Oscillatory Movement Patents (Class 204/298.29)
  • Patent number: 9034156
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Patent number: 8999121
    Abstract: The present invention provides a sputtering apparatus and a film-forming method capable of forming a magnetic film having a reduced variation in the orientation of the magnetic anisotropy. The sputtering apparatus of the present invention is equipped with a rotatable cathode and a rotatable stage. The stage can have an electrostatic chuck. Moreover, the stage may electrically be connected with a bias power source capable of applying a bias voltage to the stage. Furthermore, the stage may have the electrostatic chuck and electrically be connected with the bias power source.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Kyosuke Sugi, Tetsuya Endo, Einstein Noel Abarra
  • Patent number: 8992749
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: March 31, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Publication number: 20150075979
    Abstract: There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the 32 engraved surface (10a) of the intaglio printing plate (10).
    Type: Application
    Filed: April 12, 2013
    Publication date: March 19, 2015
    Inventors: François Gremion, Laurent Claude
  • Patent number: 8535495
    Abstract: A coating device includes a rotatable base, a board for holding workpieces, a positioning shaft positioned on the rotatable base, two eccentric wheels, a rack, and two reciprocating shafts. The two eccentric wheels are fixed on the positioning shaft and extend from the positioning shaft along two opposite directions. The two eccentric wheels are parallel to and spaced from each other. The rack is rotatably connected to the rotatable base. The rack is capable of rotating around the positioning shaft. Each reciprocating shaft is positioned on the rack. Each reciprocating shaft includes a hinge portion rotatably connected to an end of the board and a sliding portion slidably connected to the edge of a corresponding eccentric wheel. The two eccentric wheels are capable of driving the two reciprocating shafts to move alternately toward and away from the positioning shaft along radial directions of the positioning shaft.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: September 17, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Chia-Ying Wu, Ming-Yang Liao
  • Patent number: 8512530
    Abstract: A sputtering apparatus includes a process chamber having first and second regions, a metal target inside the process chamber, a target transfer unit inside the process chamber, the target transfer unit being configured to move the metal target between the first and second regions, a substrate holder in the second region of the process chamber, and a magnetic assembly in the first region of the process chamber, the magnetic assembly being interposed between the target transfer unit and a wall of the process chamber.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: August 20, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Heung-Yeol Na, Jong-Won Hong, Seok-Rak Chang, Ki-Yong Lee
  • Patent number: 8500974
    Abstract: A carrier for use during sputtering includes a main body and support members. The main body defines a receiving space and includes a lateral surface defining at least one groove extending along a longitudinal direction. The receiving space and the at least one groove communicate with each other. The at least one groove is defined by a first surface and a second surface. The first surface defines recessed portions along the longitudinal direction and communicates with the receiving space. The support members are used for hanging workpieces. Each of the support members includes at least one support arm protruding from the lateral surface and is selectively and movably retained by one of the recessed portions.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: August 6, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chung-Pei Wang
  • Publication number: 20130115764
    Abstract: A system for processing substrates has a vacuum enclosure and a processing chamber situated to process wafers in a processing zone inside the vacuum enclosure. Two rail assemblies are provided, one on each side of the processing zone. Two chuck arrays ride, each on one of the rail assemblies, such that each is cantilevered on one rail assemblies and support a plurality of chucks. The rail assemblies are coupled to an elevation mechanism that places the rails in upper position for processing and at lower position for returning the chuck assemblies for loading new wafers. A pickup head assembly loads wafers from a conveyor onto the chuck assemblies. The pickup head has plurality of electrostatic chucks that pick up the wafers from the front side of the wafers. Cooling channels in the processing chucks are used to create air cushion to assist in aligning the wafers when delivered by the pickup head.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 9, 2013
    Applicant: INTEVAC, INC.
    Inventor: Intevac, Inc.
  • Patent number: 8293081
    Abstract: A physical vapor deposition device includes a chamber; a cathode and an opposite anode, a target material, and supporting device arranged in the chamber. The target material and the supporting device are positioned between the cathode and the anode. The supporting device includes a rotatable device and a hollow supporting plate. The hollow supporting plate is configured for securing the workpiece and exposing part of the workpiece where is needed to be coated. The hollow supporting plate is movably fastened to the rotatable device. A distance from the hollow supporting plate to the rotatable device can be adjusted when the hollow supporting plate is rotated together with the rotatable device in order to align workpiece with the target material.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: October 23, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei
  • Patent number: 8241473
    Abstract: A sputter-coating apparatus for coating a plurality of workpieces includes a deposition case defining a cavity, a supporting assembly received in the cavity, and a target assembly received in the cavity and extending through the supporting assembly to face the workpieces. The supporting assembly includes a plurality of supporting members. Each supporting member includes a body and a plurality of adjusting units extending through the body. Each adjusting unit includes a supporting pole fixed to the body, a first fixing pole and a second fixing pole fixedly connected to the supporting pole and radially extending from the supporting pole, a first threaded pole and a second threaded pole retractably connected to the supporting pole and radially extending from the supporting pole, and a driving member received in the supporting pole for driving the first threaded pole and the second threaded pole to retract relative to the supporting pole.
    Type: Grant
    Filed: March 21, 2010
    Date of Patent: August 14, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chung-Pei Wang
  • Patent number: 8043483
    Abstract: To provide a sputtering apparatus that enables oblique film forming by arranging a target and a substrate so as to allow sputtered particles emitted from the target to obliquely enter the substrate selectively, and can form a magnetic film having high uniaxial magnetic anisotropy uniformly and compactly. A sputtering apparatus includes a cathode having a sputtering target supporting surface, the cathode being provided with a rotation axis about which the sputtering target supporting surface rotates, and a stage having a substrate supporting surface, the stage being provided with a rotation axis about which the substrate supporting surface rotates, and the sputtering apparatus is constituted such that the sputtering target supporting surface and the substrate supporting surface face to each other, and are rotatable independently about respective rotation axes.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: October 25, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Tetsuya Endo, Einstein Noel Abarra
  • Patent number: 7955480
    Abstract: The present invention provides a sputtering apparatus and a film deposition method capable of forming a magnetic film with reduced variations in the direction of magnetic anisotropy. The sputtering apparatus of the present invention is provided with a rotatable cathode (802), a rotatable stage (801) and a rotatable shielding plate (805). The sputtering apparatus controls the rotation of at least one of the cathode (802), stage (801) and shielding plate (805) so that sputtered particles impinging at an angle formed with respect to a normal line of the substrate (804) of 0° or more and 50° or less out of sputtered particles generated from the target (803a) during sputtering are made to impinge on the substrate (804).
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 7, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Tetsuya Endo, Einstein Noel Abarra
  • Patent number: 7510634
    Abstract: Disclosed are apparatus and method embodiments for achieving etch and/or deposition selectivity in vias and trenches of a semiconductor wafer. That is, deposition coverage in the bottom of each via of a semiconductor wafer differs from the coverage in the bottom of each trench of such wafer. The selectivity may be configured so as to result in punch through in each via without damaging the dielectric material at the bottom of each trench or the like. In this configuration, the coverage amount deposited in each trench is greater than the coverage amount deposited in each via.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: March 31, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Erich R. Klawuhn, Robert Rozbicki, Girish A. Dixit
  • Patent number: 7229532
    Abstract: A sputtering apparatus for forming a film by a physical gas-phase growth on a substrate having a irregular or flat shape is provided including three or more axes for independently varying a relative positional relationship between a substrate and a cathode in the course of film formation.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: June 12, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Ando, Hidehiro Kanazawa
  • Patent number: 6905578
    Abstract: An apparatus and method for depositing plural layers of materials on a substrate within a single vacuum chamber allows high-throughput deposition of structures such as these for GMR and MRAM application. An indexing mechanism aligns a substrate with each of plural targets according to the sequence of the layers in the structure. Each target deposits material using a static physical-vapor deposition technique. A shutter can be interposed between a target and a substrate to block the deposition process for improved deposition control. The shutter can also preclean a target or the substrate and can also be used for mechanical chopping of the deposition process. In alternative embodiments, plural substrates may be aligned sequentially with plural targets to allow simultaneous deposition of plural structures within the single vacuum chamber.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: June 14, 2005
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Cecil J. Davis, Christopher J. Mann, Dwain R. Jakubik, Ajit P. Paranjpe
  • Patent number: 6835289
    Abstract: The particle implantation apparatus comprises a target, an ion beam source, a target scanning mechanism, a slit plate, a holder, and a holder scanning mechanism. The target is used for sputtering. The ion beam source applies an ion beam apparently like a sheet wider in the X direction onto the target so as to generate sputter particles. The target scanning mechanism mechanically scans the target in the Y direction crossing the X direction in reciprocating manner at a fixed angle with respect to the ion beam. The slit plate is used for passing sputter particles generated from the target and has a long slit extending in the X direction. The holder holds a substrate at the position where sputter particles having passed through the slit are incident. The holder scanning mechanism mechanically scans the holder in the Z direction crossing both the X and Y directions in reciprocating manner.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: December 28, 2004
    Assignee: Nissin Electric Co., Ltd.
    Inventor: Takatoshi Yamashita
  • Publication number: 20040216992
    Abstract: A sputtering apparatus for forming a film by a physical gas-phase growth on a substrate having a irregular or flat shape is provided including three or more axes for independently varying a relative positional relationship between a substrate and a cathode in the course of film formation.
    Type: Application
    Filed: March 9, 2004
    Publication date: November 4, 2004
    Inventors: Kenji Ando, Hidehiro Kanazawa
  • Patent number: 6800183
    Abstract: The invention is intended to provide a sputtering device in which a single sputtering chamber is equipped with a plurality of supports and a target-positioning mechanism for rotating the supports to position the targets into film-forming position. Each support is provided with targets that are different from each other. The same types of targets are mounted in the same order on each support. The supports are rotated to select the same types of targets needed to form a film and to position the targets relative to the substrate. A plurality of the same type of targets are used simultaneously to form a film. The supports are then rotated to select the next targets, and the next film is built up on the previous film. As the film is formed, targets that are not used in the film-forming process can be cleaned with a cleaning device.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: October 5, 2004
    Assignee: Anelva Corporation
    Inventor: Nobuyuki Takahashi
  • Publication number: 20040094412
    Abstract: A magnetron sputtering apparatus and a magnetron sputtering method using the same, wherein a vacuum chamber has a discharge gas inlet and a discharge gas outlet, a substrate holder is installed inside the vacuum chamber, a magnetic circuit unit, which includes a target electrode installed opposite to the substrate and a magnetron fixed on a rear surface of the target electrode, faces the substrate holder and circulates around the central axis of the substrate holder, and a driving unit circulates the magnetic circuit unit and adjusts a distance between the target electrode and the center of the substrate holder. Accordingly, in the magnetron sputtering apparatus of the present invention, the uniformity of a thin film and the step coverage is improved.
    Type: Application
    Filed: November 29, 2002
    Publication date: May 20, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sergiy Yakovlevich Navala, Dong-joon Ma, Tae-wan Kim
  • Patent number: 6736946
    Abstract: Physical vapor deposition (PVD) system comprises a chamber, an upper shield and a lower shield mounted within the chamber, a cover ring having one or more tabs extending radially inwardly therefrom. The PAD system further includes a shutter disk having one or more notched areas formed in the periphery thereof to receive non-contacting the one or more tabs of the cover ring. The cover ring has two or more recesses formed in an upper side thereof with a guide pin extending from the center of the recesses. The lower shield has two or more cups with a hole therein to be engaged with the guide pin of the cover ring to keep the lower shield from rotating with respect to the cover ring. The cups of the lower shield are inserted into the recesses of the cover ring. These improvements enable a standard shutter arm assembly and a shutter disk to be utilized in a two-tab block-out scheme.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: May 18, 2004
    Assignee: Integrated Device Technology, Inc.
    Inventors: Robert B. Hixson, Jason L. Monfort, Gary W. Groshong, Jose Luis Gonzalez
  • Patent number: 6726816
    Abstract: The present invention provides a method for forming thin films, wherein thin films with a uniform thickness can be formed on substrates as objects such as spheroids, even when the films are formed by conventional film-formation methods using an incident particle beam coming from a specific direction (e.g., evaporation and sputtering). In the method, thin films are formed on substrates such as spheroids with an incident particle beam coming from a particle source located in a specific direction by performing a spin motion together with a swing motion. The spin motion is a rotation of the substrate at a constant angular velocity about the spheroidal axis. The swing motion is a rotational oscillation of the same substrate for rotationally oscillating the axis at a constant cycle in one surface, where the center of the rotational oscillation is in the vicinity of the midpoint between two focal points on the axis of the spheroid.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: April 27, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuuji Omata, Naotaka Hashimoto, Masahide Yokoyama, Toshiyuki Suemitsu, Takahiro Kitai
  • Patent number: 6641702
    Abstract: The present invention is directed to a sputtering device for depositing multi-layer films on a substrate, the sputtering device comprising at least one planar-magnetron-sputtering-cathode and at least one facing-targets-sputtering-cathode housed in a single vacuum chamber, and adapted such that each planar-magnetron-sputtering-cathode and facing-targets-sputtering-cathode can be selectively positioned for sputtering deposition onto a substrate.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: November 4, 2003
    Assignee: Data Storage Institute
    Inventors: Jian Zhong Shi, Jian Ping Wang
  • Publication number: 20030181337
    Abstract: A plurality of superconductor particles are formed being of a first material which is relatively brittle and is selected to be in a superconductive state at a relatively high temperature, typically above 77K which is the temperature of liquid nitrogen. A coating layer is formed on each superconductor particle, the coating layer being of a second material selected to be substantially non-reactive with the first material. The coated particles are then mixed with a third material to form a composite wherein the third material is in proximity to the first material but separated by the second material. The third material is selected to be relatively ductile when compared to the first material and to be driven to a superconductive state by the first material when the first material is in a superconductive state and the third material is in proximity to the first material. The second material protects the third material from oxidation by the first material.
    Type: Application
    Filed: December 24, 2002
    Publication date: September 25, 2003
    Inventor: Matthew J. Holcomb
  • Patent number: 6623606
    Abstract: Thickness uniformity of films sputtered from a target onto a series of substrates is maintained as the target surface shape changes due to the consumption of the target. The eroded condition of the target is sensed by directly measuring the position of a point on the target surface, by measuring power consumption of the target, by measuring deposition from the surface of the target or by some other means. A controller responds to the measurement by moving a substrate holder to determine an amount to change the distance between the substrate and the target, usually by moving the substrate closer to the target, by an amount necessary to maintain uniformity of the coatings on the wafers being processed. A servo or stepper motor responds to a signal from the controller to move the substrate holder in accordance with the determined amount of distance change required. The adjustment is made following the coating of wafers at various times over the life of the target.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: September 23, 2003
    Assignee: Tokyo Electron Limited of IBS Broadcast Center
    Inventors: Steven Hurwitt, Israel Wagner
  • Publication number: 20030141184
    Abstract: A vacuum treatment system has a vacuum treatment chamber, with a sensor arrangement to detect the treatment atmosphere momentarily existing in the treatment area. An ACTUAL value sensor of the sensor arrangement for one or more of the elements to establish a treatment atmosphere is a regulating element of a control circuit for the treatment atmosphere in the treatment area. A workpiece carrier is drivably movable in the chamber through the treatment area having the treatment atmosphere. At least one of the elements modulates the treatment atmosphere in the treatment area according to a defined profile as a function of the workpiece carrier position. A process is disclosed for manufacturing workpieces, in which the workpieces are guided to a vacuum treatment area guided by a control. The treatment atmosphere is modulated in the treatment area as a function of workpiece position with the defined profile.
    Type: Application
    Filed: March 7, 2003
    Publication date: July 31, 2003
    Applicant: Balzars Aktiengesellschaft
    Inventor: Othmar Zueger
  • Publication number: 20030116432
    Abstract: Embodiments of the invention provide a processing apparatus having a lower reactor portion, an adjustable reactor wall portion attached to an upper portion of the lower reactor portion, the adjustable reactor wall portion being configured for selective linear expansion and contraction, and a source assembly positioned above the adjustable reactor wall portion. The cooperative operation of the source, adjustable wall, and the lower reactor creates a processing apparatus wherein the throw distance may be varied without disassembly of the reactor.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 26, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Marc O. Schweitzer, Dinesh Saigal, Alan Liu
  • Patent number: 6579420
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The apparatus includes a depositing thin-film particle source, a beam-defining aperture between the particle source and the deposited substrate(s), and a substrate holder to rotate the substrate(s) around its center and move the center along a lateral path so that the substrate(s) can scan across the particle beam from one substrate edge to the other edge. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface of each substrate facing the beam of thin-film particles.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: June 17, 2003
    Assignee: Advanced Optical Solutions, Inc.
    Inventors: Zhimin Wan, Jiong Chen, Peiching Ling, Jianmin Qiao
  • Publication number: 20030085122
    Abstract: The invention is intended to provide a sputtering device in which a single sputtering chamber is equipped with a plurality of supports and a target-positioning mechanism for rotating the supports to position the targets into film-forming position. Each support is provided with targets that are different from each other. The same types of targets are mounted in the same order on each support. The supports are rotated to select the same types of targets needed to form a film and to position the targets relative to the substrate. A plurality of the same type of targets are used simultaneously to form a film. The supports are then rotated to select the next targets, and the next film is built up on the previous film. As the film is formed, targets that are not used in the film-forming process can be cleaned with a cleaning device.
    Type: Application
    Filed: October 25, 2002
    Publication date: May 8, 2003
    Inventor: Nobuyuki Takahashi
  • Patent number: 6485616
    Abstract: A system and method for coating substrates. The coating process includes an improved capacity and uniformity through the addition of a second motion component in which the substrates move in a closed path. A major portion of the path is linear and the configuration of the coating machine is such that all substrates follow the same trajectory with respect to the machine during the coating process, resulting in a coating which is substantially the same for all substrates.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: November 26, 2002
    Assignee: Deposition Sciences, Inc.
    Inventors: Bill Howard, Robert Gray
  • Patent number: 6461483
    Abstract: A method and apparatus that operates at a high pressure of at least one torr for improving sidewall coverage within trenches and vias in a substrate. The apparatus comprises a chamber enclosing a target and a pedestal, a process gas that provides a process gas in the chamber, a pump for maintaining the high pressure of at least about one torr in the chamber and a power source coupled to the target. Additionally, the distance between the target and the substrate is set to ensure that collisions between the sputtered particles and the plasma occur in the trenches and vias on the substrate. The method comprises the steps of providing a process gas into the chamber such that the gas pressure is at least about one torr, generating a plasma from the process gas, and sputtering material from the target.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: October 8, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Bradley O. Stimson, John C. Forster, Wei Wang
  • Publication number: 20020134668
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The apparatus includes a depositing thin-film particle source, a beam-defining aperture between the particle source and the deposited substrate(s), and a substrate holder to rotate the substrate(s) around its center and move the center along a lateral path so that the substrate(s) can scan across the particle beam from one substrate edge to the other edge. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface of each substrate facing the beam of thin-film particles.
    Type: Application
    Filed: February 9, 2001
    Publication date: September 26, 2002
    Applicant: Advanced Optics Solutions, Inc.
    Inventors: Zhimin Wan, Jiong Chen, Peiching Ling, Jianmin Qiao
  • Publication number: 20020104752
    Abstract: A sputtering apparatus for depositing layers of material onto a substrate includes a vacuum chamber, a first target and a second target positioned within the vacuum chamber. A source of power is placed in electrical communication with the first target and the second target. A switch alternately connects the source of power between the first target and the second target. The first target and the second target are different materials. The switch connects power to the first target when the transport mechanism positions the substrate near the first target and the switch connects power to the second target when the transport mechanism positions the substrate closer to the second target.
    Type: Application
    Filed: April 12, 2001
    Publication date: August 8, 2002
    Inventor: Paul Stephen McLeod
  • Patent number: 6416635
    Abstract: Thickness uniformity of films sputtered from a target onto a series of substrates is maintained as the target surface shape changes due to the consumption of the target. The eroded condition of the target is sensed by directly measuring the position of a point on the target surface, by measuring power consumption of the target, by measuring deposition from the surface of the target or by some other means. A controller responds to the measurement by moving a substrate holder to determine an amount to change the distance between the substrate and the target, usually by moving the substrate closer to the target, by an amount necessary to maintain uniformity of the coatings on the wafers being processed. A servo or stepper motor responds to a signal from the controller to move the substrate holder in accordance with the determined amount of distance change required. The adjustment is made following the coating of wafers at various times over the life of the target.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: July 9, 2002
    Assignee: Tokyo Electron Limited
    Inventors: Steven Hurwitt, Israel Wagner
  • Patent number: 6402906
    Abstract: A method and system for producing thin film alloy by a sputtering deposition process comprising using a crescent-shaped aperture interposed between the target and substrate of a sputtering deposition system.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: June 11, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Robert O. Pichulo, Gregory Keller Rasmussen, Mark Ray McClanahan
  • Patent number: 6395156
    Abstract: A sputtering chamber has a target that moves with an orbital motion relative to an ion beam. An X-Y assembly allows for target movement in both the horizontal and vertical directions. The X-Y assembly has a base plate, an intermediate plate, and a target mounting plate that attaches to the target. The plates are connected together by bearing blocks that slide along rails in the X and Y directions. A rotating shaft has gears that rotate a center shaft through the base and intermediate plates. The rotating center shaft has an arm on its end that attaches to the target mounting plate. The arm produces an orbital movement of the target. Rather than simply rotating the target around the center shaft, the center of the target orbits around the center of the center shaft. Ion-beam wear is spread across the target surface, extending target life and improving deposition uniformity.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: May 28, 2002
    Assignee: Super Light Wave Corp.
    Inventors: Paul Hsueh, Abraham C. Ma
  • Patent number: 6355146
    Abstract: A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 Å thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: March 12, 2002
    Assignee: The Regents of the University of California
    Inventors: Daniel M. Makowiecki, John A. Kerns, Craig S. Alford, Mark A. McKernan
  • Publication number: 20020023831
    Abstract: In a thin-film formation process and system, a target and a substrate are placed in a sputtering space and a film-forming space, respectively, the pressure in the film-forming space is maintained at a pressure lower than the pressure in the sputtering space and a pressure sufficient for sputtered particles to move in the film-forming space with their mean free path which is longer than the distance between the grid plate and the substrate, and the target is sputtered to form a thin film on the substrate.
    Type: Application
    Filed: August 22, 2001
    Publication date: February 28, 2002
    Inventors: Hideo Iwase, Makoto Kameyama, Koji Kitani, Yoichi Hoshi
  • Patent number: 6350317
    Abstract: A linear drive assembly for moving a body associated with processing a substrate is disclosed. The linear drive assembly includes a first gear and a second gear, which is operatively engaged with the first gear. The linear drive assembly further includes a positioning member having a first portion and a second portion. The first portion is movably coupled to the second gear in a linear direction, and the second portion is fixed to a component associated with processing a substrate.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: February 26, 2002
    Assignee: Lam Research Corporation
    Inventors: Fangli Hao, Keith Dawson
  • Patent number: 6328858
    Abstract: A multi-layer sputter deposition chamber or cluster tool module is described. The sputter deposition chamber includes a plurality of magnetrons mounted on a rotatable member that defines an aperture. A predetermined one of the plurality of magnetrons is positionable proximate to a substrate in the sputter deposition chamber. A transport mechanism transports the substrate in a path of the sputtered ions in a first and a second direction that is substantially opposite to the first direction.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: December 11, 2001
    Assignee: NEXX Systems Packaging, LLC
    Inventors: David Felsenthal, Chunghsin Lee, Piero Sferlazzo
  • Patent number: 6309516
    Abstract: A method and apparatus for sputter deposition of metal alloys with improved compositional uniformity is provided, wherein a first, narrow width target is provided with a sputtering surface comprised of a metal alloy including metal elements having different angular distributions of sputtered atoms, and a wider width substrate having a deposition surface is moved past the sputtering surface, whereby the deposition surface traverses all arrival angles of the sputtered atoms thereby compensating for the different angular distributions of the sputtered atoms. The inventive methodology finds particular utility in the manufacture of magnetic and magneto-optical (MO) recording media.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: October 30, 2001
    Assignee: Seagate Technology LLC
    Inventor: Paul Stephen McLeod
  • Patent number: 6303008
    Abstract: A method and system for producing thin film alloy by a sputtering deposition process comprising using a circle-shaped aperture interposed between the target and substrate of a sputtering deposition system and establishing a rotating/oscillating relationship between the substrate and the aperture.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: October 16, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: Robert O. Pichulo, Gregory Keller Rasmussen, Mark Ray McClanahan
  • Publication number: 20010027020
    Abstract: A method of fabricating a semiconductor device comprises the steps of: (a) forming a mask layer over an upper surface of a semiconductor substrate such that the mask layer has an aperture penetrating the mask layer and having an inclined lateral wall so as to make the aperture inverted taper shaped; (b) forming a first dielectric layer at a first area over the upper surface of the semiconductor substrate within the aperture by sputtering at a first sputtering incidence direction; and (c) forming a first electrode layer at a second area over the upper surface of the semiconductor substrate within the aperture by sputtering at a second sputtering incidence direction which is different from the first sputtering incidence direction.
    Type: Application
    Filed: January 23, 2001
    Publication date: October 4, 2001
    Applicant: Oki Electric Industry Co., Ltd.
    Inventor: Shinichi Hoshi
  • Patent number: 6270633
    Abstract: The present invention relates to an artificial latticed multi-layer film deposition apparatus for depositing on a substrate a gigantic magneto-resistive effect film (GMR film) having an artificial lattice structure formed of magnetic metal films and non-magnetic metal films alternately laminated one over the other and its object is to provide the artificial latticed multi-layer film deposition apparatus to enable easy and secure deposition of an artificial latticed multi-layer film having GMR characteristics.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: August 7, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhiro Onaka, Sumio Maekawa, Shigeru Yamamoto, Masafumi Okamoto
  • Patent number: 6238531
    Abstract: An ion beam sputtering system having a chamber, an ion beam source, multiple targets, a shutter, and a substrate stage for securely holding a wafer substrate during the ion beam sputtered deposition process in the chamber. The substrate stage is made to tilt about its vertical axis such that the flux from the targets hit the wafer substrate at a non-normal angle resulting in improved physical, electrical and magnetic properties as well as the thickness uniformity of the thin films deposited on the substrate in the ion beam sputtering system.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: May 29, 2001
    Assignee: International Business Machines Corporation
    Inventor: Mustafa Pinarbasi
  • Patent number: 6235171
    Abstract: Disclosed is a vacuum film forming/processing apparatus and method which is hardly influenced by dusts and contamination on a substrate and moreover has a reduced exhaust volume. A substrate chamber for housing and holding a substrate and target chambers for housing and holding a target and an etching chamber are moved relatively. Any one of the target chambers, etching chamber and the substrate chamber are selectively coupled and communicated with each other, thereby creating a film forming chamber. In the film forming chamber, a film forming process to the substrate is performed and a multilayered film is formed. A conveying chamber which is conventionally provided is consequently made unnecessary. A problem of dusts and contamination occurring when the substrate passes through the conveying chamber is eliminated, so that the film quality and its stability are improved.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 22, 2001
    Assignee: TDK Corporation
    Inventor: Takahiro Yamamoto
  • Patent number: 6216631
    Abstract: A system (100, 100′, 100″) and method for robotic manipulation of objects (130) is provided wherein particulates (110, 110′) are agitated by the transfer of energy thereto to establish patterned granular motion of the particulates (110, 110′). The patterned granular motion of the particulates (110, 110′) forms standing waves (112). The objects (130) align themselves with the standing waves (112) and thus are dynamically arranged in a configuration established by the location of the standing waves (112). The location of the standing waves (112) can be predetermined by controlling the waveform of the signals applied to the energy application system (140). The predetermined waveforms are supplied from the signal source (150, 154) to the energy application system (140).
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: April 17, 2001
    Assignee: The Mitre Corporation
    Inventor: Alexander D. Wissner-Gross
  • Patent number: 6210540
    Abstract: A mask is placed over a center portion of a deposition source to limit angle of the flux from the source. A substrate or device with a vertical surface (referenced to a major surface of the substrate or device) is rotated past the deposition source to coat the vertical surface with material from the source. In a particular embodiment, the source is a gold sputtering target and a mirror is formed on a vertical surface of a MEMS structure having a depth of about 70-75 microns and a set-back of about 200-250 microns by sputtering about 1000 Angstroms of gold onto the vertical surface.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: April 3, 2001
    Assignee: Optical Coating Laboratory, Inc.
    Inventor: Bryant P. Hichwa
  • Patent number: 6193853
    Abstract: An elongate emitter is used as a cathode to coat material onto a cylindrical workpiece by magnetron sputterinig. Where the inside surface of the workpiece is coated, the workpiece itself is used as the vacuum sputtering chamber. The overlap between the plasma field and the magnetic field creates a coating zone which is moved along the length of the workpiece to evenly coat the workpicce.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: February 27, 2001
    Assignee: Cametoid Limited
    Inventors: Gennady Yumshtyk, Michael Ioumchtyk