Enzyme Included In Apparatus Patents (Class 204/403.04)
  • Patent number: 8834703
    Abstract: Apparatus and methods are described for preparing, maintaining, and stabilizing sensors. The apparatus and methods for preparing sensors for use are utilized in advance of the sensor being removed from a sealed, sterilized package. The apparatus include packaging materials having electrical circuits capable of stabilizing a sensor to prepare the sensor for use. The methods for preparing a sensor for use includes methods of providing a solution to a sterilized packaging that contains a sensor connected to a sensor activating circuit, activating the circuit, and allowing the sensor to stabilize. These methods can be performed without compromising the packaging. The apparatus for stabilizing a sensor that is in use include a circuit connectable to the sensor that provides a signal to the sensor that prevents the sensor from becoming destabilized when disconnected from a monitoring device.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 16, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael Higgins, Mark Konno, Todd Fjield
  • Patent number: 8828204
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme based electrochemical sensors. In such instances, transition metal complexes accept electrons from, or transfer electrons to, enzymes at a high rate and also exchange electrons rapidly with the sensor. The transition metal complexes include at least one substituted or unsubstituted biimidazole ligand and may further include a second substituted or unsubstituted biimidazole ligand or a substituted or unsubstituted bipyridine or pyridylimidazole ligand. Transition metal complexes attached to polymeric backbones are also described.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Fei Mao, Adam Heller
  • Patent number: 8828203
    Abstract: Methods and apparatus are provided for manufacturing an analyte detecting device. In one embodiment, the method comprises providing a substrate, applying a plurality of layer of materials on said substrate; applying a layer containing at least one mediator; and screen printing a hydrogel on the layer.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 9, 2014
    Assignee: Sanofi-Aventis Deutschland GmbH
    Inventors: Norbert Bartetzko, Bernfrield Specht, Michael Kunz
  • Patent number: 8808515
    Abstract: The present invention is directed to membranes composed of heterocyclic nitrogen groups, such as vinylpyridine and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes described herein demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 19, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Tianmei Ouyang, Brian Cho
  • Patent number: 8795490
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme based electrochemical sensors. In such instances, transition metal complexes accept electrons from, or transfer electrons to, enzymes at a high rate and also exchange electrons rapidly with the sensor. The transition metal complexes include at least one substituted or unsubstituted biimidazole ligand and may further include a second substituted or unsubstituted biimidazole ligand or a substituted or unsubstituted bipyridine or pyridylimidazole ligand. Transition metal complexes attached to polymeric backbones are also described.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: August 5, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Fei Mao, Adam Heller
  • Patent number: 8778152
    Abstract: The present invention relates to a sensor used together with a detector to measure biomaterial, and to an apparatus using same. A sensor of the present invention comprises: a body portion with a three-dimensional shape, having a biomaterial introduction hole, and attachable and detachable to/from a detector; a sensor portion with a plurality of reaction electrodes formed on one surface thereof, and a plurality of transfer electrodes formed on the other surface thereof; and an analyzer reagent fixed above the reaction electrodes. The sensor portion, together with the body portion, forms a reaction chamber connected to the biomaterial introduction hole, and is attached to the body portion such that the reaction electrodes are oriented toward the reaction chamber. According to the present invention, attachment and detachment is easy, even for the elderly, and the contamination of the sensor can be minimized.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: July 15, 2014
    Assignee: CERAGEM MEDISYS Inc.
    Inventors: Jin-Woo Lee, Jae-Kyu Choi, Tae-Hun Kim, Young-Il Yoon
  • Patent number: 8771500
    Abstract: Disclosed herein is a device that functions as a glucose sensor. The device has a reference electrode; a counter electrode, a working electrode; an electrically conducting membrane; an enzyme layer; a semi-permeable membrane; a first layer of a first hydrogel in operative communication with the working electrode; the first layer of the first hydrogel being operative to store oxygen; wherein the amount of stored oxygen is proportional to the number of freeze-thaw cycles that the hydrogel is subjected to; and a second layer of the second hydrogel. Disclosed too is a method that comprises using periodically biased amperometry towards interrogation of implantable glucose sensors to improve both sensor's sensitivity and linearity while at the same time enable internal calibration against sensor drifts that originate from changes in either electrode activity or membrane permeability as a result of fouling, calcification and/or fibrosis.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 8, 2014
    Assignee: The University of Connecticut
    Inventors: Fotios Papadimitrakopoulos, Santhisagar Vaddiraju
  • Patent number: 8771486
    Abstract: The present disclosure provides an orientation-nonspecific sensor port for use in analyte meters designed to detect and quantify analyte levels in a fluid sample along with methods of using the same. The present disclosure also provides compositions and methods for facilitating the correct insertion of a sensor into a corresponding analyte meter.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 8, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Benjamin Rush, Charlene Haley
  • Patent number: 8771487
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltage to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction, and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: July 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Kazuhiro Matsumoto, Yasuhiko Sawada
  • Patent number: 8764954
    Abstract: The present disclosure provides an orientation-nonspecific sensor port for use in analyte meters designed to detect and quantify analyte levels in a fluid sample along with methods of using the same. The present disclosure also provides compositions and methods for facilitating the correct insertion of a sensor into a corresponding analyte meter.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 1, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Benjamin Rush, Charlene Haley
  • Publication number: 20140174947
    Abstract: An analytical test strip has mutually-insulated first and second electrodes arranged to define a sample-receiving chamber. Electrically-insulating layers are disposed over respective electrodes. First and second electrical contact pads are electrically connected to the first electrode, and a third pad to the second electrode. A first side of the test strip has a first electrically-insulating layer and the third pad, and a second side has the second electrically-insulating layer and the first and second pads. The third pad extends longitudinally from the sample-receiving chamber farther than does the first electrically-insulating layer. Methods for determining an analyte in a bodily-fluid sample and analytical test systems for use in the determination of an analyte in a bodily-fluid sample are also described.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: LifeScan Scotland Limited
    Inventors: James T. Moffat, Liu Zuifang, Lawrence Ritchie, Steven John Setford, John Scott, Graeme J. Webster
  • Publication number: 20140174948
    Abstract: A method of a test strip detecting concentration of an analyte of a sample includes placing the sample in a reaction region of the test strip, wherein the analyte reacts with an enzyme to generate a plurality of electrons, and the plurality of electrons are transferred to a working electrode of the reaction region through a mediator; applying an electrical signal to the working electrode; measuring a first current through the working electrode during a first period; the mediator generating an intermediate according to the electrical signal during a second period; measuring a second current through the working electrode during a third period; calculating initial concentration of the analyte according to the first current; calculating a diffusion factor of the intermediate in the sample according to the second current; and correcting the initial concentration to generate new concentration of the analyte according to the diffusion factor.
    Type: Application
    Filed: December 22, 2013
    Publication date: June 26, 2014
    Applicant: TYSON BIORESEARCH INC.
    Inventors: Cheng-Che Lee, Wen-Huang Chen, Han-Ching Tsai, Chen-Yu Yang
  • Patent number: 8758583
    Abstract: The present disclosure provides an orientation-nonspecific sensor port for use in analyte meters designed to detect and quantify analyte levels in a fluid sample along with methods of using the same. The present disclosure also provides compositions and methods for facilitating the correct insertion of a sensor into a corresponding analyte meter.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: June 24, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Yi Wang, Benjamin J. Feldman, Benjamin Rush, Charlene Haley
  • Patent number: 8758582
    Abstract: An electrochemical test strip is formed from a first insulating substrate layer, a second substrate layer, and an intervening insulating spacer layer. An opening in the insulating spacer layer defines a test cell which is in contact with the inner surface of the first substrate on one side and the inner surface of the second substrate on the other side. The size of the test cell is determined by the area of substrate exposed and the thickness of the spacer layer. Working and counter electrodes appropriate for the analyte to be detected are disposed on the first insulating substrate in a location within the test cell. The working and counter electrodes are associated with conductive leads that allow The second substrate is conductive at least in a region facing the working and counter electrodes. No functional connection of this conductive surface of the second substrate to the meter is required.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: June 24, 2014
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar Iyengar
  • Publication number: 20140127728
    Abstract: Reagent materials and associated test elements are provided. In one embodiment, a test element having dual functionality includes a first coenzyme-dependent enzyme or a substrate for the first enzyme, a second coenzyme-dependent enzyme or a substrate for the second enzyme, and a coenzyme selected from the group consisting of thio-NAD, thio-NADP, and a compound according to formula (I). In one aspect, the first analyte is hydroxybutyrate and the first enzyme is a hydroxybutyrate dehydrogenase, and the second analyte is glucose and the second enzyme is a glucose dehydrogenase or a glucose oxidase. Other aspects of the subject application are directed to unique reagent materials. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the description and drawings.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: Roche Diagnostics Operations, Inc.
    Inventor: Christopher D. Wilsey
  • Patent number: 8712701
    Abstract: Provided is a potentiometric sensor chip in which the positional relationship among a reference electrode, a measurement electrode, and a sample inlet which enables measurement from the start of a reaction is defined, and further provided is a method for detecting the start time of the reaction. A very small amount of sample is measured with high accuracy. The very small quantity of sample is measured by a rate assay. When a reference electrode (103) is disposed between a sample inlet (102) and a measurement electrode (104), a sample solution arrives at the reference electrode (103) earlier than at the measurement electrode (104), whereby the surface potential of the measurement electrode (104) can be measured simultaneously when the sample solution arrives at the measurement electrode (104) and dissolves a reagent and thereby a reaction starts.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: April 29, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yu Ishige, Masao Kamahori, Kuniaki Nagamine
  • Patent number: 8696880
    Abstract: A biosensor (102) for determining the presence or amount of a substance in a sample and methods of use of the biosensor (102) are provided. The biosensor (102) for receiving a user sample to be analyzed includes a mixture for electrochemical reaction with an analyte. The mixture includes an enzyme, a mediator and an oxidizable species as an internal reference.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 15, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Greg P. Beer, Huan-Ping Wu, Kin-Fai Yip
  • Patent number: 8691072
    Abstract: Voltage is applied across a counter electrode and a working electrode, with which a blood sample is in contact, in such a state that an oxidant in a redox substance is not substantially in contact with a working electrode but is in contact with a counter electrode and a reductant is not substantially in contact with the counter electrode but is in contact with the working electrode, whereby the reductant and the oxidant are respectively oxidized and reduced to measure current produced upon the oxidation and reduction. According to the above constitution, while lowering the voltage applied across the working electrode and the counter electrode, the Hct value of the blood sample can be measured stably with a satisfactory detection sensitivity. This measurement can be carried out with a sensor chip comprising a working electrode (11), a counter electrode (12), and a blood sample holding part (14) having branch parts (18a, 18b).
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: April 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujiwara, Shin Ikeda, Takahiro Nakaminami
  • Patent number: 8691073
    Abstract: An electrochemical sensor strip has a base and a first electrode and a second electrode on the base. An oxidoreductase enzyme and a mediator are on the first electrode, and a soluble redox species is on the second electrode. The soluble redox species may be an organotransition metal complex, a transition metal coordination complex, an electroactive organic molecule, or mixtures thereof.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 8, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Greg P. Beer, Christina Blaschke
  • Publication number: 20140090988
    Abstract: Described are methods and systems to apply a plurality of test voltages to the test strip and measure at least a current transient output resulting from an electrochemical reaction in a test chamber of the test strip so that a glucose concentration can be determined that are generally insensitive to other substances in the body fluid sample that could affect the precision and accuracy of the glucose concentration.
    Type: Application
    Filed: January 11, 2013
    Publication date: April 3, 2014
    Applicant: Cilag GmbH International
    Inventor: Michael MALECHA
  • Publication number: 20140083863
    Abstract: Method and apparatus for performing a discrete glucose testing and bolus dosage determination including a glucose meter with bolus calculation function are provided.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Mark Kent Sloan, R. Curtis Jennewine
  • Patent number: 8679310
    Abstract: A biosensor includes a first working electrode that a biocatalyst, which has a property that reacts on a specified ground substance, is disposed, a second working electrode that the biocatalyst, which the property is lost, is disposed, and at least one counter electrode for respectively applying a voltage to the first working electrode and the second working electrode.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 25, 2014
    Assignee: ARKRAY, Inc.
    Inventors: Yosuke Murase, Koji Katsuki
  • Patent number: 8679309
    Abstract: An electrochemical test sensor includes a lid and a base. The base has a length and a width. The length of the base is greater than the width of the base. The base includes at least a working electrode, a counter electrode and at least three test-sensor contacts for electrically connecting to a meter. The at least three test-sensor contacts are spaced along the length of the base from each other. The base and the lid assist in forming a fluid chamber for receiving the fluid sample. The electrochemical test sensor further includes a reagent to assist in determining the concentration of the analyte in the fluid sample.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 25, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Greg P. Beer, John P. Creaven
  • Patent number: 8673127
    Abstract: In a biosensor for measuring a specific substance in a liquid sample, one or a combination of sugar alcohol, metallic salt, organic acid or organic acid salt which has at least one carboxyl group in a molecule, and organic acid or organic acid salt which has at least one carboxyl group and one amino group in a molecule, is included in a reagent layer provided on electrodes, thereby providing a highly-accurate biosensor which is excellent in stability and has high response (sensitivity, linearity) of the sensor to the substrate concentration.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Takahiro Nakaminami, Junko Nakayama, Eriko Yamanishi
  • Patent number: 8663451
    Abstract: The present invention provides a linker for joining an electrode and a capture probe on a biochip, and a biochip comprising the linker. The impedance baseline of the linker of the present invention is three orders lower than the conventional long chain thiol linker when adopting in a fadaraic impedance biochip construction. With lower impedance baseline, the device designed to measure the signal of the biochip of the present invention could be further simplied on the electrical circuit design and be made in lower cost, compacter size and get the potential to be used in point-of-care applications. The present invention also provides a method of quantitatively detecting a concentration of a target analyte in a fluid sample by adopting the biochip and the linker of present invention.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 4, 2014
    Assignee: National Taiwan University
    Inventors: Chih-Kung Lee, Adam Shih-Yuan Lee, Ching-Sung Chen, Ku-Ning Chang, Ying-Hua Chen, Bryan Yong-Jay Lee
  • Patent number: 8663442
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 4, 2014
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: David W. Burke, Nigel A. Surridge, Henning Groll
  • Patent number: 8658012
    Abstract: The biosensor has an electrode system for electrochemically measuring 1,5-anhydroglucitol (1,5-AG) and a reagent layer formed on said electrode system. The reagent layer contains an enzyme for measuring 1,5-anhydroglucitol, phenothiazine compounds, a stabilizer selected from a group of compounds comprising metal salts, organic acids, and amino acids, and an acidic polymer compound as an optional ingredient. The biosensor has excellent storage stability and can electrochemically measure 1,5-anhydroglucitol unaffected by the hematocrit contained in a whole blood sample.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: February 25, 2014
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Takao Yokoyama, Hisako Takagi, Yayoi Irie, Reiko Machida, Yoshihiko Umegae
  • Patent number: 8652320
    Abstract: A biosensor strip having a low profile for reducing the volume of liquid sample needed to perform an assay. In one embodiment, the biosensor strip includes an electrode support; an electrode arrangement on the electrode support; a cover; a sample chamber; and an incompressible element placed between the cover and the electrode support, the incompressible element providing an opening in at least one side or in the distal end of the sample chamber to provide at least one vent in the sample chamber. In another embodiment, the biosensor strip has an electrode support; an electrode arrangement on the electrode support; a cover; and a sample chamber, the cover having a plurality of openings formed therein, at least one of the openings in register with the sample chamber. The invention further includes methods for preparing such a biosensor strips in a continuous manner.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 18, 2014
    Assignee: Abbott Laboratories
    Inventors: Adrian Petyt, Matthew Bates, Pamela Reid, Andrew J. Bull, Jeff Garner
  • Patent number: 8647488
    Abstract: A biosensor includes a first working electrode that a biocatalyst, which has a property that reacts on a specified ground substance, is disposed, a second working electrode that the biocatalyst, which the property is lost, is disposed, and at least one counter electrode for respectively applying a voltage to the first working electrode and the second working electrode.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 11, 2014
    Assignee: ARKRAY, Inc.
    Inventors: Yosuke Murase, Koji Katsuki
  • Patent number: 8647487
    Abstract: Methods and devices for automatically distinguishing between a control solution and an actual patient/user sample in a biosensor are provided. The solution is introduced into an electrochemical cell having a working and counter electrode. Electric pulses are applied to the cell and resultant signals are measured. Based on a comparison of the measured signals, a meter can determine whether the sample is a control solution or an actual patient/user sample.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: February 11, 2014
    Assignee: Nipro Diagnostics, Inc.
    Inventors: Natasha D. Popovich, Stephen G. Davies
  • Patent number: 8636884
    Abstract: Embodiments of the invention include analyte-responsive compositions and electrochemical analyte sensors having a sensing layer that includes an analyte-responsive enzyme and a cationic polymer. Also provided are systems and methods of making the sensors and using the electrochemical analyte sensors in analyte monitoring.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: January 28, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Tianmei Ouyang, Zenghe Liu
  • Patent number: 8623196
    Abstract: The present invention provides compositions, devices and methods for detecting esterase activity. The present invention also provides devices and methods of detecting esterase inhibitors, for example, organophosphates. In particular, the present invention provides a biosensor comprising Neuropathy Target Esterase (NTE) polypeptides. Further, the present invention relates to medicine, industrial chemistry, agriculture, and homeland security.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 7, 2014
    Assignees: Michigan State University, The Regents of the University of Michigan
    Inventors: Neeraj Kohli, Devesh Srivastava, Rudy J. Richardson, Jun Sun, Ilsoon Lee, Robert M. Worden
  • Patent number: 8617370
    Abstract: Methods for distinguishing between an aqueous non-blood sample (e.g., a control solution) and a blood sample are provided herein. In one aspect, the method includes using a test strip in which multiple current transients are measured by a meter electrically connected to an electrochemical test strip. The current transients are used to determine if a sample is a blood sample or an aqueous non-blood sample based on characteristics of the sample (e.g., amount of interferent present, reaction kinetics, and/or capacitance). The method can also include calculating a discrimination criteria based upon these characteristics. Various aspects of a system for distinguishing between a blood sample and an aqueous non-blood sample are also provided herein.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 31, 2013
    Assignee: Cilag GmbH International
    Inventors: Ronald C. Chatelier, Alastair M. Hodges
  • Patent number: 8617367
    Abstract: An electrochemical test sensor for detecting the analyte concentration of a fluid test sample includes a base, a dielectric layer, a reagent layer and a lid. The base provides a flow path for the test sample having on its surface a counter electrode and a working electrode adapted to electrically communicate with a detector of electrical current. The dielectric layer forms a dielectric window therethrough. The reagent layer includes an enzyme that is adapted to react with the analyte. The lid is adapted to mate with the base and to assist in forming a capillary space with an opening for the introduction of the test sample thereto. At least a portion of the width of the counter electrode is greater than the width of the working electrode.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: December 31, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Andrew J. Edelbrock, Steven C. Charlton
  • Patent number: 8617365
    Abstract: An electrochemical test device is provided having a base layer with a first electrode thereon and a top layer with a second electrode thereon. The two electrodes are separated by a spacer layer having an opening therein, such that a sample-receiving space is defined with one electrode on the top surface, the other electrodes on the bottom surface and side walls formed from edges of the opening in the spacer. Reagents for performing the electrochemical reaction are deposited on one of the electrodes and on the side walls of the sample-receiving space.
    Type: Grant
    Filed: May 21, 2005
    Date of Patent: December 31, 2013
    Assignee: AgaMatrix, Inc.
    Inventor: Ian Harding
  • Patent number: 8613850
    Abstract: A system for electrochemical quantitative analysis is provided. The system includes a measuring apparatus having a plurality of analysis modes. Each of the analysis modes is for quantitatively analyzing different biochemical substance. The system further includes a plurality of test strips. Each of the test strips has a different identification component for a different analysis mode. When one of the plurality of test strips is selected to electronically connect to the measuring apparatus, the measuring apparatus executes one of the plurality of analysis modes according to the identification component of the selected test strip to quantitatively analyze a corresponding biochemical substance.
    Type: Grant
    Filed: September 21, 2008
    Date of Patent: December 24, 2013
    Assignee: Apex Biotechnology Corp.
    Inventors: Yueh-Hui Lin, Guan-Ting Chen, Te-Ho Chen, Ching-Yuan Chu, Jui-Ping Wang, Cheng Allen Chang, Thomas Y. S. Shen
  • Patent number: 8608921
    Abstract: Embodiments of the invention provide amperometric analyte sensors having optimized elements such as electrodes formed from sputtered platinum compositions as well as layers of material selected to optimize the characteristics of a wide variety of sensor elements and sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: December 17, 2013
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Xiaolong Li, Rajiv Shah, Qingling Yang, Yiwen Li, Barry Phong Pham
  • Patent number: 8603309
    Abstract: A disposable biosensor for determining the content of hemoglobin and hematocrit in a sample of whole blood that includes a laminated strip with a first and second end, at least a reference, a working electrode and a blank electrode embedded in the laminated strip. The working electrode contains a reagent sensitive to hemoglobin or hemotocrit. The blank electrode is used to measure oxidizable species in the fluid sample and to correct the current signal of the working electrode. The construction of the biosensor allows accurate measurement of the impedance of a small fluid sample, which is used to further correct the current signal of the working electrode.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 10, 2013
    Assignee: Nova Biomedical Corporation
    Inventors: Xiaohua Cai, Chung Chang Young, Jessica Joy Mokfienski
  • Patent number: 8574510
    Abstract: In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor has a base with first and second ends, a concave recess in the first end, a second end receiving surface, and a sidewall extending between the ends. An electrode may be provided on the receiving surface with an electrochemically-active region coupled to the electrode. A conductor in electrical contact with the electrode may extend along the sidewall and may be adapted to be in electrical contact with a first contact of an analyte meter. Manufacturing methods and systems utilizing and dispensing the analyte sensors are provided, as are numerous other aspects.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 5, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Igor Gofman, Robert S. Sams
  • Publication number: 20130284595
    Abstract: The present invention relates to test strips and preparation method thereof. More particularly, the present invention relates to a test strip comprising: (a) an insulating substrate; (b) an electrode system disposed on the insulating substrate; (c) an insulation layer disposed on the electrode system, in which an accommodation space is disposed at one side of the insulation layer for exposing a part of the electrode system to carry out an electrochemical reaction of an analyte; and (d) a gel, disposed in the accommodation space and formed by dissolving a reactive enzyme reacting with the analyte in a hydrogel and being cured.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 31, 2013
    Inventor: Compose Element Limited
  • Patent number: 8568579
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: October 29, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 8557103
    Abstract: A biosensor comprises a space part for sucking and housing a sample formed of two upper and lower plates, the two plates being stuck together by an adhesive layer, the space part for sucking and housing the sample being constituted so as to be partially opened in the peripheral part and partially closed by the adhesive layer, and has a working electrode having at least glucose oxidase immobilized thereon and a counter electrode on the same plane of the plate.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: October 15, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Masao Gotoh, Hiroki Mure, Hiroshi Shirakawa
  • Patent number: 8545693
    Abstract: Described and illustrated herein are systems and exemplary methods of operating a multianalyte measurement system having a meter and a test strip. In one embodiment, the method may be achieved by applying a test voltage between a reference electrode and a first working electrode; measuring a first test current, a second test current and a third test current at the working electrode with the meter after a blood sample containing an analyte is applied to the test strip; estimating a hematocrit-corrected analyte concentration from the first, second and third test currents; and displaying the hematocrit-corrected analyte concentration.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 1, 2013
    Inventors: David McColl, Adam Craggs, Stephen MacKintosh, Steve Blythe, Marco Cardosi
  • Patent number: 8535511
    Abstract: A chemistry matrix for use in determining the concentration of an analyte in a biological fluid includes a glucose dehydrogenase, nicotinamide adenine dinucleotide, an alkylphenazine quaternary salt, and/or a nitrosoaniline. The chemistry matrix is used with an electrochemical biosensor to determine the concentration of an analyte after a reaction occurs within the biosensor, at which time an analysis is completed to determine the concentration. A method of determining the concentration of an analyte using the chemistry matrix of glucose dehydrogenase, nicotinamide adenine dinucleotide, an alkylphenazine quaternary salt, and/or a nitrosoaniline is another aspect that is described. The method also further features test times of five seconds or less. Methods utilizing the new chemistry matrix can readily determine an analyte such as blood glucose at concentrations of from about 20-600 mg/dL at a pH of from about 6.5 to about 8.5.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 17, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christopher D. Wilsey, Mitali Ghoshal, Herbert Wieder
  • Patent number: 8532731
    Abstract: A region of skin, other than the fingertips, is stimulated. After stimulation, an opening is created in the skin (e.g., by lancing the skin) to cause a flow of body fluid from the region. At least a portion of this body fluid is transported to a testing device where the concentration of analyte (e.g., glucose) in the body fluid is then determined. It is found that the stimulation of the skin provides results that are generally closer to the results of measurements from the fingertips, the traditional site for obtaining body fluid for analyte testing.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: September 10, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: John Bernard Buse, Alan Charles Moses
  • Publication number: 20130220835
    Abstract: A biosensor (such as an electrochemical-based analytical test strip configured for the determination of glucose in a whole blood sample) includes a substrate, an electrode disposed on the substrate and a uric acid scavenger layer containing polymeric vinyl-4,6-diamino-1,3,5-triazine (polyVDAT) nanoparticles. Aqueous compositions useful in, for example, the manufacturing of such biosensors include polyVDAT nanoparticles and water with the polyVDAT nanoparticles being present as a dispersion in the water. A method for determining an analyte in a bodily fluid sample containing uric acid includes applying a bodily fluid sample containing uric acid to a biosensor such that the bodily fluid sample comes into contact with a uric acid scavenger layer containing polymeric vinyl-4,6-diamino-1,3,5-triazine (polyVDAT) nanoparticles and determining the analyte based on an electronic signal produced by the biosensor.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: Zuifang LIU, Louise SIMPSON, Marco CARDOSI
  • Patent number: 8512534
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme based electrochemical sensors. In such instances, transition metal complexes accept electrons from, or transfer electrons to, enzymes at a high rate and also exchange electrons rapidly with the sensor. The transition metal complexes include at least one substituted or unsubstituted biimidazole ligand and may further include a second substituted or unsubstituted biimidazole ligand or a substituted or unsubstituted bipyridine or pyridylimidazole ligand. Transition metal complexes attached to polymeric backbones are also described.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: August 20, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Fei Mao, Adam Heller
  • Publication number: 20130199942
    Abstract: An electrochemical-based analytical test strip (“EBAT”) for the determination of an analyte in a bodily fluid sample includes an electrically insulating substrate layer with a distal end and a patterned conductor layer that is disposed over the electrically-insulating substrate layer and has a working electrode (“WE”) and a counter/reference electrode (“C/RE”). The EBAT also includes a patterned insulation layer with an electrode exposure window configured to expose a WE exposed portion and a C/RE exposed portion, an enzymatic reagent layer; and a patterned spacer layer. The patterned insulation layer and the patterned spacer layer define a sample receiving chamber with a sample-receiving opening (“SRO”) at the distal end of the electrically insulating substrate layer and that extends across the WE exposed portion and the C/RE exposed portion. Furthermore, the enzymatic reagent layer is disposed over the WE and C/RE exposed portions and extends no more than 400 ?m toward the SRO.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Inventors: Neil WHITEHEAD, Stuart Phillips, David Morris, Joanne McIlrath, Robert MacLeod, Lynsey Whyte, Karn Campbell, Ramsay Darling, James McLaren, Russell Bain
  • Patent number: 8486244
    Abstract: Described herein is an electrochemical enzymatic analyte test strip and method for making the test strip. The test strip utilizes isolated conductive areas inside the electrodes to define electrode whiskers. The method utilizes laser ablation to define electrode patterns.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 16, 2013
    Assignee: LifeScan Scotland Limited
    Inventors: Marco F. Cardosi, Leanne Mills, Emma Vanessa Jayne Day, Richard Michael Day, Christopher Philip Leach
  • Patent number: RE44521
    Abstract: An electrochemical test sensor adapted to assist in determining the concentration of analyte in a fluid sample is disclosed. The sensor comprises a base that assists in forming an opening for introducing the fluid sample, a working electrode being coupled to the base, and a counter electrode being coupled to the base, the counter electrode and the working electrode being adapted to be in electrical communication with a detector of electrical current, and a sub-element being coupled to the base. A major portion of the counter electrode is located downstream relative to the opening and at least a portion of the working electrode. The sub-element is located upstream relative to the working electrode such that when electrical communication occurs between only the sub-element and the working electrode there is insufficient flow of electrical current through the detector to determine the concentration of the analyte in the fluid sample.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 8, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Matthew K. Musho, J. Oakey Noell, Andrew J. Edelbrock, Dijia Huang