With Diaphragm Patents (Class 204/282)
  • Publication number: 20120279854
    Abstract: In a first aspect, a method for forming a ionic polymer membrane, comprises: (i) polymerising a mixture of one or more first monomers to form an ionic polymer membrane; (ii) soaking the polymer membrane of (i) into a mixture of one or more second monomers, for a sufficient length of time to allow the solution to penetrate through the entire polymer membrane; and (iii) polymerising the monomer-coated polymer of step (ii) to form an essentially homogenous ionic polymer. In a second aspect, a method for forming a catalyst-coated ionic polymer membrane, comprises: (i) polymerising a mixture of one or more first monomers to form an ionic polymer membrane; (ii) dipping the polymer of (i) into a mixture of one or more second monomers; (iia) depositing a catalyst onto the monomer-coated polymer; (iii) polymerising the monomer-coated polymer of step (iia). The present invention also includes membranes formed using these methods.
    Type: Application
    Filed: October 29, 2010
    Publication date: November 8, 2012
    Inventors: Donald James Highgate, Jennifer Morton
  • Patent number: 8282811
    Abstract: Disclosed are methods and systems for generating hydrogen gas at pressures high enough to fill a hydrogen storage cylinder for stationary and transportation applications. The hydrogen output of an electrochemical hydrogen gas generating device, a hydrogen-producing reactor, or a diluted hydrogen stream is integrated with an electrochemical hydrogen compressor operating in a high-differential-pressure mode. The compressor brings the hydrogen produced by the hydrogen generating device to the high pressure required to fill the storage cylinder.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: October 9, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: John A. Kosek, José Giner, Anthony B. LaConti
  • Publication number: 20120248028
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; and (v) non-curable salt; wherein the molar ratio of (i):(ii) is >0.10. The compositions are useful for preparing ion exchange membranes.
    Type: Application
    Filed: December 9, 2010
    Publication date: October 4, 2012
    Applicant: FUJIFILM MANUFACTURING EUROPE BV
    Inventors: Harro Antheunis, Jacko Hessing, Bastiaan Van Berchum
  • Publication number: 20120248029
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii)12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; (iv) 0 to 10 wt % of free radical initiator; and (v) lithium and/or calcium salt. The compositions are useful for preparing ion exchange membranes.
    Type: Application
    Filed: December 9, 2010
    Publication date: October 4, 2012
    Applicant: FUJIFILM MANUFACTURING EUROPE BV
    Inventors: Harro Antheunis, Jacko Hessing, Bastiaan Van Berchum
  • Publication number: 20120193242
    Abstract: A membrane electrode assembly (MEA) comprises substantially concentric and tubular-shaped layers of a cathode, an anode and an ion-exchange membrane. The MEAs of the invention can be used in an electrochemical cell, which comprises the following layers which are tubular-shaped, arranged substantially concentrically, and listed from the inner layer to the outer layer; (i) a cylindrical core; (ii) one of the electrodes; (iii) a membrane; (iv) the other of the electrodes; and (v) an outer cylindrical sleeve.
    Type: Application
    Filed: September 15, 2010
    Publication date: August 2, 2012
    Inventor: Frederic Marchal
  • Publication number: 20120160700
    Abstract: Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Applicant: GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
    Inventors: Stanley G. Wiedmeyer, Laurel A. Barnes, Mark A. Williamson, James L. Willit
  • Publication number: 20120141888
    Abstract: The present invention relates to an oxygen-consuming electrode comprising at least one support element in the form of a sheet-like structure and a coating comprising a gas diffusion layer and a catalytically active component, wherein the oxygen-consuming electrode is additionally coated with a fluoropolymer which is soluble in solvents.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 7, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Jürgen Kintrup, Stefanie Eiden
  • Publication number: 20120125782
    Abstract: Provided is a gas diffusion electrode equipped ion exchange membrane electrolyzer including an anode, an ion-exchange membrane, and a cathode chamber in which a gas diffusion electrode is disposed, wherein in a cathode gas chamber formed between a back plate of the cathode chamber and one side of the gas diffusion electrode opposite to the electrolytic surface, a gas-permeable elastic member is disposed between the gas diffusion electrode and the back plate, and the elastic member forms a conductive connection between the gas diffusion electrode and the back plate by making contact with corrosion-resistant conductive layers formed on the surfaces of a plurality of conductive members which are joined to the back plate.
    Type: Application
    Filed: May 24, 2010
    Publication date: May 24, 2012
    Applicants: CHLORINE ENGINEERS CORP., LTD., KANEKA CORPORATION, TOAGOSEI CO. LTD.
    Inventors: Kiyohito Asaumi, Yukinori Iguchi, Mitsuharu Hamamori
  • Patent number: 8153838
    Abstract: An isocyanate is produced by: (a) reacting chlorine with carbon monoxide to form phosgene, (b) reacting the phosgene with an organic amine to form an isocyanate and hydrogen chloride, (c) separating the isocyanate and hydrogen chloride, (d) optionally, purifying the hydrogen chloride, (e) preparing an aqueous solution of the hydrogen chloride, (f) optionally, purifying the aqueous solution of hydrogen chloride, (g) subjecting the aqueous hydrogen chloride solution to electrochemical oxidation to form chlorine, and (h) returning at least a portion of the chlorine produced in (g) to (a).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 10, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Rainer Weber, Wolfgang Lorenz, Gerhard Moormann, Friedhelm Kämper, Berthold Keggenhoff
  • Patent number: 8147663
    Abstract: A scaffold holding one or more ion-conductive ceramic membranes for use in an electrochemical cell is described. Generally, the scaffold includes a thermoplastic plate defining one or more orifices. Each orifice is typically defined by a first, second, and third aperture, wherein the second aperture is disposed between the first and third apertures. The diameter of the second aperture can be larger than the diameters of the first and third apertures. While at an operating temperature the diameter of the ceramic membrane is larger than the diameters of the first and third apertures, heating the scaffold to a sufficient temperature and for a sufficient time causes the third aperture's diameter to become larger than the membrane's diameter. Thus, heating the scaffold may allow the membrane to be inserted into the orifice. Cooling the scaffold can then cause the third aperture's diameter to shrink and trap the membrane within the orifice.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 3, 2012
    Assignee: Cekamatec, Inc
    Inventors: Scott Suarez, Steven Matthew Quist
  • Publication number: 20120067745
    Abstract: Internally calibrated pH and other analyte sensors based on redox agents provide more accurate results when the redox active reference agent is in a constant chemical environment, yet separated from the solution being analyzed in such a way as to maintain electrical contact with the sample. Room temperature ionic liquids (RTIL) can be used to achieve these results when used as a salt bridge between the reference material and the sample being analyzed. The RTIL provides the constant chemical environment and ionic strength for the redox active material (RAM) and provides an electrolytic layer that limits or eliminates direct chemical interaction with the sample. A broad range of RAMs can be employed in a variety of configurations in such “Analyte Insensitive Electrode” devices.
    Type: Application
    Filed: March 10, 2010
    Publication date: March 22, 2012
    Applicant: Senova Systems, Inc.
    Inventors: Joseph A. Duimstra, Lee Leonard, Gregory G. Wildgoose, Eric Lee
  • Publication number: 20120061246
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Publication number: 20120040254
    Abstract: Performance, properties and stability of bifunctional air electrodes may be improved by using modified current collectors, and improving water wettability of air electrode structures. This invention provides information on creating non-corroding, electrically rechargeable, bifunctional air electrodes. In some embodiments, this bifunctional air electrode includes a corrosion-resistant outer layer and an electrically conductive inner layer. In some embodiments, this bifunctional air electrode includes titanium suboxides formed by reducing titanium dioxide. Titanium suboxides may be corrosion-resistant and electrically conductive.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Inventors: Steven Amendola, Michael Binder, Phillip J. Black, Stefanie Sharp-Goldman, Lois Johnson, Michael Kunz, Michael Oster, Tesia Chciuk, Regan Johnson
  • Publication number: 20120037511
    Abstract: A super-capacitor desalination device is described and includes a pair of terminal electrodes and at least one bipolar electrode located between the terminal electrodes. The at least one bipolar electrode has an ion exchange material disposed on opposing surfaces thereof The ion exchange material is a cation exchange material or an anion exchange material. A method for super-capacitor desalination is also provided.
    Type: Application
    Filed: February 24, 2011
    Publication date: February 16, 2012
    Inventors: Rihua Xiong, Hai Yang, Wei Cai
  • Publication number: 20120012457
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Applicant: UMICORE AG & CO. KG
    Inventors: Ralf ZUBER, Sandra WITTPAHL, Klaus SCHAACK, Holger DZIALLAS, Peter SEIPEL, Pia BRAUN, Lutz ROHLAND
  • Patent number: 8083919
    Abstract: Described are novel systems for electrodeposition of paint on counter-electrodes, and membrane electrode assemblies for incorporation into such systems. In certain embodiments of the invention, electrode enclosures such as C-shaped or box-shaped enclosures include membranes sealed to secondary structural members by bonding. In other embodiments, membrane electrode cells having bumpers are mounted within paint baths in a manner wherein the bumpers are forcibly biased against the exterior wall of the bath, thereby stabilizing the position of the cells. In still further embodiments, tubular electrode cells are provided with internal valves allowing the release of liquid trapped within the tubular electrodes into the membrane shell. In this manner, removal of the electrodes for maintenance, replacement or other purposes is facilitated.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: December 27, 2011
    Inventors: H. Frederick Hess, Jr., H. Frederick Hess, III, Steven Jovanovic, James E. Rittel, Jr.
  • Publication number: 20110308946
    Abstract: An ion-selective electrode comprising: a housing, which surrounds a housing interior; an ion-selective membrane; especially a polymer membrane; and a sensing system, which is in contact with the ion-selective membrane, for sensing a potential of the ion-selective membrane, wherein the ion-selective membrane at least partially fills the housing interior, and is in contact with a medium surrounding the housing via at least one traversing bore through a housing wall of the housing.
    Type: Application
    Filed: November 27, 2009
    Publication date: December 22, 2011
    Applicant: Endress + Hauser Conducta Gesellschaft fur Mess- und Regeltechnik mbH + Co. K
    Inventor: Stefan Wilke
  • Patent number: 8075745
    Abstract: A polishing pad includes a guide plate having a plurality of holes therein and being affixed to a compressible under-layer; and a plurality of conducting polishing elements each affixed to the compressible under-layer and passing through a sealed contact with a proton exchange membrane and corresponding hole in the guide plate so as to be maintained in a substantially vertical orientation with respect to the compressible under-layer but being translatable in a vertical direction with respect to the guide plate. The polishing pad may also include a slurry distribution material fastened to the guide plate by an adhesive. Pad wear sensors may also be provided in the polishing pad.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: December 13, 2011
    Assignee: Semiquest Inc.
    Inventor: Rajeev Bajaj
  • Patent number: 8070923
    Abstract: A structure of cathodic fingers for a chlor-alkali diaphragm cell with improved voltage and faradic efficiency is described, characterized in that a sheet provided with projections is inserted inside each finger. The interwoven wire mesh or the perforated sheet, forming each finger, is secured by a conductive connection, preferably by welding, to the top of each projection, thereby providing optimal uniformity of the electrical current distribution. The projections have a shape preferably equivalent to spherical caps, disposed in a quincuncial pattern. The internal volume of each finger is subdivided by the sheet provided with projections into two portions wherein both the free upward motion of hydrogen bubbles and the free longitudinal motion of the separated hydrogen take place towards the cell perimetrical chamber.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: December 6, 2011
    Assignee: Industrie de Nora S.p.A.
    Inventors: Salvatore Peragine, Luciano Iacopetti
  • Patent number: 8029654
    Abstract: An object of the present invention is to provide a complex material in which an ion conduction film is curved and deformed when a potential difference is applied, which is operated at small electric power, has a large deformation amount, quick response performances, large degree of freedom in shape, and is easy in control of deformation, while having strength and durability necessary for practical use and being excellent in an economical aspect. A conductive cloth (preferably having stretchability), which is made conductive through plating of metal on a cloth or metal complex implantation, is joined as an electrode to both surfaces of the ion conduction film (the film in which an ion exchange film or ion liquid is immersed) made of a fluororesin and the like. When the potential difference is applied, the ion conduction film is deformed.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: October 4, 2011
    Assignee: Seiren Co., Ltd.
    Inventors: Susumu Takagi, Masakazu Nomura, Eiichi Shoji, Kazuyuki Murase
  • Publication number: 20110223523
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 15, 2011
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Publication number: 20110151352
    Abstract: A carbon-fiber-based gas diffusion layer (GDL) for use in polymer electrolyte membrane (PEM) fuel cells (FC) having structured hydrophilic properties, wherein materials with hydrophilic properties and selected from the group of metal oxides in an average domain size of 0.5 to 80 ?m are present as hydrophilic wicks in the gas diffusion layer.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 23, 2011
    Inventors: Peter Wilde, Rüdiger-Bernd Schweiss
  • Publication number: 20110100813
    Abstract: An electrochemical gas sensor includes a housing, a first working electrode within the housing and having a first section of gas transfer medium and a first layer of catalyst on the first section of gas transfer medium, and at least a second working electrode within the housing and having a second section of gas transfer medium and a second layer of catalyst on the second section of gas transfer medium. At least one of the first section of gas transfer medium and the second section of gas transfer medium includes at least one area in which the structure thereof has been irreversibly altered to limit diffusion of gas through the at least one of the first section of gas transfer medium or the second section of gas transfer medium toward the other of the at least one of the first section of gas transfer medium and the second section of gas transfer medium.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 5, 2011
    Inventors: BRIAN KEITH DAVIS, TOWNER BENNETT SCHEFFLER, MICHAEL ALVIN BROWN
  • Patent number: 7897021
    Abstract: Described are novel systems for electrodeposition of paint on counter-electrodes, and membrane electrode assemblies for incorporation into such systems. In certain embodiments of the invention, electrode enclosures such as C-shaped or box-shaped enclosures include membranes sealed to secondary structural members by bonding. In other embodiments, membrane electrode cells having bumpers are mounted within paint baths in a manner wherein the bumpers are forcibly biased against the exterior wall of the bath, thereby stabilizing the position of the cells. In still further embodiments, tubular electrode cells are provided with internal valves allowing the release of liquid trapped within the tubular electrodes into the membrane shell. In this manner, removal of the electrodes for maintenance, replacement or other purposes is facilitated.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: March 1, 2011
    Assignee: UFS Corporation
    Inventors: H. Frederick Hess, Jr., Steven Jovanovic, James E. Rittel, Jr., H. Frederick Hess, III
  • Publication number: 20100323249
    Abstract: Provided are an air electrode having a structure in which an anion exchange membrane and an air electrode catalyst layer are laminated and the anion exchange membrane is disposed in contact with an aqueous alkaline solution; and a metal-air battery, an alkaline fuel cell, and a water electrolysis device each having the air electrode. The air electrode of the present invention can reduce or solve various conventional problems of an air electrode in a metal-air battery, fuel cell, and the like, which use an aqueous alkaline solution as an electrolyte, and can maintain high performance for a long period of time.
    Type: Application
    Filed: February 17, 2009
    Publication date: December 23, 2010
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Naoko Fujiwara, Kazuaki Yasuda, Tsutomu Ioroi
  • Publication number: 20100276280
    Abstract: In order to solve various problems such as a reduction in a paint resin with the progress of electrodeposition coating treatment and remelting of a coating film or the occurrence of pinholes caused by an increased concentration of an electrolyte as a result of the reduction, upsizing of a hollow electrode with a membrane for electrodeposition coating combined with a barrier membrane (e.g., an ion exchange membrane) and an increase in the number of components should be avoided. In order to realize this, a barrier membrane 20 such as an ion exchange membrane is attached to the exterior surface of an electrode main body 10, which is in a hollow state made of a conductive material and configured so as to allow a liquid to pass through freely between the inside and outside of the electrode serving as a support.
    Type: Application
    Filed: April 13, 2007
    Publication date: November 4, 2010
    Applicants: Daiso Co., Ltd., AGC Engineering Co., Ltd.
    Inventors: Shouhei Matsui, Yasushi Yoshida, Nobuyoshi Shoji, Yukio Matsumura
  • Patent number: 7811694
    Abstract: A polymer electrolyte membrane for a direct oxidation fuel cell includes a porous polymer supporter having a plurality of pores, and a hydrocarbon fuel diffusion barrier layer which is formed on the polymer supporter and contains an inorganic additive dispersed in a cation exchange resin.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: October 12, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Kyu Song, You-Mee Kim, Ho-Jin Kweon, Hee-Woo Rhee
  • Publication number: 20100252428
    Abstract: The present invention relates to planar electrochemical sensors with membrane coatings used to perform chemical analyses. The object of this invention is to provide unit-use disposable sensors of very simple and inexpensive construction, preferably with only a single membrane coating on an electrode. The invented devices are potentiometric salt-bridge reference electrodes and dissolved gas sensors constructed with a heterogeneous membrane coating of a conductor. The heterogeneous membrane, which is an intimate admixture of a hydrophobic and a hydrophilic compartment, concurrently supports constrained transport of non-volatile species through its hydrophilic compartment and rapid gas and water vapor transport through its hydrophobic compartment.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 7, 2010
    Applicant: EPOCAL INC.
    Inventors: Imants LAUKS, Anca VARLAN, Alexandra OUSSOVA, Michael BALES
  • Patent number: 7803846
    Abstract: The objective of the invention is to solve the problems of conventional polymer electrolyte membranes, including small ion-exchange capacity and low oxidation and methanol resistance. A polymer film substrate is irradiated with ?-rays, electron beams or other radiations to perform multi-graft polymerization with functional monomers and then the polymer film substrate containing the grafted molecular chains or the graft molecular chains into which sulfonic acid groups have been introduced is crosslinked by irradiation to produce a polymer electrolyte membrane that has outstanding oxidation resistance, dimensional stability, electrical conductivity and methanol resistance and which can be controlled in ion-exchange capacity over a wide range.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: September 28, 2010
    Assignees: Japan Atomic Energy Agency, Nitto Denko Corporation
    Inventors: Masaru Yoshida, Masaharu Asano, Tetsuya Yamaki, Soji Nishiyama, Toshimitsu Tachibana, Yozo Nagai
  • Publication number: 20100230279
    Abstract: A fluoride monitoring electrode comprises a single crystal of a lanthanum series fluoride doped with alkaline earth ions. The sample pre-treatment solution used in conjunction with the electrode includes a buffer that maintains a pH of 5 to 8 and a complexing agent that complexes iron and aluminum.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 16, 2010
    Inventors: Zhisheng Sun, Steven J. West, Xiaowen Wen, June Y. d'Heilly
  • Publication number: 20100224497
    Abstract: A volume-porous electrode is provided which increases effectiveness and production of electrochemical processes. The electrode is formed of a carbon, graphitic cotton wool, or from carbon composites configured to permit fluid flow through a volume of the electrode in three orthogonal directions. The electrode conducts an electrical charge directly from a power source, and also includes a conductive band connected to a surface of the electrode volume, whereby a high charge density is applied uniformly across the electrode volume. Apparatus and methods which employ the volume-porous electrode are disclosed for removal of metals from liquid solutions using electroextraction and electro-coagulation techniques, and for electrochemical modification of the pH level of a liquid.
    Type: Application
    Filed: October 9, 2008
    Publication date: September 9, 2010
    Inventors: David Livshits, Lester Teichner
  • Publication number: 20100206735
    Abstract: The invention relates to an anode assembly for electroplating comprising (a) an anode body comprising soluble anode material and (b) a shielding covering at least part of the anode body and comprising a self-passivating metal electrically connected to the anode body and allowing electrolyte transport therethrough. The shielding comprises at least one layer of self-passivating metal having no openings larger than 2 mm, preferably 1 mm, in width or the shielding comprises at least two layers of self-passivating metal wherein the openings of at least one layer are at least partially covered by the metal of another layer. The invention also relates to a shielded anode basket, a method for electroplating and the use of the anode assembly and the shielded anode basket.
    Type: Application
    Filed: June 20, 2008
    Publication date: August 19, 2010
    Applicants: Metakerm Gesellschaft fur Schichtchemie der Mettalle mbH, M.P.C. Micorpulse Plating Concepts
    Inventors: Jörg Wurm, Stephane Menard, Lothar Schneider
  • Publication number: 20100140088
    Abstract: Disclosed herein is a reference electrode having a self-calibration function, which is used in electrochemical measurement and whose measurement accuracy can be maintained for a long period of time. Also disclosed is an apparatus for automatically correcting electrochemical potential using the reference electrode. The apparatus comprises: a reference electrode, comprising an external electrode body having an electrolyte membrane at one end thereof and an electrolyte solution filled therein, and at least two electrically isolated internal electrodes which are disposed in the external electrode body in such a manner that they are immersed in the electrolyte solution; and a reference potential calibrator for applying AC voltage to the internal electrodes to measure the electrical conductivity of the electrolyte solution of the electrolyte solution and output a correction signal about the change in the reference potential of the reference electrode.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventors: Jei-Won YEON, In-Kyu Choi, Won-Ho Kim, Kyuseok Song
  • Patent number: 7708867
    Abstract: The present invention provides a gas diffusion electrode having: an electrode substrate; and a catalyst layer containing a hydrophilic catalyst and a hydrophobic binder, which is carried on the electrode substrate, wherein the electrode substrate contains at least one carbon material selected from a carbon cloth, a carbon paper, a foamed carbon material, and a sintered carbon material.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: May 4, 2010
    Assignee: Permelec Electrode Ltd.
    Inventors: Yuji Yamada, Takeshi Kasuga, Yoshinori Nishiki, Tsuneto Furuta
  • Publication number: 20100028770
    Abstract: Disclosed herein is a stacking or stacking/folding type electrode assembly of a cathode/separator/anode structure, wherein the electrode assembly is constructed in a structure in which tabs (electrode tabs), having no active material applied thereto, protrude from electrode plates constituting the electrode assembly, electrode leads are located at one-side ends of the stacked electrode tabs such that the electrode leads are electrically connected to the electrode tabs, and protruding lengths of the electrode tabs are gradually increased according to the distances between the electrode leads and the electrode tabs, whereby the lengths of the electrode tabs at joint portions between the electrode tabs and the electrode leads are the same. Also disclosed is an electrochemical cell including the electrode assembly.
    Type: Application
    Filed: July 14, 2007
    Publication date: February 4, 2010
    Inventors: Ji Heon Ryu, Eun Ju Lee, Jeong Hee Choi, Youngjoon Shin
  • Publication number: 20100025235
    Abstract: Disclosed is a sensitive glass film for a pH electrode, which is not deteriorated in its glass strength or pH-measuring function, which is hardly stained, and from which any stain can be removed easily. Also disclosed is a pH electrode having the sensitive glass film. A microparticle comprising rutile-type or brookite-type titanium dioxide or a microparticle comprising amorphous titanium dioxide is adhered directly on the glass film surface of a sensitive glass film for a pH electrode.
    Type: Application
    Filed: December 11, 2007
    Publication date: February 4, 2010
    Applicants: Horiba , ltd., Mie University
    Inventors: Yuji Nishio, Yasukazu Iwamoto, Tadanori Hashimoto
  • Patent number: 7638930
    Abstract: To improve adhesive properties between an electrically conductive polymer membrane and a solid electrolyte membrane to each other, and thus to ensure the operation of an electrically conductive polymer actuator which effects a bending motion is aimed.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 29, 2009
    Assignee: Panasonic Corporation
    Inventor: Yuji Kudoh
  • Publication number: 20090263692
    Abstract: An electrode cartridge, a hydrogen generating apparatus and a fuel cell power generation system equipped with the electrode cartridge and hydrogen generating apparatus are disclosed. The electrode cartridge can include an anode configured to generate electrons in an electrolyte solution, a cathode configured to generate hydrogen from the electrolyte solution by receiving the electrons at the anode, a liquid-gas separation membrane, which is disposed to surround the anode and the cathode, configured to separate the hydrogen from the electrolyte solution and discharge the hydrogen to the outside, and a support configured to support the liquid-gas separation membrane for preventing an expansion of the liquid-gas separation membrane. The electrode cartridge of the present invention can prevent an effect of electrolyte solution flowing backwards when generating hydrogen as well as an effect of electrolyte solution leak when moving.
    Type: Application
    Filed: April 3, 2009
    Publication date: October 22, 2009
    Inventors: Bo-Sung KU, Jae-Hyuk Jang, Kyoung-Soo Chae, Jae-Hyoung Gil, Chang-Ryul Jung
  • Patent number: 7604719
    Abstract: A device is disclosed for the generation of hydrogen peroxide. The device produces hydrogen peroxide on an as-needed basis through the use of electrolysis of water, wherein the hydrogen and oxygen are mixed in the electrolyzer, and the hydrogen and oxygen mixture in water are reacted in a reactor to produce hydrogen peroxide.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: October 20, 2009
    Assignee: UOP LLC
    Inventors: Kurt M. Vanden Bussche, Jason T. Corradi, Anil R. Oroskar, Gavin P. Towler, Rusty M. Pittman
  • Publication number: 20090255826
    Abstract: A membrane for use with an electrochemical apparatus is provided. The electrochemical apparatus may include a fuel cell or electrolyzer, for example, an electrolyzer adapted to produce hydrogen. The membrane comprises a fabric made from a synthetic fiber such as nylon where the nylon, in an exemplary embodiment, is woven into ripstop nylon fabric. The electrochemical apparatus is constructed with frames comprising high-density polyethylene (HDPE) which provide support and structure to the membranes as well as to internal electrodes. A method of making an electrochemical apparatus, such as an electrolyzer, containing a membrane comprising ripstop nylon is also disclosed, as is a method for producing hydrogen gas with an electrolyzer containing a membrane comprising ripstop nylon.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 15, 2009
    Inventors: Christopher M. McWhinney, David C. Erbaugh
  • Patent number: 7592091
    Abstract: A microreactor includes a filament comprising a supporting core having an axial length and a plurality of webs extending radially from the core and axially along said length. The filament forms a radially internal, electrically conductive first electrode. The microreactor also includes a radially external membrane having a radially internal envelope surface separated from the core by the webs, thereby forming flow channels in which a fuel component flows against the filament.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: September 22, 2009
    Assignee: 2S-Sophisticated Systems Limited
    Inventors: Stephen Blum, Robert Heggemann, Bernd Luhrs
  • Publication number: 20090220834
    Abstract: The invention relates to a membrane-electrode assembly having a multicomponent sealing rim, with the rim components being joined by means of two different joining methods. The rim construction of the membrane-electrode assembly comprises at least two materials (sealing material A and frame B) which are joined to one another both by adhesion and by physical locking. The frame B has at least one perforation through which the sealing material penetrates and establishes an intermeshing connection. Adhesive bonding methods, lamination processes and/or injection moulding processes are suitable for producing the multicomponent rim and the corresponding membrane-electrode assembly. The multicomponent rim construction has a high bond strength. The membrane-electrode assembly having a multicomponent rim is used in electrochemical devices such as fuel cells (PEMFCs, DMFCs, etc.), electrolysers or electrochemical sensors.
    Type: Application
    Filed: February 1, 2007
    Publication date: September 3, 2009
    Applicant: UMICORE AG & CO., KG
    Inventors: Klaus Schaack, Lutz Rohland
  • Publication number: 20090211918
    Abstract: The invention relates to an electrochemical cell comprising an arrangement of anode/cathode pairs, in which the accumulation of scales or similar fouling phenomena are prevented by alternatively operating either the anode or the cathode of one pair and the corresponding counterelectrode of the adjacent pair, the non-operated electrode of each pair being at open circuit. The electrolyte dissolves the scale deposits on the electrodes at open circuit, without resorting to harmful current reversal.
    Type: Application
    Filed: March 19, 2008
    Publication date: August 27, 2009
    Applicant: Industrie De Nora S.p.A.
    Inventor: Kenneth L. Hardee
  • Publication number: 20090127128
    Abstract: The present invention provides a membrane-electrode assembly which comprises: at least one rod-form or tubular electrode; a tubular diaphragm disposed around the periphery of the electrode; and a wire-form counter electrode disposed around the periphery of the diaphragm, the diaphragm being fixed to the rod-form or tubular electrode with the wire-form counter electrode to thereby form an electrode chamber having a gas/liquid passage between the diaphragm and the rod-form or tubular electrode.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 21, 2009
    Applicants: PERMELEC ELECTRODE LTD., INSTITUTE OF NATIONAL COLLEGES OF TECHNOLOGY, JAPAN
    Inventors: Noriyuki KITAORI, Kota SEKIDO, Tomoyasu SHIBATA, Tomohisa SUZUKI, Masashi TANAKA, Tsuneto FURUTA, Yoshinori NISHIKI
  • Publication number: 20090127130
    Abstract: A membrane electrode assembly in which at least one water content, conductivity, pH, mechanical strength and elasticity of the membrane is graduated across its thickness, between the electrodes.
    Type: Application
    Filed: March 16, 2007
    Publication date: May 21, 2009
    Inventors: Donald James Highgate, Simon Bourne, Rachel Louise Smith
  • Publication number: 20090114532
    Abstract: A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
    Type: Application
    Filed: November 6, 2007
    Publication date: May 7, 2009
    Inventors: Christopher P. Rhodes, Charles L.K. Tennakoon, Waheguru Pal Singh, Kelvin C. Anderson
  • Patent number: 7422673
    Abstract: Described are novel systems for electrodeposition of paint on counter-electrodes, and membrane electrode assemblies for incorporation into such systems. In certain embodiments of the invention, electrode enclosures such as C-shaped or box-shaped enclosures include membranes sealed to secondary structural members by bonding. In other embodiments, membrane electrode cells having bumpers are mounted within paint baths in a manner wherein the bumpers are forcibly biased against the exterior wall of the bath, thereby stabilizing the position of the cells. In still further embodiments, tubular electrode cells are provided with internal valves allowing the release of liquid trapped within the tubular electrodes into the membrane shell. In this manner, removal of the electrodes for maintenance, replacement or other purposes is facilitated.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: September 9, 2008
    Assignee: UFS Corporation
    Inventors: H. Frederick Hess, Jr., H. Frederick Hess, III, Steven Jovanovic, James E. Rittel, Jr.
  • Patent number: 7414102
    Abstract: A polymer electrolyte of high durability consistent with the present invention is characterized as including a first repeating unit represented by a general formula —{C(Z1)(Z2)—C(Z3)(Z4—SO3H)}— (where Z1, Z2, Z3, and Z4 are respectively F or Rf1, F or Rf2, F or Rf3, and nothing or Rf4; and each of Rf1, to Rf4 is a perfluoroalkyl group in which the carbon number is from 1 to 10) in a polymer chain, and having an equivalent weight of 2500 g/eq or less.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: August 19, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Atsushi Kamiya, Naoki Hasegawa, Satoru Yamamoto, Hisato Takeuchi, Masaya Kawasumi
  • Patent number: 7402425
    Abstract: Electrostatic capacitance measurements are used to detect chemical or biological analytes, or chemical interactions, with great sensitivity. A diaphragm is coated with a material capable of selectively interacting with an analyte of interest, and interaction of the analyte with the coating exerts stresses tangential to the diaphragm's surface. These stresses cause diaphragm displacements that are sensed as varying capacitance.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: July 22, 2008
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Marc S. Weinberg, Jeffrey Borenstein, Christopher E. Dubé, Ralph Hopkins, Edwin Carlen
  • Patent number: 7399391
    Abstract: The invention describes a current collector for electrochemical cells, consisting of a sandwich of compressible and resilient layers of metal wires, which imparts a predetermined mechanical load under a broad compression range.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 15, 2008
    Assignee: UhDeNora Technologies, S.r.l.
    Inventors: Dario Oldani, Manuela Manghi