Nonelectrolytic Coating Is Ceramic, Glass, Or Vitreous Enamel Patents (Class 205/195)
  • Patent number: 8778164
    Abstract: Methods for producing a high temperature oxidation resistant coating on a superalloy component and the coated superalloy component produced thereby are provided. Aluminum or an aluminum alloy is applied to at least one surface of the superalloy component by electroplating in an ionic liquid aluminum plating bath to form a plated component. The plated component is heat treated at a first temperature of about 600° C. to about 650° C. and then further heat treated at a second temperature of about 700° C. to about 1050° C. for about 0.50 hours to about two hours or at a second temperature of about 750° C. to about 900° C. for about 12 to about 20 hours.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 15, 2014
    Assignee: Honeywell International Inc.
    Inventors: James Piascik, Derek Raybould, George Reimer
  • Patent number: 8197659
    Abstract: A method for manufacturing a multilayer printed circuit board including providing a core substrate having a penetrating-hole, forming an electroless plated film on a surface of the substrate and an inner wall surface of the penetrating-hole, electrolytically plating the substrate while moving with respect to the surface of the substrate an insulating member in contact with the surface of the substrate such that an electrolytic plated film is formed on the electroless plated film, an opening space inside the penetrating-hole is filled with an electrolytic material, and a through-hole conductor structure is formed in the penetrating-hole, forming an etching resist having an opening pattern on the electrolytic plated film, and removing an exposed pattern of the electrolytic plated film exposed by the opening pattern and a pattern of the electroless plated film under the exposed pattern such that a conductor circuit is formed on the surface of the substrate.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 12, 2012
    Assignee: IBIDEN Co., Ltd.
    Inventors: Toru Nakai, Satoru Kawai, Hiroshi Niwa, Yoshiyuki Iwata
  • Patent number: 7645371
    Abstract: A process of ceramic coatings on silver or silver-plated articles is developed in order to prevent surface tarnish, which is employed as ornaments on bags, garments or accessories such as necklaces, earrings, etc. The process comprises the steps of: forming a beryllium film on the surface of the article by fixing a stainless steel plate to an anode, fixing the silver or silver-plated article to a cathode and plating the surface of the silver or silver-plated article with beryllium in an electrolyte containing beryllium sulfate (BeSO4.4H2O) by an electroplating method; buffing the article coated with the beryllium film; washing and drying the buffed article using a surfactant; forming the resultant ceramic coating by dipping the dried article in ceramic coating solution which includes 20 to 80 cc of glass water No. 1 (liquid sodium silicate), 5 to 60 g of sodium metasilicate, 5 to 30 g of sodium tungstate, 5 to 10 g of molybdic acid in 1 liter of water; and drying the wetted article.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: January 12, 2010
    Assignee: HANA Co. Ltd.
    Inventor: Bok Jin Sa
  • Publication number: 20090087572
    Abstract: A method of forming a gas turbine part includes forming a bonding underlayer on a superalloy metal substrate, the underlayer including an intermetallic compound of aluminum, nickel, and platinum, and forming a ceramic outer layer on the alumina film formed on the bonding underlayer. The bonding underlayer essentially comprises an Ni—Pt—Al ternary system constituted by an aluminum-enriched ?-NiPt type structure, in particular an Ni—Pt—Al ternary system having a composition NizPtyAlx in which z, y, and x are such that 0.05?z?0.40, 0.30?y?0.60, and 0.15?x?0.40.
    Type: Application
    Filed: October 12, 2006
    Publication date: April 2, 2009
    Applicant: SNECMA MOTEURS
    Inventors: Bertrand Saint-Ramond, Manuel Silva, John Nicholls, Maxime Carlin
  • Patent number: 7048841
    Abstract: Contact assemblies, electroplating machines with contact assemblies, and methods for making contact assemblies that are used in the fabrication of microelectronic workpieces. The contact assemblies can be wet-contact assemblies or dry-contact assemblies. A contact assembly for use in an electroplating system can comprise a support member and a contact system coupled to the support member. The support member, for example, can be a ring or another structure that has an inner wall defining an opening configured to allow the workpiece to move through the support member along an access path. In one embodiment, the support member is a conductive ring having a plurality of posts depending from the ring that are spaced apart from one another by gaps. The contact system can be coupled to the posts of the support member. The contact system can have a plurality of contact members projecting inwardly into the opening relative to the support member and transversely with respect to the access path.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: May 23, 2006
    Assignee: Semitool, Inc.
    Inventors: Robert W. Batz, Jr., John M. Pedersen, John L. Klocke, LinLin Chen
  • Patent number: 6565931
    Abstract: The present invention provides for an etch and mar resistant low VOC clear coating composition most suitable for use as a top clear coat in multi-layered OEM or refinish automotive coatings. The coating composition includes isocyanate, carbonate and melamine components. The isocyanate component includes an aliphatic polyisocyanate. The composition may be formulated as a two-pack or one-pack coating composition, wherein the isocyanate functionalities are blocked with a blocker such as a mono-alcohol.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 20, 2003
    Assignee: Rolls-Royce plc
    Inventors: David S Rickerby, Richard AB McCall
  • Patent number: 6254756
    Abstract: A curved component such as a turbine airfoil, shroud, or combustor centerbody is prepared with a platinum or a platinum-aluminide protective coating over only a portion of the surface thereof. The coating may serve as an environmental coating, or as a bond coat of a thermal barrier coating system. The partial coverage is achieved by depositing platinum only over a portion of the surface of the component, typically including the concave portion in the case of an airfoil, optionally depositing an aluminum layer, and optionally interdiffusing the platinum and aluminum layers.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: July 3, 2001
    Assignee: General Electric Company
    Inventors: Antonio F. Maricocchi, Roger D. Wustman, Jonathan P. Clarke, Thomas E. Mantkowski, David G. W. Fargher, Jeffrey A. Conner
  • Patent number: 5833829
    Abstract: A method of producing a coating on a substrate by electrolytically co-depositing a metal matrix M.sub.1 and particles of CrAlM.sub.2, where M.sub.1 is Ni, Co or Fe or two or all of these elements and M.sub.2 is Y, Si, Ti, Hf, Ga, Nb, Mn, Pt, a rare earth element or two or more of these elements. The co-deposition is carried out at a current density of less than 5mA per square centimeter. Preferably, the co-deposition forms a layer less than 50 microns thick, and occurs at a bath loading of less than 40 grams per liter of the particles. In a preferred embodiment, the particle size distribution in the plating bath is 25 percent between 15 and 12 microns, 45 percent between 12 and 10 microns and 30 percent less than 10 microns. The method is particularly useful for coating a gas turbine part.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: November 10, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: John Foster
  • Patent number: 5824205
    Abstract: A method producing a coating on a substrate by aluminizing, chromizing or siliconizing the substrate, and depositing on the coated substrate by electrolytic or electroless deposition a metal matrix M.sub.1 from a bath containing particles of CrAlM.sub.2 to co-deposit the particles with the matrix as M.sub.1 CrAlM.sub.2, where M.sub.1 is Ni, Co or Fe or two or all of these elements and M.sub.2 is Y, Si, Ti, Hf, Ga, Nb, Mn, Pt, a rare earth element or two or more of these elements. Preferably, the method includes platinum aluminizing of the substrate. Heat treatments may be incorporated before and after deposition of the M.sub.1 CrAlM.sub.2. The deposition of the M.sub.1 CrAlM.sub.2 is carried out at a current density of less than 5 mA per square centimeter. Preferably, the deposition forms a M.sub.1 CrAlM.sub.2 layer less than 50 microns thick, and occurs at a bath loading of less than 40 grams per liter of the particles.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: October 20, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: John Foster
  • Patent number: 5683567
    Abstract: The present invention relates to an electrolytic electrode comprising a core material made of a valve metal, a dense electrically conductive tin oxide layer formed on the core material, an .alpha.-lead dioxide layer formed on the tin oxide layer, and a .beta.-lead dioxide layer formed on the .alpha.-lead dioxide layer. The present invention also relates to a method for preparing the electrolytic electrode.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: November 4, 1997
    Assignee: Permelec Electrode Ltd.
    Inventors: Takayuki Shimamune, Yasuo Nakajima
  • Patent number: 5681444
    Abstract: Electrical feedthroughs in printed circuit board support substrates for use in making double sided ceramic multilayer printed circuit boards are made by insulating the feedthrough openings with a first layer of nickel oxide and one or more layers of glass, and then filling the remainder of the feedthroughs with a conductive metal via fill ink. After firing, the resultant structure provides insulated electrical feedthroughs through the support substrate.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: October 28, 1997
    Assignee: David Sarnoff Research Center, Inc.
    Inventors: Thomas Peter Azzaro, Barry Jay Thaler, Edward James Conlon, Ananda Hosakere Kumar
  • Patent number: 5667663
    Abstract: A ceramic thermal barrier coating layer for a superalloy article is caused to adhere to the superalloy article by applying platinum to the superalloy article and heat treating at a temperature of 1100.degree. C. to 1200.degree. C. for one hour. This causes aluminum to diffuse from the superalloy article into the platinum to form a platinum enriched outer layer which generally includes a platinum enriched gamma phase and a platinum enriched gamma prime phase. An alumina layer is formed between the platinum enriched outer layer and a ceramic coating. The platinum enriched gamma phase and the platinum enriched gamma prime phase in the outer layer reduces the migration of transition metal elements to the ceramic coating to enable a very pure alumina layer to be formed.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: September 16, 1997
    Assignees: Chromalloy United Kingdom Limited, Rolls-Royce plc
    Inventors: David S. Rickerby, Stanley R. Bell, Rodney G. Wing
  • Patent number: 5188030
    Abstract: A roller for a printing machine is formed having oleophilic metal cells and hydrophilic ceramic cross pieces. The ceramic material is applied to the outer surface and is then ground away to again expose the metal. An upper portion of the metal is then removed to leave the elevated hydrophilic ceramic cross pieces.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: February 23, 1993
    Assignee: Albert-Frankenthal Aktiengesellschaft
    Inventors: Helmut Puschnerat, Walter Reutter, Walter Unverzagt
  • Patent number: 5124006
    Abstract: A method for coating a heat engine part, particularly a turbo-machine part made of a superalloy and adapted for use in aeronautical applications, comprises electrophoretically depositing a metallic structure of cellular form with uniformly disposed cells of predetermined size. The deposition is performed using an electrophoresis bath containing methanol, aluminum chloride as an electrolyte, and a powder containing Cr, Al, Y, Ta and Ni. The cellular metallic structure is consolidated by a sintering treatment, which may be reactive, or metallization, preferably in the vapor phase, and the coating is completed by applying a ceramic material by plasma spraying.
    Type: Grant
    Filed: September 17, 1990
    Date of Patent: June 23, 1992
    Assignees: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A.", Association pour la Recherche et le Developpement des Methodes et Processus Industriels A.R.M.I.N.E.S.
    Inventors: Dominque M. M. Fayeulle, Jean-Paul Henon, Rene J. Morbioli
  • Patent number: 5078837
    Abstract: Engine components of steel or superalloy subject to wear from alternating friction at medium temperatures in the region of 700.degree. C. are provided with a protective wear-resistant coating bya) electrophoretic deposition of a metal-ceramic structure comprising a mixture of from 85% to 50% of metallic powder and from 15% to 59% of ceramic powder, the metallic powder being a cobalt-based superalloy of type KC 25 NW or of M Cr Al Y wherein M represents at least one metal chosen from the group consisting of Ni, Co and Fe with the possible addition of Ta, and the ceramic powder being an oxide such as Al.sub.2 O.sub.3 or Cr.sub.2 O.sub.3, a carbide such as SiC or Cr.sub.3 C.sub.2, a nitride such as BN or TiN, or a boride such as TiB.sub.2 ;b) electrolytic pre-nickeling said deposit in an electrolysis bath at a pH between 6 and 8, andc) electrolytic nickeling said pre-nickeled deposit in an acid bath of sulphamate type.
    Type: Grant
    Filed: March 22, 1991
    Date of Patent: January 7, 1992
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A."
    Inventors: Martine Descamp, Yves C. Louis, Michel M. Ruimi