as an array in the layer and connected to the rebar. A reinforcing layer is applied to the anode or adjacent the anode to resist expansion of the anode body tending to cause cracking of the concrete caused by the larger volume of the corrosion products relative to the anode material. Pores are provided in the anode body so as to take up the corrosion products. The reinforcing layer can be provided in the actual anode body as a closed surface surrounding the anode material inside or may be provided in the concrete as a layer on top of the anode in an array form at or near the outer surface of the concrete.Type: GrantFiled: October 14, 2003Date of Patent: June 5, 2007Inventor: David W. Whitmore
-
Patent number: 7211173Abstract: A marine fouling inhibiting system comprises first and second conductors which are made of a polymer matrix, such as vinyl ester, and a suspended conductor, such as graphite powder or particles. This type of conductive material is formed to provide two sections of a boat hull so that a source of electrical current can be used to reversibly cause an electric current to flow to and from the conductive coatings. The conductive coatings are electrically insulated from each other in order to force the formation of an electrical circuit which includes the two conductive coatings, the source of electrical current, and the water in which the boat hull is disposed. This results in the creation of chlorine bubbles on the conductive surfaces. Chlorine bubbles on the boat hull surfaces discourage the formation of marine growth, such as barnacles.Type: GrantFiled: July 29, 2003Date of Patent: May 1, 2007Assignee: Brunswick CorporationInventors: Richard E. Staerzl, Christopher J. Misorski, Kevin R. Anderson
-
Patent number: 7198707Abstract: An apparatus and method for cathodic protection in an environment where thin film corrosive fluids are formed is provided. The apparatus which protects from corrosion an object exposed to the thin film corrosive fluids, by artificially adjusting a potential of the object, comprises a DC power supply of which cathode is electrically connected to the object to be corrosion-protected, and an anodic assembly of which anode is electrically connected to the DC power supply.Type: GrantFiled: February 12, 2003Date of Patent: April 3, 2007Assignee: Korea Power Engineering Co. Inc.Inventors: Hyun Young Chang, Gon Hwangbo, Tae Eun Jin, Min Yu Shin
-
Patent number: 7189312Abstract: An earthing electrode assembly and method for providing a submerged electrical apparatus with an earth path, the electrode assembly having an earthing electrode, an attachment device for attaching the electrode assembly to a cable, and an insulated electrical connection for connecting the earthing electrode to the submerged electrical apparatus. The connection is formed to be of sufficient length for the submerged electrical apparatus to be protected from electrochemical effects resulting from operation of the earthing electrode.Type: GrantFiled: October 29, 2002Date of Patent: March 13, 2007Assignee: AlcatelInventors: Ian Gerard Watson, Philip Andrew Norman, David Lancelot Walters, Peter Worthington
-
Patent number: 7186320Abstract: An anode for a cathodic protection system comprises a base portion or support structure which is shaped to receive a conductive element, or insert, within a cavity of the support structure. The conductive element is made of a polymer material, such as vinyl ester, with a conductive filler, such as graphite powder. The base is attachable to a marine vessel or other submersible component that is being protected by a cathodic protection system. The anode allows the use of a relatively inexpensive resin material with a graphite filler in place of a much more expensive platinum coated titanium element.Type: GrantFiled: July 31, 2003Date of Patent: March 6, 2007Assignee: Brunswick CorporationInventors: Richard E. Staerzl, Christopher J. Misorski
-
Patent number: 7160433Abstract: The cathodic protection system of a concrete structure (22) uses sacrificial anodes such as zinc, aluminum and alloys thereof embedded in mortar. A humectant is employed to impart high ionic conductivity to the mortar in which the anode is encapsulated. Lithium nitrate and lithium bromide and combinations thereof are preferred as the humectant. The anode (10) is surrounded by a compressive, conductive matrix (12) incorporating a void volume between 15% and 50% to accommodate the sacrificial corrosion products of the anode. A void space of at least 5% of the total volume of the anode (12) may be provided opposite to the active face of the anode. Synthetic fibers such as polypropylene, polyethylene, cellulose, nylon and fiberglass have been found to be useful for forming the matrix. A tie wire is used to electrically connect the anode to the reinforcing bar.Type: GrantFiled: September 20, 2002Date of Patent: January 9, 2007Inventor: John E. Bennett
-
Patent number: 6958116Abstract: The present invention relates to a method of and an apparatus (20) for cathodic protection of reinforced concrete using discrete anodes (22) in or on the reinforced concrete member (14) to improve performance and service life of the discrete anodes. The discrete anode (22) is embedded in a cementitous grout or mortar (24) to encapsulate the anode (22) and provide contact to complete the cathodic protection circuit. A lithium salt is added to the cementitous grout or mortar (24) in an amount of at least about 0.05 gram per cubic centimeter. The lithium salt functions to enhance the performance of the cathodic protection system (20) by minimizing the deleterious effects of the anode reaction products on the grout or mortar adjacent to the anode and increasing the protective current delivered to the reinforcing steel.Type: GrantFiled: November 27, 2000Date of Patent: October 25, 2005Inventor: Jack E. Bennett
-
Publication number: 20040231975Abstract: An electrode system for preventing biofouling of a surface either is applied directly onto the surface of an aquatic vehicle or structure, if the surface is non-conducting; or is applied onto an insulating paint layer on the surface, if the surface is conducting; or is embedded in a layer of electrically non-conducting material. The electrode system includes two alternating sets of electrodes in the form of spaced, parallel strips made from any conductive material, preferably a conductive coating, the first set being provided with a number n of parallel electrodes, and the second set being provided with a number n-1 of parallel electrodes, with the positions of the electrodes of the first set alternating with the positions of the electrodes of the second set. The geometry of the electrodes is such that when the voltalge is applied, the electric field radiates outwardly parallel to the surface of the structure.Type: ApplicationFiled: February 26, 2004Publication date: November 25, 2004Inventors: Robert C Boyd, Wayne B. Legrande
-
Patent number: 6770177Abstract: A corrosion protection device (“CPD”) for inhibiting corrosion of an air compressor collection tank, and relieving the pressure in the tank when excessive condensate accumulates within the tank. A relief passage extends through the plug, and an anode seals the relief passage near the interior volume of the tank. The tank, plug and anode are all coupled in an electrically conductive relationship, and a galvanic circuit is formed when condensate collects near the bottom of the tank. The anode has a lower redox potential than steel, and is preferably made from magnesium. The anode loses electrons with less resistance than the steel tank, so the anode will be consumed through the oxidation process before the steel tank corrodes. Once the anode is consumed so that it no longer seals the relief passage, the condensate and air are discharged from the tank through the relief passage.Type: GrantFiled: November 7, 2001Date of Patent: August 3, 2004Assignee: Ingersoll-Rand CompanyInventors: Charles Tillman Keller, William M. Lewis
-
Patent number: 6726831Abstract: Apparatus and method for providing corrosion protection of subsea pipe-in-pipe electrically heated pipeline are provided. The exterior surface of the outer pipe is coated with a thick protective coating in and near the splash zone and near the bulkhead of the heated line. A discharge electrode is placed over the thick protective covering or bare pipe is created near the thick protective covering. Methods are provided for determining the area needed in the discharge electrode or bare pipe.Type: GrantFiled: July 20, 2001Date of Patent: April 27, 2004Assignee: Shell Oil CompanyInventors: Ronald Marshall Bass, Stephen Lance Wolfson
-
Patent number: 6572760Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material.Type: GrantFiled: July 24, 2001Date of Patent: June 3, 2003Inventor: David Whitmore
-
Patent number: 6514401Abstract: An anti-biofouling system adapted to be used for an underwater structure immersed in seawater is disclosed. The anti-biofouling system includes a conductive layer, comprising carbon fiber, graphite powder and binder, formed on a surface of the underwater structure for serving as an anode, a cathode, and a power supply for providing a current, thereby performing an electrolytic reaction for the anti-biofouling system such that a fouling organism is prohibited from attaching on the surface of the underwater structure.Type: GrantFiled: May 2, 2001Date of Patent: February 4, 2003Assignee: Taiwan Power CompanyInventors: San-Der Chyou, Wen-Chi Chiang, Ran Huang, Jiann-Kuo Wu
-
Publication number: 20030015436Abstract: Apparatus and method for providing corrosion protection of subsea pipe-in-pipe electrically heated pipeline are provided. The exterior surface of the outer pipe is coated with a thick protective coating in and near the splash zone and near the bulkhead of the heated line. A discharge electrode is placed over the thick protective covering or bare pipe is created near the thick protective covering. Methods are provided for determining the area needed in the discharge electrode or bare pipe.Type: ApplicationFiled: July 20, 2001Publication date: January 23, 2003Inventors: Ronald Marshall Bass, Stephen Lance Wolfson
-
Patent number: 6358397Abstract: A concrete structure is reinforced with steel rebars coated with essentially pure aluminum in the range from about 0.25 mm to 2 mm thick upon which aluminum coating is an aluminum oxide layer in the range from 0.1 &mgr;m to 100 &mgr;m thick. This layer of aluminum oxide and/or hydrated aluminum oxide is referred to as a combined aluminum oxide layer, and it is in direct contact with the concrete.Type: GrantFiled: September 19, 2000Date of Patent: March 19, 2002Assignee: COR/SCI, Llc.Inventor: Efim Ya. Lyublinski
-
Publication number: 20020023848Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material.Type: ApplicationFiled: July 24, 2001Publication date: February 28, 2002Inventor: David Whitmore
-
Patent number: 6346188Abstract: The present disclosure relates to a cathodic protection system for inhibiting oxidation of a reinforcing member disposed within a cementitious structure. The system comprises a compact, autonomous battery adapted to mount to the cementitious structure at an open-air location, the battery having a positive terminal and a negative terminal, a conductor adapted to electrically connect the negative terminal of the battery to the reinforcing member of the cementitious structure, an anode jacket constructed of a cementitious material and being adapted to be placed in physical contact with the cementitious structure, and an anode disposed within the anode jacket and being adapted to be positioned proximate to a portion of the reinforcing member disposed within the cementitious structure that is to be cathodically protected, the anode being electrically connected to the positive terminal of the battery.Type: GrantFiled: March 24, 2000Date of Patent: February 12, 2002Assignee: Enser CorporationInventors: Nicholas Shuster, Gregory J. Gabert
-
Patent number: 6331242Abstract: Corrosible metallic elements of tank are protected by an anodic encasement sleeve. The anodic encasement sleeve employs an inner sacrificial anodic layer and an outer environmental barrier layer to provide both cathodic and barrier protection against corrosion. Following application of the sleeve, typically by drawing or wrapping, the anodic encasement sleeve remains substantially unbonded from the tank, though it is electrically connected by conductive means. Because of the substantially unbonded relationship between the sacrificial anodic layer and the metallic elements of the tank, if electrolyte is present under the environmental barrier (due to breaches, installation error, condensation, etc.), the electrolyte may enter the unbonded area between the tank and the anodic material. This increases the ratio of anodic material to tank available, which makes the cathodic protection more efficient and effective for an extended duration.Type: GrantFiled: June 21, 2000Date of Patent: December 18, 2001Assignee: United States Pipe and Foundry Company, Inc.Inventor: A. Michael Horton
-
Patent number: 6238545Abstract: An anode is embedded in an electrolyte layer applied to the surface of a structure such as a pipe section to provide an ionic conductive path between the anode and structure to supply cathodic protection to the structure, where the natural environment may not provide a continuous electrolyte. The anode is comprised of a material normally used as a cathodic protection anode material, such as, an expanded valve metal mesh or ribbon having either an electrochemically active coating or noble metal coating, or a sacrificial anode metal alloy. The anode material is made continuous from one end of the structure to the other and may be connected to a common bus wire from one end to the other. The anode and structure to be protected are connected using wires to a DC power supply that causes cathodic protection current flow to the structure in the case of an impressed current system. No separate power supply is needed in the case of a galvanic or sacrificial anode system.Type: GrantFiled: August 2, 1999Date of Patent: May 29, 2001Inventors: Carl I. Allebach, Albert A. Smith, Walter T. Young
-
Patent number: 6217742Abstract: The present invention relates to a method of cathodic protection of reinforced concrete, and more particularly, to a method of improving the performance and service life of discrete anodes used in a cathodic protection system. The method of the present invention comprises placing an embeddable discrete anode in, or on, the reinforced concrete member. The discrete anode is then embedded in a cementitous grout or mortar to encapsulate the anode and provide contact to complete the cathodic protection circuit. A lithium salt selected from the group consisting of lithium nitrate (LiNO3), lithium bromide (LiBr), and combinations thereof, is added to the cementitous grout or mortar surrounding the discrete anode, in the amount of at least about 0.2 gram (dry basis) per cubic centimeter of grout or mortar. The lithium salt functions to enhance the performance of the cathodic protection system by minimizing the deleterious effects of the anode reaction product on the grout or mortar adjacent to the anode.Type: GrantFiled: November 30, 1999Date of Patent: April 17, 2001Inventor: Jack E. Bennett
-
Patent number: 6214203Abstract: Corrosible metallic elements of pipe are protected by an anodic encasement sleeve. The anodic encasement sleeve employs an inner sacrificial anodic layer and an outer environmental barrier layer to provide both cathodic and barrier protection against corrosion. Following application of the sleeve, typically by drawing or wrapping, the anodic encasement sleeve remains substantially unbonded from the pipe, though it is electrically connected by conductive means. Because of the substantially unbonded relationship between the sacrificial anodic layer and the metallic elements of the pipe, if electrolyte is present under the environmental barrier (due to breaches, installation error, condensation, etc.), the electrolyte may enter the unbonded area between the pipe and the anodic material. This increases the ratio of anodic material to pipe available, which makes the cathodic protection more efficient and effective for an extended duration.Type: GrantFiled: December 6, 1999Date of Patent: April 10, 2001Assignee: United States Pipe FoundryInventor: A. Michael Horton