Directing Electrolyte To Selected Area (e.g., Jet Plating, Etc.) Patents (Class 205/133)
  • Patent number: 6814851
    Abstract: A method and apparatus for anodizing a component. The component is placed in a container having a supply port, a drain port and a supply passage. The supply passage faced on a surface of the component to be anodized. A reaction medium is supplied from the supply port to the drain port. An electric current is supplied from an electrode provided on the drain port side of the surface. The apparatus prevents any hydrogen gas created by the electrode from recirculating to the surface of the component.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: November 9, 2004
    Assignee: Unisia Jecs Corporation
    Inventors: Masato Sasaki, Masazumi Ishikawa, Sachiko Sugita
  • Patent number: 6800187
    Abstract: An apparatus for engaging a work piece during plating facilitates electrolyte flow during a plating operation. The apparatus helps to control the plating solution fluid dynamics and electric field shape to keep the wafer's local plating environment uniform and bubble free. The apparatus holding the work piece in a manner that facilitates electrolyte circulation patterns in which the electrolyte flows from the center of the work piece plating surface, outward toward the edge of the edge of the work piece. The apparatus holds the work piece near the work piece edges and provides a flow path for electrolyte to flow outward away from the edges of the work piece plating surface. That flow path has a “snorkel” shape in which the outlet is higher than the inlet. In addition, the flow path may have a slot shape that spans much or all of the circumference of holding apparatus. It may be made from a material that resists deformation and corrosion such as certain ceramics.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: October 5, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Steven T. Mayer, R. Marshall Stowell, Evan E. Patton, Jeff A. Hawkins
  • Publication number: 20040182715
    Abstract: A method for removing gas bubbles from a surface of a wafer is provided. Removal process is performed as the wafer surface is placed into a process solution for an electrochemical process. As the wafer surface is placed into the solution and moved towards a pressure barrier placed into the solution, a process solution flow between the wafer surface and the pressure barrier is induced to remove gas bubbles from the wafer surface.
    Type: Application
    Filed: October 24, 2003
    Publication date: September 23, 2004
    Inventors: Jeffrey Bogart, Hung-Ming Wang, Serkan Erdemli, Serdar Aksu, Erol C. Basol, Manuel R. Cornejo, Bulent M. Basol
  • Publication number: 20040173463
    Abstract: The present invention provides the development of techniques for development and removal of a resist in place of conventional chemicals, and the techniques to present pollution-free treatment of discharged water involved in this removal technique. Namely, the removal of an uncured resist after exposure of a board 40 is conducted by preferably immersing the board in a sodium carbonate solution tank 42, and then using an electrolyzed alkaline water by a showering apparatus 44, etc.; and the removal of a cured resist after etching is conducted by preferably swelling the cured resist by means of a sodium hydroxide solution and then using an electrolyzed alkaline water. Further, to a resist discharged water containing resist residues removed from the board 40 by means of the electrolyzed alkaline water, the electrolyzed acidic water is mixed to acidify the discharged water to a neutral to weekly acidic range, and then the resist residues are collected and recovered by means of a filter.
    Type: Application
    Filed: January 13, 2004
    Publication date: September 9, 2004
    Inventors: Jin-ichi Itoh, Yasuaki Nishio
  • Publication number: 20040163963
    Abstract: An anode assembly by which a solution can be supplied to a surface of a semiconductor substrate includes a housing defining an internal housing volume into which the solution can flow. A closure is provided for the internal housing volume, and the solution can be discharged from the internal housing volume through the closure towards the surface of the semiconductor substrate. A filter divides the internal housing volume into a first chamber and a second chamber located between the first chamber and the closure. During supply of the solution to the surface, a flow of the solution into the second chamber occurs at a higher rate than a flow of the solution into the first chamber, and the flows are blended in the second chamber.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 26, 2004
    Applicant: NuTool Inc.
    Inventors: Cyprian E. Uzoh, Homayoun Talieh, Bulent M. Basol
  • Patent number: 6780302
    Abstract: A process for use in a continuous electrochemical treating line for electrochemically treating at least one surface of a continuous web moving through an electrolyte solution contained within a tank. The process includes the steps of providing at least one electrode extending across the surface of the continuous web in combination with at least one rigid non-flexible and non-conductive bumper devices also extending across the continuous web surface. The bumper devices include a contact surface positioned against the continuous web surface at spaced apart locations that prevent the continuous web from moving outside a pass-line through the electrolyte solution and arcing against the electrode. The bumper devices may comprise either a bumper strip or a conduit.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: August 24, 2004
    Inventor: James L. Forand
  • Patent number: 6776885
    Abstract: An apparatus for plating and planarizing metal on a substrate includes a plurality of dispensing segments, each having at least one hole for dispensing electroplating solution onto the substrate. The dispensing segments form a circular counterelectrode and are movable with respect to each other during an electroplating process, so that the counterelectrode has a variable diameter. The electroplating solution is thus dispensed on an annular portion of the substrate having a diameter corresponding to the diameter of the counterelectrode; accordingly, the variable-diameter counterelectrode permits localized delivery of the plating solution to the substrate.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: August 17, 2004
    Assignee: International Business Machines Corporation
    Inventors: Laertis Economikos, Hariklia Deligianni, John M. Cotte, Panayotis C. Andricacos
  • Publication number: 20040134787
    Abstract: A method and apparatus for transmitting electrical signals and fluids to and/or from a microelectronic workpiece. An apparatus in accordance with one embodiment of the invention includes a shaft rotatable about a shaft axis and having a first end with a first electrical contact portion toward the first end, a second end opposite the first end, and an internal channel along the shaft axis between the first and second ends. The shaft can further have at least one first hole toward the first end with the first hole extending radially from the channel to an external surface of the shaft. The shaft can still further have at least one second hole toward the second end with the second hole extending from the channel to the external surface. A housing rotatably receives the shaft and has an aperture coupleable to a fluid source and/or fluid sink.
    Type: Application
    Filed: December 23, 2003
    Publication date: July 15, 2004
    Inventors: John M. Pedersen, James J. Erickson
  • Patent number: 6746578
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: June 8, 2004
    Assignee: International Business Machines Corporation
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Publication number: 20040104119
    Abstract: A method and apparatus for plating a metal onto a substrate. The apparatus generally The apparatus generally includes a substrate support member configured to support a substrate during a plating process, a cathode clamp ring detachably positioned to circumscribe a perimeter of the substrate and a movable anode assembly disposed above the substrate, wherein the anode assembly is movable in a direction generally perpendicular the substrate. The apparatus generally further includes a fluid inlet formed through the anode assembly, the fluid inlet being configured to supply a plating solution to the processing area sufficient to electrically connect the anode assembly to the substrate.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 3, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Sergio Edelstein, Peter Hey, Yezdi Dordi
  • Publication number: 20040099533
    Abstract: A reactor for electrochemically processing at least one surface of a microelectronic workpiece is set forth. The reactor comprises a reactor head including a workpiece support that has one or more electrical contacts positioned to make electrical contact with the microelectronic workpiece. The reactor also includes a processing container having a plurality of nozzles angularly disposed in a sidewall of a principal fluid flow chamber at a level within the principal fluid flow chamber below a surface of a bath of processing fluid normally contained therein during electrochemical processing. A plurality of anodes are disposed at different elevations in the principal fluid flow chamber so as to place them at difference distances from a microelectronic workpiece under process without an intermediate diffuser between the plurality of anodes and the microelectronic workpiece under process. One or more of the plurality of anodes may be in close proximity to the workpiece under process.
    Type: Application
    Filed: November 18, 2003
    Publication date: May 27, 2004
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson
  • Publication number: 20040055891
    Abstract: An apparatus is provided for manipulating droplets. The apparatus is a single-sided electrode design in which all conductive elements are contained on one surface on which droplets are manipulated. An additional surface can be provided parallel with the first surface for the purpose of containing the droplets to be manipulated. Droplets are manipulated by performing electrowetting-based techniques in which electrodes contained on or embedded in the first surface are sequentially energized and de-energized in a controlled manner. The apparatus enables a number of droplet manipulation processes, including merging and mixing two droplets together, splitting a droplet into two or more droplets, sampling a continuous liquid flow by forming from the flow individually controllable droplets, and iterative binary or digital mixing of droplets to obtain a desired mixing ratio.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 25, 2004
    Inventors: Vamsee K. Pamula, Michael G. Pollack, Philip Y. Paik, Hong Ren, Richard B. Fair
  • Publication number: 20040035712
    Abstract: An apparatus and method for treating a substrate to deposit, clean or etch material on a substrate uses a first horizontal chuck to which a plurality of substrates is attached and electrically charged. Spaced closely to the first horizontal chuck is a coextensive horizontal second chuck which receives and showers reaction solution over all portions of each substrate. During the reaction process, both chucks are substantially submerged in reaction solution within a tank. At least one of the chucks is attached and controllable from a control arm. At least one of the chucks is rotated about a vertical axis at a slow speed during the reaction process. The axes of rotation of the two chucks may be coincident, or the axes may be offset from each other, and/or one or both axes may be offset from the chuck centerpoint(s). One of the chucks may also be periodically moved in a vertical direction relative to the other chuck.
    Type: Application
    Filed: August 26, 2002
    Publication date: February 26, 2004
    Inventors: Salman Akram, David R. Hembree
  • Publication number: 20040020779
    Abstract: A method and a device are described for producing a galvanic layer having a defined spatial extent on an electrically conductive substrate surface having any shaped contour at all. In this context, an electrolyte jet from a nozzle is applied to the substrate, and a current flows between the nozzle and the substrate surface essentially via the electrolyte jet. The device is provided with a pump for delivering an electrolyte from an electrolyte reservoir to the nozzle and for producing an electrolyte jet directed at the substrate surface. Moreover, the device has a reactor in which are arranged the substrate to be coated, as well as the nozzle. The substrate and the nozzle are connected to a direct current source, and a configuration of the substrate and of the nozzle in the reactor is variable during the coating process.
    Type: Application
    Filed: October 8, 2002
    Publication date: February 5, 2004
    Inventors: Konrad Koeberle, Josef Weber
  • Patent number: 6685815
    Abstract: An electro-chemical deposition apparatus and method are generally provided. In one embodiment of the invention, an electro-chemical deposition apparatus includes a housing having a substrate support disposed therein and adapted to rotate a substrate. One or more electrical contact elements are disposed on the substrate support. A drive system is disposed proximate the housing. The drive system is magnetically coupled to and adapted to rotate the substrate support. In another embodiment, a method of plating a substrate includes the steps of covering a substrate supported within a housing with electrolyte, and displacing a portion of the electrolyte from the housing prior to electrically biasing the substrate, and electrically biasing the substrate.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: February 3, 2004
    Assignee: Applied Materials Inc.
    Inventor: Nicolay Kovarsky
  • Patent number: 6663759
    Abstract: A method for continuously electroplating metal webs by coating a masking ink thereto in a fashion resembling flexographic printing, then electroplating the uncoated areas of the web and finally removing the ink, is described. The masking ink is applied continuously from a reservoir to an “anilox” roller which synchronously and rotatingly contacts either a plate roller or an intermediate roller. Contact between the rollers transfers the masking ink from one roller to the other. The plate roller has “proud” or raised areas in which the ink is drawn and contacts a guided metal web that is coated with the ink in a pattern matching that of the plate roller. Electroplating is effected after cleaning the inked web in an aqueous acid media. Finally, the masking ink is removed in an alkali medium.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: December 16, 2003
    Assignee: Precious Plate, Inc.
    Inventors: William J. Copping, Paul M. Bronschidle, Richard J. Zimmermann
  • Patent number: 6641710
    Abstract: To provide a method of metal plating to give a metal plating coating with excellent luster and high corrosion resistance and wear resistance. This metal plating method includes pulse plating by pulsed electrolysis by periodically applying electric current. The pulsed electrolysis is carried out in condition that the pulse frequency and the current density are controlled so that the ratio of the quantity of deposited lattice per pulse to the height of the lattice is 0.28 or lower, that the duty ratio of the pulse frequency is controlled to be 0.5 or lower, and that the duration of complete pause caused by distortion of pulse waveform is controlled to be one half or longer of the duration of current interruption. The foregoing plating is carried out while fluidizing plating solution to be brought into contact with the object body 5 at a flow rate of 0.04 (m/s) or higher and making the solution evenly flow along the face to be plated.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 4, 2003
    Assignee: Soqi, Inc.
    Inventors: Yasuo Sakura, Itoyo Tsuchiya, Keiko Mano
  • Patent number: 6632346
    Abstract: The present process for electrodepositing a zinc oxide film comprises the steps of immersing a substrate and an opposing electrode in an electrodeposition bath which contains zinc nitrate and is kept heated, and forming the zinc oxide film on the substrate by passing a current between the substrate and the opposing electrode, wherein the process further includes a step of trapping the particles of zinc oxide precipitated in the electrodeposition bath by circulating or stirring the bath before the formation of the zinc oxide film, whereby the present process can prevent the generated zinc oxide powder from depositing on the surfaces of the substrate and the zinc oxide film formed by electrodeposition when restarting or starting the formation of a zinc oxide film by the electrodeposition using an electrodeposition apparatus, and hence the formation of a uniform zinc oxide film free from defects.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: October 14, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Publication number: 20030168344
    Abstract: A method and apparatus for plating metal onto a substrate including positioning an anode spacer including a anode surface and a substrate contact surface with the substrate contact surface immediate a deposition surface of a substrate. The apparatus generally includes a plating cell configured to contain a plating solution therein, an anode disposed in the plating solution, and an anode spacer positioned in the plating cell, the anode spacer having an anode surface, and a substrate contact surface positioned immediate a deposition surface of the substrate, the anode spacer configured to communicated the plating solution therethrough. The method generally includes positioning a substrate in a plating cell, positioning an anode spacer immediate a deposition surface of the substrate, and flowing a plating solution through the anode spacer to plate a metal onto the deposition surface.
    Type: Application
    Filed: March 8, 2002
    Publication date: September 11, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Rashid Mavliev
  • Patent number: 6610190
    Abstract: A system for depositing materials on a surface of a wafer or removing materials from the surface of a wafer includes an electrode, a shaping plate, a liquid solution contained between the electrode and the wafer surface, and electrical contact members contacting selected locations on the wafer surface. The shaping plate is supported between the electrode and the wafer surface such that an upper surface of the shaping plate faces the wafer surface. The shaping plate can have a plurality of channels where each puts the wafer surface in a fluid communication with the electrode. The electrical contact members contact the selected locations on the wafer surface through a recessed edge of the shaping plate such that when the wafer is rotated, the selected contact locations move over the shaping plate and are plated under an applied potential. Advantages of the invention include substantially full surface treatment of the wafer.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: August 26, 2003
    Assignee: NuTool, Inc.
    Inventors: Bulent M. Basol, Cyprian Uzoh, Homayoun Talieh
  • Publication number: 20030150739
    Abstract: A method of fabricating deposits of non-volatile substances, including biomacromolecules, in the form of spots and filing on a substrate surface by electrospray, where the deposits are used to determine the interaction of the deposited non-volatile substances to other substances. Also included in this method is the mass fabrication on a single chip of an array of single and multicomponent microsamples.
    Type: Application
    Filed: March 3, 2003
    Publication date: August 14, 2003
    Applicant: New York University
    Inventors: Victor Morozov, Tamara Ya. Morozova
  • Patent number: 6565729
    Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: May 20, 2003
    Assignee: Semitool, Inc.
    Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20020179450
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Application
    Filed: May 31, 2001
    Publication date: December 5, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Patent number: 6461677
    Abstract: A method of fabricating an electrical component includes the steps of providing a metal electrical component and immersing the component in a bath of resist material. A selected area of the component is prepared by an ink-jet process for reception of a conductive plating material. The plating material is applied to the selected area, and the resist material is removed from the component.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: October 8, 2002
    Assignee: Molex Incorporated
    Inventors: William J. Copping, Bretton I. Rickett
  • Publication number: 20020121445
    Abstract: The present invention includes a mask plate design that includes at least one or a plurality of channels portions on a surface of the mask plate, into which electrolyte solution will accumulate when the mask plate surface is disposed on a surface of wafer, and out of which the electrolyte solution will freely flow. There are also at least one or a plurality of polish portions on the mask plate surface that allow for polishing of the wafer when the mask plate surface is disposed on a surface of wafer.
    Type: Application
    Filed: September 20, 2001
    Publication date: September 5, 2002
    Inventors: Bulent M. Basol, Cyprian Uzoh, Jeff A. Bogart
  • Publication number: 20020100695
    Abstract: A method and apparatus for anodizing a component. The component is placed in a container having first and second seal members that seal an annular surface of the component to be anodized. The first and second seal members, the annular surface of the component, and an inner surface of the container form a reaction chamber that holds a reaction medium therein. The reaction medium is supplied to the reaction chamber through a supply passage formed in the container. The reaction medium is drained from the reaction chamber through a drain passage formed in the container.
    Type: Application
    Filed: January 15, 2002
    Publication date: August 1, 2002
    Applicant: UNISIA JECS CORPORATION
    Inventors: Masato Sasaki, Yuzuru Morioka, Sachiko Sugita, Masazumi Ishikawa
  • Patent number: 6413404
    Abstract: Bumps are formed by means of uniform plating in which air can be easily discharged.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: July 2, 2002
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yoshihiro Ihara, Takeo Kanazawa, Tsuyoshi Kobayashi
  • Publication number: 20020079227
    Abstract: The present invention discloses a method for microelectrogravimetrically depositing an electroactive species onto an electrode or a plurality of electrodes. The method comprises dispensing a solution containing the electroactive species from a microdispenser so as to form a hanging drop of the solution. The method further comprises contacting the electrode with the hanging drop of the solution, wherein the electrode is electrically coupled with the microdispenser so as to form an electrochemical cell, and applying a potential to the electrochemical cell. The application of the potential effects deposition of the electroactive species onto the electrode. The method of the invention eliminates the need for immersion of the electrode in a bath, reduces the volume of solution required by a factor of at least 10-100, and avoids uneven depletion of various components of the solution over successive applications.
    Type: Application
    Filed: December 13, 2001
    Publication date: June 27, 2002
    Inventors: David J. Vachon, Jenn-hann Wang
  • Patent number: 6391166
    Abstract: An apparatus for plating a conductive film directly on a substrate with a barrier layer on top includes anode rod (1) placed in tube (109), and anode rings (2), and (3) placed between cylindrical walls (107) and (105), (103) and (101), respectively. Anodes (1), (2), and (3) are powered by power supplies (13), (12), and (11), respectively. Electrolyte (34) is pumped by pump (33) to pass through filter (32) and reach inlets of liquid mass flow controllers (LMFCs) (21), (22), and (23). Then LMFCs (21), (22) and (23) deliver electrolyte at a set flow rate to sub-plating baths containing anodes (3), (2) and (1), respectively. After flowing through the gap between wafer (31) and the top of the cylindrical walls (101), (103), (105), (107) and (109), electrolyte flows back to tank (36) through spaces between cylindrical walls (100) and (101), (103) and (105), and (107) and (109), respectively.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: May 21, 2002
    Assignee: ACM Research, Inc.
    Inventor: Hui Wang
  • Patent number: 6368482
    Abstract: A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: April 9, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, DC (US)
    Inventors: Richard C. Oeftering, Charles Denofrio
  • Publication number: 20020008034
    Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent confirm copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
    Type: Application
    Filed: December 7, 2000
    Publication date: January 24, 2002
    Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20020008036
    Abstract: An apparatus for plating a conductive film directly on a substrate with a barrier layer on top includes anode rod (1) placed in tube (109), and anode rings (2), and (3) placed between cylindrical walls (107) and (105), (103) and (101), respectively. Anodes (1), (2), and (3) are powered by power supplies (13), (12), and (11), respectively. Electrolyte (34) is pumped by pump (33) to pass through filter (32) and reach inlets of liquid mass flow controllers (LMFCs) (21), (22), and (23). Then LMFCs (21), (22) and (23) deliver electrolyte at a set flow rate to sub-plating baths containing anodes (3), (2) and (1), respectively. After flowing through the gap between wafer (31) and the top of the cylindrical walls (101), (103), (105), (107) and (109), electrolyte flows back to tank (36) through spaces between cylindrical walls (100) and (101), (103) and (105), and (107) and (109), respectively.
    Type: Application
    Filed: April 18, 2001
    Publication date: January 24, 2002
    Inventor: Hui Wang
  • Patent number: 6340421
    Abstract: Disclosed is a method for microelectrogravimetrically depositing an electroactive species onto an electrode or a plurality of electrodes comprising dispensing a solution containing the electroactive species from a microdispenser to form a hanging drop of the solution and contacting the electrode with the hanging drop of the solution, wherein the electrode is electrically coupled with the microdispenser to form an electrochemical cell, and applying a potential to the electrochemical cell. The application of the potential effects deposition of the electroactive species onto the electrode. The method of the invention eliminates the need for immersion of the electrode in a bath, reduces the volume of solution required by a factor of at least 10-100, and avoids uneven depletion of various components of the solution over successive applications.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 22, 2002
    Assignee: MiniMed Inc.
    Inventors: David J. Vachon, Jenn-Hann Wang
  • Publication number: 20020000383
    Abstract: The invention discloses a method of electroplating a material onto a semiconductor substrate. A substrate is placed in a cylindrical processing chamber enclosure. A nozzle for spraying a liquid electroplating solution opposes the top surface of the substrate. The electroplating solution flows through the nozzle and outward angularly from the tip of the nozzle, so that the solution flows rotationally on the surface of the substrate.
    Type: Application
    Filed: December 30, 1998
    Publication date: January 3, 2002
    Inventor: KEVIN J. LEE
  • Patent number: 6299751
    Abstract: A plating apparatus and methodology is disclosed that is particularly useful in improving the plating rate, improving the plating of via holes, improving the uniformity of the plating deposition across the surface of the wafer, and minimizing damage to the wafer. With regard to improving the plating rate and the plating of via holes, the plating apparatus and method immerses a wafer in a plating fluid bath and continuously directs plating fluid towards the surface of the wafer. Immersing the wafer in a plating fluid bath reduces the occurrence of trapped gas pockets within via holes which makes it easier to plate them. The continuous directing of plating fluid towards the surface of the wafer increases the ion concentration gradient which is, in turn, increases the plating rate.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: October 9, 2001
    Assignee: Technic Inc.
    Inventors: Robert Kaufman, Gary C. Downes
  • Publication number: 20010013473
    Abstract: The invention relates in general to a method of electroplating substrates where at least a portion of the substrate is coated with a solution containing a flhn forming amine and sufficient acid to produce a pH of less than 6.5. The acid helps to clean the surface of the substrate, and the film forming amine forms a film on the surface of the substrate. Electroplating proceeds with greatly improved speed and efficiency, especially in low current areas.
    Type: Application
    Filed: February 8, 2001
    Publication date: August 16, 2001
    Inventor: James M. Taylor
  • Patent number: 6264809
    Abstract: One electrode is provided in association with the object to be coated, the other electrode. A pre-stretched ion-exchange membrane in a thin tubular form is sandwiched inbetween two nonconductive water permeable screen tubular housings. The assembly contains a supply line that provides a water way for the electrolyte to flow from the top of the device into a lower cap, then to the lower cap reservoir that allows stabilization and disbursement of electrolyte through the rifled housing Inertia developed through this defined pattern creates a swirling action that scrubs the impurities away from the anode, and to the top of the device to be carried out top. The location of the supply line is just inside the inner screen inserted through both the upper housing and lower cap. The tubular electrode is provided to the inside of membrane housing completing the inner portion of the waterway return chamber.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 24, 2001
    Assignee: PTI Advanced Filtration, Inc.
    Inventor: Cheng H. Lee
  • Patent number: 6251250
    Abstract: A novel method and apparatus of wet processing workpieces, such as electroplating semiconductor wafers and the like, that incorporates reciprocating processing fluid agitation to control fluid flow at the workpiece, and where electric fields are involved as in such electroplating, controlling the electric field distribution.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 26, 2001
    Inventor: Arthur Keigler
  • Patent number: 6221230
    Abstract: A method and apparatus for forming a layer of plating on a base material and a method for manufacturing a three dimensional object. The plating apparatus includes a nozzle for delivering a stream of plating fluid and an electric source for applying a voltage between the base material and the nozzle. The nozzle has an outer wall and a stem located at its center. The nozzle delivers plating fluid from the opening of the nozzle in an annular manner to produce a stream that has a substantially uniform flow velocity when the stream hits the base material. In an another embodiment, the nozzle has surrounding conduit for conducting air. The air increases the velocity of a peripheral portion of the stream. To manufacture a three dimensional object, a plating layer is deposited, and the nozzle is moved to form a desired shape while piling the layer.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: April 24, 2001
    Inventors: Hiromitsu Takeuchi, Masahiro Okumiya, Yoshiki Tsunekawa, Yutaka Kawai
  • Patent number: 6176995
    Abstract: The current density with which the process is used is of essential importance for the economy of a method of electrolytically treating materials. Normally only low or medium current densities are used, as the speed of replacement of consumed materials in the direct vicinity of the surface of the material for treatment has a restrictive effect on the magnitude of the current density at which a usable process result can still be achieved. However, a low current density leads to long electrolysis times and to complex treatment installations.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: January 23, 2001
    Assignee: Atotech Deutschland GmbH
    Inventor: Reinhard Schneider
  • Patent number: 6149791
    Abstract: A process and apparatus for the selective electroplating of electrical coct elements, used for coating at least one contact surface of a metal base for the contact elements with an electrolyte, containing a material with a higher conductivity as compared to the base. The electrolyte is applied with a long stretched-out plastic electroplating tip which has a plurality of channel passages through which the electrolyte passes and which are arranged at a right angle to the tip. The plurality of channel passages terminates at and empties into at least one discharge opening which extends along the entire length of the tip. The electroplating tip, when it is in the operating position, is arranged such that the at least one discharge opening is positioned on the bottom and extends horizontally. The electrolyte is supplied to the electroplating tip from above.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: November 21, 2000
    Assignee: Schempp & Decker Praezisionsteile und Oberflaechentechnik GmbH
    Inventors: Klaus Guenter Roesener, Kai Erik Liebich, Hans-Joachim Neese, Uwe Liebig, Johannes Guendel
  • Patent number: 6132587
    Abstract: The non-uniformity of electroplating on wafers is due to the appreciable resistance of the thin seed layer and edge effects. Mathematical analysis of the current distribution during wafer electroplating reveals that the ratio between the resistance of the thin deposited seed layer and the resistance of the electrolyte and the electrochemical reaction determines the uniformity of the electroplated layer. Uniform plating is critical-in-wafer metallization for the subsequent step of chemical mechanical polishing of the wafer. Based on the analysis, methods to improve the uniformity of metal electroplating over the entire wafer include increasing the resistance of the electrolyte, increasing the distance between the wafer and the anode, increasing the thickness of the seed layer, increasing the ionic resistance of a porous separator placed between the wafer and the anode, placement of a rotating distributor in front of the wafer, and establishing contacts at the center of the wafer.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: October 17, 2000
    Inventors: Jacob Jorne, Judith Ann Love
  • Patent number: 6103085
    Abstract: Workpieces, such as semiconductor wafers, are electroplated with improved thickness uniformity by providing a diffuser member intermediate the cathode and anode of a fountain-type electroplating apparatus. The diffuser or member has a pattern of openings specifically designed to prevent channeling and/or selective directing of electrolyte towards the workpiece. In one embodiment, the diffuser member comprises a spiral-shaped pattern of openings originating at the center of the diffuser member and extending to the periphery thereof.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: August 15, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christy Mei-Chu Woo, John A. Iacoponi, Kai Yang
  • Patent number: 6030512
    Abstract: Bumps are formed by means of uniform plating in which air can be easily discharged.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: February 29, 2000
    Assignee: Shinko Electric Industries, Co. Ltd.
    Inventors: Yoshihiro Ihara, Takeo Kanazawa, Tsuyoshi Kobayashi
  • Patent number: 6017438
    Abstract: A method for producing a circuit substrate having a bump contact point, comprising the steps of (a) disposing a positive electrode in a plating solution stored in a storage tank, (b) exposing a conductive circuit formed on an insulating substrate, above the surface of the plating solution, (c) disposing a jet stream opening below the surface of the plating solution, and (d) spouting out the plating solution from the jet stream opening toward the negative electrode for electroplating using said conductive circuit as a negative electrode, to form the bump contact point on the surface of the negative electrode, and a jet stream type plating apparatus used therefor. According to the present invention, mixing of air bubbles in the plating solution can be inhibited, which in turn enables suppression of oxidative decomposition of the brightener components. As a consequence, the bump contact point can have a mushroom shape, and variation in the height of the bump contact points can be minimized.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: January 25, 2000
    Assignee: Nitto Denko Corporation
    Inventors: Yoshinari Takayama, Toshiki Naito, Kazuo Ouchi
  • Patent number: 5865976
    Abstract: A method of making a composite structure including at least a plating film disposed on a substrate having at least a surface portion formed from a metallic base material. The method includes the steps of discharging a composite plating solution containing insoluble particles from a nozzle and impacting the composite plating solution on the surface portion of the substrate at a predetermined flow rate. During at least a portion of the discharging and impacting steps, the surface portion of the substrate is abraded with the insoluble particles in the plating solution discharged from the nozzle. A voltage can be applied between the base material and the nozzle, which are electrically connected by the plating solution, to thereby deposit a plating film on the surface portion of the substrate by electroplating.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: February 2, 1999
    Assignee: Toyoda Gosei Co., Inc.
    Inventors: Hiromitsu Takeuchi, Yoshiki Tsunekawa, Masahiro Okumiya
  • Patent number: 5863408
    Abstract: A method and apparatus for performing high speed chemical treatment of v type cylinder blocks. First the cylinder bores of one bank are treated. Then those of the other bank are treated. This permits a simple but compact treating plant.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: January 26, 1999
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Hirohiko Ikegaya
  • Patent number: 5830334
    Abstract: A nozzle for fast plating with plating solution jetting and sucking functions includes an outer cylindrical member and an inner cylindrical member, a plating solution issuing passage being defined between the outer and inner cylindrical members, and the inner space in the inner cylindrical member constituting a plating solution sucking passage. The inner cylindrical member has a front end flared portion having a forwardly flared surface acting to diffuse the solution. The outer cylindrical member has a front open end defining a gap with respect to the flared surface, the gap constituting a jetting port of the plating solution jetting passage. Plating solution supplied from a supply opening of the plating solution jetting passage is jetted from the jetting port toward a workpiece to be plated, the jetted plating solution is discharged from a rear end discharge opening of the plating solution sucking passage.
    Type: Grant
    Filed: November 7, 1996
    Date of Patent: November 3, 1998
    Inventor: Hideyuki Kobayashi
  • Patent number: 5720866
    Abstract: A method for forming relatively thick composite coatings on a region of the surface of a metallic member includes exposing the surface region to an electrolyte fluid, either by immersion or by spraying the electrolyte against the surface region. A preferred electrolyte fluid is an aqueous solution including an electrolytic agent, a passivating agent and a modifying agent in the form of a solute or a powder suspended in the solution. A voltage signal is applied to induce a current flow of constant magnitude between the metallic member and the electrolyte fluid so that the metallic member interacts with the passivating agent to form a passive oxide layer on the surface region. The voltage signal increases in magnitude until local voltage reaches a breakthrough level across separate highly localized discharge channels along the surface region of the metallic member.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: February 24, 1998
    Assignee: ARA Coating, Inc.
    Inventors: Aleksey Erokhine, Andrey Aleksejevich Voevodin, Robert David Schmertzler
  • Patent number: 5672260
    Abstract: Small, closely spaced deposits of solder materials may be formed with high volumetric accuracy and uniformity of shape by depositing a layer of conductive material over surfaces of a dielectric layer having apertures or recesses (e.g. blind apertures) and conductors and/or pads exposed by those apertures or recesses, masking regions of the conductive material with a further patterned dielectric layer, electroplating solder materials onto regions of the conductive material exposed by the mask, removing the mask and portions of the conductive material by selective etching and reflowing solder away from at least a portion of the surfaces of the apertured dielectric layer. Uniformity of electroplating within blind apertures is enhanced by a combination of fluid jet sparging and cathode agitation. Excess conductor material in the resulting solder deposit can be avoided by replacing conductor material with a constituent component of a solder material in an immersion bath prior to electroplating.
    Type: Grant
    Filed: April 17, 1996
    Date of Patent: September 30, 1997
    Assignee: International Business Machines Corporation
    Inventors: Charles Francis Carey, Kenneth Michael Fallon, Voya Rista Markovich, Douglas Oliver Powell, Gary Paul Vlasak, Richard Stuart Zarr