Electrodes Patents (Class 204/280)
  • Patent number: 10413913
    Abstract: One or more electrodes are attached to an electrically permeable substrate attached to an incubator and energized with A.C. signals, D.C. signals or both A.C. and D.C signals. E-fields emitted from the electrodes pass through the substrate and into the incubator. The e-fields generate or apply dielectrophoresis (DEP) forces on small particles suspended in a liquid inside the incubator. The strength and direction of the DEP forces are controlled and manipulated by the manipulating the signals and can manipulate the motion of the suspended particles. The shapes of the electrodes help shape the generated e-fields and facilitate complex movements of the suspended particles. The suspended particles can be stem cells in a nutrient rich solution.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: September 17, 2019
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 10262773
    Abstract: A method for protecting a conductive metal from corrosion, including coating the conductive metal with a water impermeable carbonaceous conductive material to protect the conductive metal from corrosion.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: April 16, 2019
    Assignee: SHORE ACRES ENTERPRISES INC.
    Inventors: Brien Sirola, Todd Sirola, Graham Hagens
  • Patent number: 10087531
    Abstract: A process for incorporating a nanocatalyst on the surface of and within the pores of an electrode comprising subjecting an electrode to a singular template impregnation to form a treated electrode having a bio-template layer; and then subjecting the treated electrode to a singular nano-catalyst impregnation for tethering the nano-catalyst to the treated electrode; and then removing the bio-template layer by performing thermolysis upon the treated electrode for forming a nano-catalyst bonded on the surface and within the pores of the electrode. A modified electrode or product made by this process is provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 2, 2018
    Assignee: West Virginia University
    Inventors: Edward M. Sabolsky, Ozcan Ozmen, John W. Zondlo
  • Patent number: 10020478
    Abstract: An electrode with a porous protective film includes an electrode in which an active material layer is disposed on a collector and a porous protective film which is disposed on a surface of the active material layer and which contains fine particles and a binder. The thickness of the porous protective film ranges from about 0.1 ?m to about 200 ?m. A nonaqueous electrolyte secondary battery includes a negative electrode in which a negative electrode active material layer is disposed on a negative electrode collector, a positive electrode, a nonaqueous electrolyte, a separator, and a porous protective film which is disposed on at least one of a surface of the negative electrode active material layer or a surface of the positive electrode active material layer and which contains fine particles and a binder. The thickness of the porous protective film ranges from about 0.1 ?m to about 200 ?m.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 10, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Junichi Tadano
  • Patent number: 9966673
    Abstract: A window assembly (10) includes a transparent pane (18), an electrical conductor (20) contacting the transparent pane (18), an electrical connection element (22) for energizing the electrical conductor (20), an encapsulation (26) disposed over the electrical connection element (22) and the electrical conductor (20), and an electrically conductive compressible member (28) disposed between the electrical connection element (22) and the electrical conductor (20) for providing an electrical connection between the electrical connection element (22) and the electrical conductor (20).
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 8, 2018
    Assignees: AGC AUTOMOTIVE AMERICAS R&D, INC., AGC FLAT GLASS NORTH AMERICA, INC.
    Inventors: Daniel D. Bennett, William C. Schuch
  • Patent number: 9959949
    Abstract: A LiBH4—C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 1, 2018
    Assignee: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventors: Ragaiy Zidan, Joseph A Teprovich, Jr., Hector R. Colon-Mercado, Scott D Greenway
  • Patent number: 9945041
    Abstract: The present disclosure related to an inert anode which is electrically connected to the electrolytic cell, such that a conductor rod is connected to the inert anode in order to supply current from a current supply to the inert anode, where the inert anode directs current into the electrolytic bath to produce nonferrous metal (where current exits the cell via a cathode).
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: April 17, 2018
    Assignee: Alcoa USA Corp.
    Inventors: Susan M. Reed, William Steiner, Glenn Artman, Jerry LaSalle
  • Patent number: 9878956
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: January 30, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Patent number: 9828260
    Abstract: A softening apparatus in which resistance applied between electrodes is decreased to reduce power consumption. The softening apparatus includes a regeneration unit and a softening unit. The regeneration unit includes at least one anode and cathode in a first space which generate regeneration water containing hydrogen ions (H+). The softening unit is disposed in a second space partitioned from the first space and includes an ion exchange body regenerated by the regeneration water.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: November 28, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Moon Il Jung, Hee-Jin Park, Soon Cheol Kweon, Da Eun Kim, Chang Bae Lim, In Jo Jeong
  • Patent number: 9768162
    Abstract: An array of sensor devices, each sensor including a set of semiconducting nanotraces having a width less than about 100 nm is provided. Method for fabricating the arrays is disclosed, providing a top-down approach for large arrays with multiple copies of the detection device in a single processing step. Nanodimensional sensing elements with precise dimensions and spacing to avoid the influence of electrodes are provided. The arrays may be used for multiplex detection of chemical and biomolecular species. The regular arrays may be combined with parallel synthesis of anchor probe libraries to provide a multiplex diagnostic device. Applications for gas phase sensing, chemical sensing and solution phase biomolecular sensing are disclosed.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 19, 2017
    Assignee: NANOHMICS INC.
    Inventors: Steve M. Savoy, Jeremy J. John, Daniel R. Mitchell, Michael K. McAleer
  • Patent number: 9724029
    Abstract: Method and system for determining real time analyte concentration including an analyte sensor having a portion in fluid contact with an interstitial fluid under a skin layer, an on-body electronics including a housing coupled to the analyte sensor and configured for positioning on the skin layer, the on-body electronics housing including a plurality of electrical contacts, on the housing; and a data analysis unit having a data analysis unit housing and a plurality of probes, on the housing. Each of the probes configured to electrically couple to a respective electrical contact when the data analysis unit is positioned in physical contact with the on-body electronics. The one or more signals on the probes correspond to one or more of a substantially real time monitored analyte concentration level (MACL), MACL over a predetermined time period, or a rate of change of the MACL, or combinations thereof, are provided.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 8, 2017
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Udo Hoss, Benjamin J. Feldman, Zenghe Liu, Hyun Cho, Benjamin M. Rush
  • Patent number: 9714197
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: July 25, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Patent number: 9704761
    Abstract: A corrosion sensor retainer assembly and method for predicting and detecting corrosion within a gas delivery system of a semiconductor substrate processing apparatus. The corrosion sensor retainer assembly comprises a laminate that includes a first insulating layer with a first port and a second insulating layer with a second port, wherein the first port and the second port are configured to retain a seal. The corrosion sensor retainer assembly includes a conductor housed within the laminate. The conductor forms a path that extends around the first port and the second port. At least a portion of the conductor has an exposed surface with a property that changes in the presence of corrosive gas or acid.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: July 11, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Mark Taskar, Iqbal Shareef, Anthony Zemlock
  • Patent number: 9693816
    Abstract: An electrosurgical system is disclosed. The system includes an electrosurgical instrument having at least one electrode configured as a first sensor for measuring a voltage drop therethrough and a temperature sensor for a thermal sensor configured to measure a temperature difference across the at least one electrode; and a generator including an output stage coupled to the at least one electrode, the output stage configured to generate radio frequency energy; and a controller configured to determine actual radio frequency current based on the voltage drop and electrical resistivity of the at least one electrode and radio frequency power based on the measured temperature difference and the thermal conductivity of the at least one electrode.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: July 4, 2017
    Assignee: COVIDIEN LP
    Inventor: James H. Orszulak
  • Patent number: 9604877
    Abstract: Certain example embodiments relate to an improved method of strengthening glass substrates (e.g., soda lime silica glass substrates). In certain examples, a glass substrate may be chemically strengthened by creating an electric field within the glass. In certain cases, the chemical tempering may be performed by surrounding the substrate by a plasma including certain ions, such as Li+, K+, Mg2+, and/or the like. In some cases, these ions may be forced into the glass substrate due to the half-cycles of the electric field generated by the electrodes that formed the plasma. This may advantageously chemically strengthen a glass substrate on a substantially reduced time scale. In other example embodiments, an electric field may be set in a float bath such that sodium ions are driven from the molten glass ribbon into the tin bath, which may advantageously result in a stronger glass substrate with reduced sodium content.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 28, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Xuequn Hu, Glenn A. Cerny
  • Patent number: 9313896
    Abstract: A double-layered transparent conductive film includes: a first substrate; a first imprint adhesive layer formed on the first substrate, the first imprint adhesive layer defining a first mesh-shaped groove, the first mesh-shaped groove forming a first mesh; a first conductive layer including conductive material filled in the first mesh-shaped groove; a tackifier layer formed on the first imprint adhesive layer and the first conductive layer; a second substrate formed on the tackifier layer; a second imprint adhesive layer formed on the second substrate, the second imprint adhesive layer defining a second mesh-shaped groove, the second mesh-shaped groove forming a second mesh, wherein one of the first mesh and the second mesh is a regular mesh, the other is a random mesh; and a second conductive layer including conductive material filled in the second mesh-shaped groove. During the lamination, no alignment accuracy is needed, such that the production efficiency is greatly improved.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 12, 2016
    Assignee: Nanchang O-Film Tech. Co., Ltd.
    Inventors: Fei Zhou, Yulong Gao, Miaoqian Cao, Ying Gu
  • Patent number: 9293796
    Abstract: This disclosure describes metal air battery devices with an anode structure having a plurality of electrodes. An anode is disclosed having a metal source as well as a current collector that together function as an active, reversible, working anode. The source is used for metal-ions that are stripped and stored in the current collector. At this point the current collector contains the metal-ions to be propagated through the rest of the device. Metal-ions may be stripped from and deposited on the current collector, while metal-ions may only be stripped from the source. Upon use of the device metal-ions may be lost to the system for a variety of reasons. To counteract the loss of metal-ions, the current collector is replenished of metal-ions from the source.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: March 22, 2016
    Assignee: ITN Energy Systems, Inc.
    Inventors: Bruce R. Lanning, Andrew Colclasure
  • Patent number: 9290852
    Abstract: A light absorbing layer for a photoelectrode structure, the light absorbing layer including copper oxide, wherein metallic copper (Cu) is present at a grain boundary of the copper oxide. Also, a photoelectrode structure including the light absorbing layer, a photoelectrochemical cell including the photoelectrode structure, and a solar cell including the light absorbing layer.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: March 22, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-hee Lee, Tae-gon Kim, Tae-hyung Kim, Seoung-jae Im
  • Patent number: 9139920
    Abstract: An apparatus and method for CO2 reduction using an Au25 electrode. The Au25 electrode is comprised of ligand-protected Au25 having a structure comprising an icosahedral core of 13 atoms surrounded by a shell of six semi-ring structures bonded to the core of 13 atoms, where each semi-ring structure is typically —SR—Au—SR—Au—SR or —SeR—Au—SeR—Au—SeR. The 12 semi-ring gold atoms within the six semi-ring structures are stellated on 12 of the 20 faces of the icosahedron of the Au13 core, and organic ligand —SR or —SeR groups are bonded to the Au13 core with sulfur or selenium atoms. The Au25 electrode and a counter-electrode are in contact with an electrolyte comprising CO2 and H+, and a potential of at least ?0.1 volts is applied from the Au25 electrode to the counter-electrode.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: September 22, 2015
    Assignee: U.S. Department of Energy
    Inventors: Douglas Kauffman, Christopher Matranga, Huifeng Qian, Rongchao Jin, Dominic R. Alfonso
  • Patent number: 9028657
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: May 12, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Publication number: 20150122640
    Abstract: An electrochemical device comprises an anode and a cathode. An electrocatalyst mixture is placed between said anode and cathode. The electrocatalyst mixture comprises at least one Catalytically Active Element and, separately, at least one Helper Catalyst comprising an organic molecule, an organic ion, or a mixture of organic molecules and organic ions. The electrocatalyst mixture electrochemically converts carbon dioxide to one or more carbonaceous reaction products via the reaction: CO2+2e?+2H+?carbonaceous reaction products, at overpotentials of 0.9 V or less.
    Type: Application
    Filed: January 8, 2015
    Publication date: May 7, 2015
    Inventors: Richard I. Masel, Brian A. Rosen
  • Publication number: 20150114843
    Abstract: A method for the photoelectrocatalytic production of hydrogen and oxygen from water, is carried out by: (a) providing a photohydride proton reduction catalyst and a photoanode having water oxidation catalyst operatively associated therewith, both in an aquous electrolyte solution,wherein the photohydride proton reduction catalyst comprises a single-component light absorbing catalytic metal complex of the formula AXB, wherein A is a coordinated aromatic group, X is a metal, and B is a bidentate organic ligand; and (b) illuminating the photoanode and the photohydride proton reduction catalyst with visible light to generate O2 by the action of the water oxidation catalyst and H2 by the action of the photohydride proton reduction catalyst. Constructs and apparatus useful for carrying out the method are also described.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Catherine L. Pitman, Alexander J. Miller
  • Patent number: 9011651
    Abstract: An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 21, 2015
    Assignee: UT-Battelle, LLC
    Inventor: Elias Greenbaum
  • Patent number: 9005412
    Abstract: An exemplary electrolyzer includes an electrode plate assembly including a plurality of perforated electrode plates and electrically conductive busbars. The plurality of electrode plates includes one or more positive electrode plates interleaved with one or more negative electrode plates. Each electrode plate has a first aperture and a second aperture, the second aperture being larger than the first aperture and lined with a non-conductive grommet. The plurality of electrically conductive busbars includes a first positive conductive busbar and a first negative conductive busbar. Respective conductive busbars extend through the first aperture of corresponding positive and negative electrodes and through the non-conductive grommet of the second aperture of each corresponding negative and positive electrode.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Hydro Genes Trans Inc.
    Inventor: Wen-Fu Pan
  • Patent number: 8999119
    Abstract: The hydrogen production device of the present invention includes: a first electrode including a conductive substrate and a photocatalytic semiconductor layer; a second electrode that is electrically connected to the first electrode and disposed in a second region opposite to a first region relative to the first electrode; the first region is defined as a region on a side of a surface of the first electrode in which the photocatalytic semiconductor layer is provided; a water-containing electrolyte solution; and a housing containing these. The first electrode is provided with first through-holes and the second electrode is provided with second through-holes; and the first through-holes and second through-holes form a communicating hole for allowing the first region and the second region to communicate with each other. An ion exchange membrane having substantially the same shape as the communicating hole is disposed in the communicating hole to close the communicating hole.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kenichi Tokuhiro, Takaiki Nomura, Kazuhito Hato, Noboru Taniguchi, Takahiro Suzuki, Satoru Tamura
  • Patent number: 8993165
    Abstract: The present disclosure is directed at clathrate (Type I) allotropes of silicon, germanium and tin. In method form, the present disclosure is directed at methods for forming clathrate allotropes of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: March 31, 2015
    Assignee: Southwest Research Institute
    Inventors: Michael A. Miller, Kwai S. Chan, Wuwei Liang, Candace K. Chan
  • Patent number: 8961751
    Abstract: A cell for direct treatment of liquid using electrolysis uses a modular construction of electrode plates and spacer assemblies positioned between end plates. Changes in the liquid flow capacity of the cell may be made by changing the number of module housing sections and electrode plate assemblies. The design includes electrode plates that lock into a mating module housing section to resist the pressure of the fluid being treated. The design further provides for multiple fluid flow paths and for automatic cleaning of the cell using standard clean-in-place methods.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: February 24, 2015
    Assignee: Biolonix, Inc.
    Inventors: James A. Tretheway, Myron F. Miller, Karl W. Marschke, Brian R. Hale, Ajit K. Chowdhury, Jeremy J. Vogel
  • Publication number: 20150034491
    Abstract: The invention relates to an anode for electrowinning process in an electrolytic cell, and the method of operation thereof, having cell walls and a cell bottom for holding an electrolyte and electrolyte feeding means, which anode comprises a hanger bar for supporting the anode, a conducting rod for distributing the current, an anode body having at least partly conductive structure. The anode body allows electrolyte penetration and is at least partly covered by electrocatalytic coating, when in connection with the anode there is arranged a non-conductive element, which is restricted to the conductive structure of the anode body, at least from its one side, and which non-conductive element is arranged at a distance A from the electrolyte surface level, when the non-conductive element provides a means for attaching the anode to the cell.
    Type: Application
    Filed: March 6, 2013
    Publication date: February 5, 2015
    Applicant: OUTOTEC (FINLAND) Oy
    Inventors: Ville Nieminen, Michael H. Barker, Henri Virtanen
  • Publication number: 20150034497
    Abstract: In embodiments there are disclosed a substantially flat, flow through electrode, electrochemical cells comprising substantially flat flow through cathodes, and methods for electrochemically recovering a metal substantially liquid at room temperature.
    Type: Application
    Filed: April 1, 2014
    Publication date: February 5, 2015
    Inventor: GRAHAM C. DICKSON
  • Patent number: 8932442
    Abstract: The invention relates to a catalytic coating suitable for oxygen-evolving anodes in electrochemical processes. The catalytic coating comprises an outermost layer with an iridium and tantalum oxide-based composition modified with amounts not higher than 5% by weight of titanium oxide.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: January 13, 2015
    Assignee: Industrie de Nora S.p.A.
    Inventors: Alice Calderara, Antonio Lorenzo Antozzi, Ruben Ornelas Jacobo
  • Publication number: 20140374271
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Patent number: 8911607
    Abstract: The present disclosure generally relates to techniques for electro-depositing nano-patterns. More specifically, systems and methods for fabricating periodic structures in complex nano-patterns are described. An electrical signal may be applied to one or more electrodes that are positioned about a surface of a substrate. The periodicity of the deposited pattern may be influenced by one or more parameters associated with an applied electrical signal, including one or more of frequency, amplitude, period, duty cycle, etc. The weight of each deposited line on the substrate may be influenced by the described parameters, and the shape of the pattern may be influenced by the number, shape, and position of electrodes.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 16, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Ezekiel Kruglick
  • Patent number: 8906551
    Abstract: The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: December 9, 2014
    Assignee: Southwest Research Institute
    Inventors: Candace K. Chan, Michael A. Miller, Kwai S. Chan
  • Patent number: 8882973
    Abstract: Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 11, 2014
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Mark A. Williamson, Stanley G. Wiedmeyer, Eugene R. Koehl, James L. Bailey, James L. Willit, Laurel A. Barnes, Robert J. Blaskovitz
  • Patent number: 8828316
    Abstract: The present disclosure relates to the use of a split and single electrical cells in industrial applications, and particularly in aseptic packaging applications.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: September 9, 2014
    Assignee: Ecolab USA Inc.
    Inventors: Brandon L. Herdt, Junzhong Li
  • Patent number: 8815468
    Abstract: According to at least one aspect of the present invention, a layered catalyst having an active area is provided. In at least one embodiment, the layered electrode includes a first catalyst layer having a first noble metal concentration and a first ionomer concentration, and a second catalyst layer disposed next to the first catalyst layer, the second catalyst layer having a second noble metal concentration different from the first noble metal concentration and a second ionomer concentration different from the first ionomer concentration. In at least another embodiment, the metallic alloy includes a metallic alloy of platinum, nickel, and cobalt.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 26, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Chi Paik, Robert F. Novak, Richard E. Soltis, Mark S. Sulek
  • Patent number: 8808516
    Abstract: Nanoscale probes for forming stable, non-destructive seals with cell membranes. The probes, systems including these probes, and methods of fabricating and using the probes described herein may be used to sense from, stimulate, modify, or otherwise effect individual cells or groups of cells. In particular, described herein are nanoscale cellular probes that may be used to span the lipid membrane of a cell to provide stable and long lasting access to the internal cellular structures. Thus, the probes described herein may be used as part of a system, method or device that would benefit from stable, non-destructive access across a cell membrane. In some variations the nanoscale probe devices or systems described herein may be used as part of a drug screening procedure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 19, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nicholas Alexander Melosh, Piyush Verma, Benjamin David Almquist
  • Patent number: 8795477
    Abstract: The subject invention provides conductive stripes, suitable for use as electrodes, and methods of making conductive stripes.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: August 5, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Timothy P. Henning, Edmund T. Marciniec
  • Patent number: 8795485
    Abstract: Microelectrode comprising a body formed from electrically non-conducting material and including at least one region of electrically conducting material and at least one passage extending through the body of non-conducting material and the region of conducting material, the electrically conducting region presenting an area of electrically conducting material to a fluid flowing through the passage in use. An electrochemical cell which includes such a microelectrode is also disclosed.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 5, 2014
    Assignee: Element Six Technologies Limited
    Inventors: Andrew John Whitehead, Geoffrey Alan Scarsbrook, Julie Victoria Macpherson, Mark Newton, Patrick Robert Unwin, William Joseph Yost, III
  • Patent number: 8795484
    Abstract: A printed gas sensor is disclosed. The sensor may include a porous substrate, an electrode layer, a liquid or gel electrolyte layer, and an encapsulation layer. The electrode layer comprises two or more electrodes that are formed on one side of the porous substrate. The liquid or gel electrolyte layer is in electrolytic contact with the two or more electrodes. The encapsulation layer encapsulates the electrode layer and electrolyte layer thereby forming an integrated structure with the porous substrate.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 5, 2014
    Assignee: KWJ Engineering, Inc.
    Inventors: Joseph R. Stetter, Edward F. Stetter, Daniel D. Ebeling, Melvin Findlay, Vinay Patel
  • Publication number: 20140190835
    Abstract: A plating apparatus includes a plating bath, an insoluble anode located in the plating bath, a plating electric power supply being capable of applying a voltage between the insoluble anode and the member to be plated, an anode-displacement mechanism being capable of moving the insoluble anode in the plating bath and of holding the insoluble anode at a predetermined position in the plating bath, and a controller having an anode-position controller being capable of generating a control signal for controlling an action of the anode-displacement mechanism and of outputting the control signal to the anode-displacement mechanism.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 10, 2014
    Applicant: YUKEN INDUSTRY CO., LTD.
    Inventors: Norikazu KOJIMA, Yoshiharu KIKUCHI
  • Patent number: 8758590
    Abstract: Disclosed is a method of treating the surface of an electrically conducting substrate surface wherein a tool comprising an ion-conducting solid material is brought into contact at least in some areas with the substrate surface. The tool conducts the metal ions of the substrate and an electric potential is applied so that an electrical potential gradient is applied between the substrate surface and the tool in such a manner that metal ions are drawn from the substrate surface or deposited onto the substrate surface by means of the tool.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: June 24, 2014
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Hans-Joachim Quenzer, Gerfried Zwicker
  • Patent number: 8753490
    Abstract: The present invention relates to an electrolyzer for producing sodium hypochlorite by electrolyzing brine such as salt water or seawater and the like, and more specifically to a horizontal non-membrane type electrolyzer of a new structure which can maintain a constant interval among electrode plates without using a welding means or an adhering means on the inside of a housing by including a separator for dividing an inner space of a hollow type housing into a plurality of electrode chambers; the electrode plates which are arranged in parallel to each other in the constant interval within a rectangular space part of the separator; and a fixing bar for fixing the separator to an inner wall of the housing.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: June 17, 2014
    Assignee: Unitech Co., Ltd
    Inventors: Ki-Ha Shin, Il-Kyung Seo, Yoon-Seok Shin
  • Patent number: 8748324
    Abstract: Systems and methods for separating components of a multilayer stack of electronic components. The multilayer stack includes an electronic assembly, a substrate, and a sacrificial anode portion that is located between the electronic assembly and the substrate and that operatively attaches the electronic assembly to the substrate. The systems and methods may include locating the multilayer stack within an electrically conductive fluid to form an electrochemical cell. The systems and methods further may include generating a potential difference between a cathode portion of the electronic assembly and the sacrificial anode portion such that the cathode portion forms a cathode of the electrochemical cell and the sacrificial anode portion forms an anode of the electrochemical cell.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 10, 2014
    Assignee: The Boeing Company
    Inventors: Robyn L. Woo, Xiaobo Zhang, Christopher M. Fetzer, Eric M. Rehder
  • Patent number: 8740600
    Abstract: An apparatus for charging particles in non-conductive liquids, so they agglomerate and can be removed by filtering, is comprised of a housing which contains a non-conductive insert having a multiplicity of channels. The incoming stream is divided into two halves, each of which is flowed through a set of charging channels which contain electrodes, preferably metal brush-like electrodes. One set of electrodes is charged to a high positive voltage; the other set is charged to a high negative voltage. The liquid streams are then merged and flowed trough a set of mixing channels, along the path of which are one or more reversals in flow direction. The mixing channel path length is substantially longer than the charging channel path length.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 3, 2014
    Assignee: Isopur Technologies, Inc.
    Inventor: Raymond K. Gomes
  • Publication number: 20140110251
    Abstract: An electrolysis cell, in particular for producing aluminum, contains a cathode, a layer made up of liquid aluminum arranged on an upper side of the cathode, a melt layer, thereupon and an anode above the melt layer. The cathode has at least one opening extending vertically through the cathode, in which opening at least one current supply extending vertically through the opening and electrically connected to the anode and/or to the cathode is provided. The electrolysis cell contains at least one further current supply arranged outside of the opening of the cathode, which current supply extends in the vertical direction at least in certain sections and which current supply is electrically connected to the cathode and/or to the anode.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Applicant: SGL CARBON SE
    Inventors: Thomas Frommelt, Christian Bruch
  • Publication number: 20140069807
    Abstract: A structural plate is provided for an electrolyser module. The structural plate defines at least one degassing chamber and a half cell chamber opening. The structural plate is reinforced with at least one internal reinforcing means mounted to the structural plate for mitigating outward displacement of the structural plate in response to fluid pressure within the structural plate. The structural plate defines holding features for locating and holding the internal reinforcing means.
    Type: Application
    Filed: February 1, 2013
    Publication date: March 13, 2014
    Applicant: NEXT HYDROGEN CORPORATION
    Inventors: Chris WILSON, Michael STEMP, James HINATSU
  • Patent number: 8641884
    Abstract: A method of fabricating a motheye mold according to the present invention includes the steps of: (a) anodizing a surface of an aluminum film (10a) via an electrode (32a) that is in contact with the surface, thereby forming a porous alumina layer which has a plurality of very small recessed portions; (b) after step (a), allowing the porous alumina layer to be in contact with an etchant, thereby enlarging the very small recessed portions of the porous alumina layer; and (c) after step (b), further anodizing the surface to grow the plurality of very small recessed portions. The aluminum film is made of aluminum with a purity of 99.99 mass % or higher. The electrode includes a first electrode portion (32a1) which is made of aluminum with a purity of 99.50 mass % or lower and a second electrode portion (32a2) which is made of aluminum with a higher purity than the aluminum of the first electrode portion and which is interposed between the surface and the first electrode portion.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 4, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hidekazu Hayashi, Tokio Taguchi, Kazuhiko Tsuda
  • Patent number: 8628646
    Abstract: The subject of the invention is an anode block (13, 13a-13e) made of carbon for a pre-baked anode (4) for use in a metal electrolysis cell (1) comprising a higher face (24), a lower face (23), designed to be laid out opposite a higher face of a cathode (9), and four side faces (21,22,34), and including at least one first groove (31a-31e) leading onto at least one of the side faces, in which the first groove has a maximum length Lmax in a plane parallel to the lower face, and characterized in that the first groove does not lead onto said lower or higher faces, or leads onto said lower or higher faces over a length L0 less than half the maximum length Lmax.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 14, 2014
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Geoffrey Berlin, Jean Camire, Daran Emmett, Yvan Foster, Guillaume Servant, Christian Jonville, Malcolm Manwaring
  • Publication number: 20130327638
    Abstract: An electrolytic cell comprising, a housing having a channel extending there through and an opening formed in the housing for receiving an electrode cartridge, an inlet allowing water to pass into the channel, an outlet allowing water to pass from the channel, and a removable electrode cartridge comprising, a support member, having a outer side an inner side, the support member being adapted to close off the opening in the housing when the electrode cartridge is received in the opening, and a series of separate spaced electrode plates supported by the support member, each electrode plate having a terminal which extends through the support member from the inner side to project from the outer side.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 12, 2013
    Applicant: POOLRITE RESEARCH PTY LTD
    Inventors: Ross Leslie Palmer, Aaron Kelly, Alexander Babych