Nonelectrolytic Coating Is Predominantly Nonmetal Patents (Class 205/194)
  • Patent number: 10435806
    Abstract: Methods for treating a substrate are disclosed. The substrate is deoxidized and then immersed in an electrodepositable pretreatment composition comprising a lanthanide series element and/or a Group IIIB metal, an oxidizing agent, and a metal-complexing agent to deposit a coating from the electrodepositable pretreatment composition onto a surface of the substrate. Optionally, the electrodepositable pretreatment composition may comprise a surfactant. A coating from a spontaneously depositable pretreatment composition comprising a Group IIIB and/or Group IVB metal may be deposited on the substrate surface prior to electrodepositing a coating from the electrodepositable pretreatment composition. Following electrodeposition of the electrodepositable pretreatment composition, the substrate optionally may be contacted with a sealing composition comprising phosphate and a Group IIIB and/or IVB metal. Substrates treated according to the methods also are disclosed.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 8, 2019
    Assignee: PRC-DeSoto International, Inc.
    Inventors: Gordon L. Post, Michael A. Mayo, Edward F. Rakiewicz, Michael J. Pawlik
  • Publication number: 20150077901
    Abstract: A wet electrolytic capacitor that contains a casing within which is positioned an anode formed from an anodically oxidized sintered porous body and a fluidic working electrolyte is provided. The casing contains a composite coating disposed on a surface of a metal substrate. The composite coating includes a noble metal layer that overlies the metal substrate and a conductive polymer layer that overlies the noble metal layer.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: AVX Corporation
    Inventor: Jan Petrzilek
  • Publication number: 20150070691
    Abstract: An invention for making productive uses of normally undesirable whiskers is provided. Embodiments of the invention include a variety of apparatuses and methods associated with forming and using whiskers as well as forming whisker compounds is disclosed. For example, whisker detection modules can be created which provide a whisker surveillance capability. The whisker detection modules can further be coupled with a whisker response system such as an alarm or insulating material dispersing system. Another aspect of the invention is providing a variety of environments or microenvironments with regard to a whisker forming structure to affect whisker creation such as maximizing whisker formation. Another example includes provision of a variety of embodiments for manufacturing compounds of whiskers of various metal and metal alloys, including structures and methods is provided. Whisker compounds produced using various embodiments of the invention can be used for various applications.
    Type: Application
    Filed: July 9, 2014
    Publication date: March 12, 2015
    Inventors: Nishkamraj U. Deshpande, James E. Schwabe, H. Fred Barsun, Nancey J. Maegerlein, Norris J. Caldwell, William W. Fultz, Lloyd W. Zilch, Samuel G. Stuart
  • Patent number: 8957326
    Abstract: A composite dual blackened copper foil includes a copper foil and two blackened layers. The copper foil has a shiny side and a matte side. The blackened layers are formed on the shiny and matte sides respectively. The blackened layers are formed alloy by electroplating in a plating bath consisting essentially of copper, cobalt, nickel, manganese, magnesium and sodium ions. A rough layer is selectively formed between the blackened layer and the shiny side as well as the matte side. Both side of the copper foil is spotless, powder free, and good in etching quality. The copper foil is effective at blocking electromagnetic wave, near infrared, undesired light and the like. The copper foil exhibits strong light absorption and is applicable to direct gas laser drilling. A method of manufacturing the composite dual blackened copper foil is also provided.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 17, 2015
    Assignee: Nan Ya Plastics Corporation
    Inventors: Ming-Jen Tzou, Kuo-Chao Chen, Pi-Yaun Tsao
  • Publication number: 20130202813
    Abstract: The present invention relates to a process of inducing grapheme by low-frequency electromagnetic wave, which includes the following steps: (A) providing a substrate; (B) optionally forming a metal layer on the substrate; (C) providing a carbon source to form a carbon-containing layer locating on the metal layer; and (D) performing a treatment of the carbon-containing layer formed on the metal layer by using low-frequency electromagnetic wave, wherein the low-frequency electromagnetic wave is provided by microwave device. The electromagnetic energy from the microwave field device is converted to thermal energy by microwave absorber (for example, SiC) as a media to directly heat the carbon-containing layer, so that carbon atoms get kinetic energy to form grapheme layers on the surface of the metal layer and between the metal layer and the substrate.
    Type: Application
    Filed: December 3, 2012
    Publication date: August 8, 2013
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventor: National Tsing Hua University
  • Patent number: 8382970
    Abstract: The presently disclosed embodiments are directed to an improved metallization process for making fuser members which avoids the extra steps of metal nanoparticle seeding or special substrate treatment. In embodiments, a metallized substrate, formed by dip-coating or spraying with a metal nanoparticle dispersion which is subsequently thermally annealed, is used for the complete fabrication of the fuser member.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: February 26, 2013
    Assignee: Xerox Corporation
    Inventors: Yu Qi, Qi Zhang, Yuning Li, Nan-Xing Hu
  • Publication number: 20120168317
    Abstract: Methods for coating threaded metallic pieces which include using a threaded metallic piece as a cathode of an electrolytic cell in a bath which includes Zn ion and whereby electro-deposition of a first layer containing Zn takes place followed by deposition of a second layer of a polyester-based paint are provided. Such processes are especially useful for components of the automobile industry, such as wheel screws.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 5, 2012
    Inventors: Luigi FONTANA, Carlo GRASSI
  • Publication number: 20120164375
    Abstract: A method for fabricating composite carbon nanotube structure is presented. A carbon nanotube array is provided. A first carbon nanotube structure is drawn from the carbon nanotube array. The first carbon nanotube structure is located on the substrate. A second carbon nanotube structure is grown on a surface of the first carbon nanotube structure to form a composite carbon nanotube structure. A composite carbon nanotube structure is also presented.
    Type: Application
    Filed: May 23, 2011
    Publication date: June 28, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20120156519
    Abstract: Methods for producing a high temperature oxidation resistant coating on a superalloy component and the coated superalloy component produced thereby are provided. Aluminum or an aluminum alloy is applied to at least one surface of the superalloy component by electroplating in an ionic liquid aluminum plating bath to form a plated component. The plated component is heat treated at a first temperature of about 600° C. to about 650° C. and then further heat treated at a second temperature of about 700° C. to about 1050° C. for about 0.50 hours to about two hours or at a second temperature of about 750° C. to about 900° C. for about 12 to about 20 hours.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: James Piascik, Derek Raybould, George Reimer
  • Publication number: 20120108436
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Application
    Filed: July 7, 2010
    Publication date: May 3, 2012
    Applicants: TOYO KOHAN CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Publication number: 20120097545
    Abstract: The object of the present invention is to provide a silver plated and/or a silver alloy plated article with high productivity, high reflectance in the visible light range, and excellent sulfidizing resistance. The present invention provides a silver electroplated and/or silver alloy electroplated article having an oxidation layer on its surface, wherein a silver plating layer and/or silver alloy plating layer is formed on a substrate by silver electroplating and/or silver alloy electroplating, and then subjected to oxidation treatment to form an oxidation layer on the surface thereof. The thickness of the oxidation layer formed on the surface of the plating layer is 0.05 ?m or more.
    Type: Application
    Filed: May 18, 2011
    Publication date: April 26, 2012
    Inventors: Toru Imori, Takashi Kinase, Ryusuke Oka
  • Publication number: 20110165435
    Abstract: A method for manufacturing composite bodies is provided by applying a firmly adhering layer to substrates composed of plastic or metal, particularly stainless steel, brass, aluminum, or zinc, it is provided that a layer composed of carbon is deposited on the substrate by means of chemical vapor deposition and a hard material layer is deposited on the carbon layer by means of physical vapor deposition.
    Type: Application
    Filed: March 8, 2011
    Publication date: July 7, 2011
    Inventor: Axel ROST
  • Publication number: 20110064645
    Abstract: The present invention provides a method for producing carbon nanotubes comprising (a) providing a substrate; (b) coating a catalyst layer on said substrate; (e) heating the substrate from step (b); (d) continuously supplying a carbon source to grow carbon nanotubes; (e) interrupting the supplement of the carbon source and supplying an oxidizing gas; and (f) resupplying the carbon source to make the carbon nanotubes obtained from step (d) to re-grow at a higher growth rate. The present invention also provides carbon nanotubes fabricated by the above-mentioned method. The carbon nanotubes have extremely excellent field emission properties.
    Type: Application
    Filed: December 11, 2009
    Publication date: March 17, 2011
    Applicant: National Cheng Kung University
    Inventors: Jyh-Ming TING, Wen-Chen Lin
  • Publication number: 20110020603
    Abstract: Disclosed is a capacitor which has a high capacitance and a low equivalent series resistance. The capacitor includes a conductive base material composed of a plating film having a specific surface area of 100 mm2/mm3 or more, a dielectric film on a surface of the conductive base material, and an opposed conductor formed so as to be opposed to the conductive base material with the dielectric film interposed therebetween. The plating film constituting the conductive base material is formed by electrolytic plating or electroless plating, and may have a porous form, wire-like form or broccoli-like form.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 27, 2011
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Tatsuo KUNISHI, Junichi Saito, Daisuke Megumi, Yoshinori Ueda, Yasuaki Kainuma, Mikiya Kobayashi, Shinji Otani
  • Publication number: 20100089761
    Abstract: There is provided a metallic glass component with its surface layer having both durability of a film and chromatic color properties, and a method for forming the surface layer. Surface active treatment is performed wherein the surface of the metallic glass component is reacted with a mixed aqueous solution of nitric acid and hydrofluoric acid to remove an oxide film and to provide an anchor bond shape on the surface of a metallic glass component, and electroplating or electroless plating is then performed, to form a plating film on the surface of the metallic glass component. It is thereby possible to form a surface layer of a metallic glass which has both durability and a chromatic color.
    Type: Application
    Filed: March 13, 2007
    Publication date: April 15, 2010
    Applicants: TOHOKU UNIVERSITY, EYETEC CO., LTD., NGK INSULATORS, LTD., MAKABE R&D CO., LTD.
    Inventors: Xin Min Wang, Naokuni Muramatsu, Junsuke Kiuchi, Hiroshi Suzuki, Tatsue Arakawa, Hisamichi Kimura, Akihisa Inoue, Eiichi Makabe
  • Publication number: 20100028601
    Abstract: A magnesium alloy housing includes a magnesium alloy base, a chemical plating layer, a connecting layer, a hair line layer, and a transparent protecting layer. The chemical plating layer, the connecting layer, the hair line layer, and the transparent protecting layer are formed on the magnesium alloy base in that order.
    Type: Application
    Filed: December 18, 2008
    Publication date: February 4, 2010
    Applicants: FU ZHUN PRECISION INDUSTRY (SHEN ZHEN) CO., LTD., FOXCONN TECHNOLOGY CO., LTD.
    Inventors: YAN-SHUANG LV, HUI XIA
  • Publication number: 20090309481
    Abstract: The present invention relates to methods for fabricating a cathode emitter and a zinc oxide anode for a field emission device to improve the adhesion between emitters and a substrate and enhance the luminous efficiency of a zinc oxide thin film so that the disclosed methods can be applied in displays and lamps. In comparison to a conventional method for fabricating a field emission device, the method according to the present invention can reduce the cost and time for manufacture and is suitable for fabricating big-sized products. In addition, the present invention further discloses a field emission device comprising a zinc oxide/nano carbon material cathode, a zinc oxide anode and a spacer.
    Type: Application
    Filed: February 18, 2009
    Publication date: December 17, 2009
    Applicant: National Defense University
    Inventors: Yu-Hsien CHOU, Yuh SUNG, Ming-Der GER, Yih-Ming LIU, Chun-Wei KUO, Jun-Yu YEH, Yun-Chih FAN
  • Publication number: 20090039055
    Abstract: A method for making an aligned carbon nanotube includes the steps of a) applying a layer of a ferrosilicon alloy film onto a substrate, b) etching the layer of the ferrosilicon film to form a plurality of fine ferrosilicon alloy particles that are distributed properly on the substrate, and c) placing the substrate of step (b) into a microwave plasma enhanced chemical vapor deposition system, and supplying a mixture of a carbon-containing reaction gas and a balance gas at a predetermined flow ratio so as to grow carbon nanotubes on the fine ferrosilicon alloy particles, wherein said ferrosilicon alloy of step (a) comprises silicon ranging from 15 wt % to 25 wt %; and step (c) is conducted at a temperature ranging from 300 to 380° C.
    Type: Application
    Filed: September 15, 2008
    Publication date: February 12, 2009
    Applicant: National Cheng Kung University
    Inventors: Jyh-Ming Ting, Kun-Hou Liao
  • Publication number: 20080289968
    Abstract: A method of coating a substrate includes the steps of applying an electrocoat to the substrate, applying a powder primer onto the electrocoat, and then applying a topcoat onto the powder primer. The topcoat typically includes a powder basecoat and a clearcoat. The powder primer is applied to the electrocoat without first curing the electrocoat before application of the powder primer. The powder basecoat is applied to the powder primer without first curing the powder primer before application of the powder basecoat. The clearcoat is applied over the powder basecoat after which the electrocoat, the powder primer, the powder basecoat, and the clearcoat are simultaneously cured in an oven.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 27, 2008
    Applicant: BASF CORPORATION
    Inventors: GREGORY G. MENOVCIK, Cynthia A. Stants, Timothy S. December
  • Publication number: 20080272299
    Abstract: A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate (10 & 12 in FIG. 1(a)), depositing a carbon dot (14 in FIG. 1(b)) on the catalyst metal film, etching away the catalyst metal film (FIG. 1(c)) not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film (FIG. 1(d)), and growing a carbon nanotube probe tip on the catalyst film (16 in FIG. 1(e)). The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.
    Type: Application
    Filed: October 10, 2006
    Publication date: November 6, 2008
    Inventors: Sungho Jin, Li-Han Chen, I-Chen Chen
  • Publication number: 20080142368
    Abstract: A tubular resistor assembly for use in electrical circuits for controlling automotive accessories, including a tubular aluminum or other metal substrate having watertight walls and open ends for connection to a fluid-carrying system, a resistor of a predetermined magnitude disposed on the tubular metal substrate. A control circuit, incorporating the resistor, controls the operation of one or more automotive accessory. The assembly may be used to intentionally heat a fluid passing through the tubular substrate, the fluid may be used to carry excess heat away from the resistor, or both. Multiple resistive elements may be included for multiple levels of control of such accessories as headlights, fan assemblies, and the like.
    Type: Application
    Filed: October 29, 2007
    Publication date: June 19, 2008
    Applicant: INTERNATIONAL RESISTIVE COMPANY
    Inventors: H. Marion Warren, Wilson R. Hayworth, M. Shane Hawthorne
  • Patent number: 7204925
    Abstract: A structure and a method of preventing electrolytic corrosion for a magnesium alloy member (20), the structure wherein a first coated layer (11) formed by electro deposition and a second coated layer (12) formed by distributing PTFE particles on the first coated layer (11) are covered on the surface of a tightening member (1) at least on a surface coming into contact with the magnesium alloy member (20), whereby, the electrolytic corrosion of the magnesium alloy member can be prevented at a low cost by insulating a tightening member such as a steel bolt and a washer from the magnesium alloy member, and an adhesiveness therebetween can be sufficiently assured.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 17, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sadaharu Matsumura, Tsuyoshi Kawabe, Tetsuya Saito, Katsumi Sakamoto, Ryosuke Kamegamori
  • Patent number: 7048841
    Abstract: Contact assemblies, electroplating machines with contact assemblies, and methods for making contact assemblies that are used in the fabrication of microelectronic workpieces. The contact assemblies can be wet-contact assemblies or dry-contact assemblies. A contact assembly for use in an electroplating system can comprise a support member and a contact system coupled to the support member. The support member, for example, can be a ring or another structure that has an inner wall defining an opening configured to allow the workpiece to move through the support member along an access path. In one embodiment, the support member is a conductive ring having a plurality of posts depending from the ring that are spaced apart from one another by gaps. The contact system can be coupled to the posts of the support member. The contact system can have a plurality of contact members projecting inwardly into the opening relative to the support member and transversely with respect to the access path.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: May 23, 2006
    Assignee: Semitool, Inc.
    Inventors: Robert W. Batz, Jr., John M. Pedersen, John L. Klocke, LinLin Chen
  • Patent number: 6878261
    Abstract: A surface treatment method for increasing adhesion of a surface of copper foil to an insulating epoxy-impregnated substrate used in printed circuit boards is provided. The method includes nodularizing a surface of an electrolytic copper foil, surface-treating the surface of the nodularized electrolytic copper foil by Zn—As alloy electrodeposition to form a Zn—As composite layer thereon, and coating the surface of the surface-treated electrolytic copper foil with a silane coupling agent mixture, whose compounding ratio of 3-aminopropyltriethoxysilane with respect to vinyltriethoxysilane is between 6:4 and 9:1. This method is very effective to prevent discoloration of copper foil caused by oxidation and the like.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: April 12, 2005
    Assignee: LG Cable Ltd.
    Inventors: Sang-Kyum Kim, Chang-Hee Choi, Byoung-Un Kang
  • Patent number: 6755956
    Abstract: A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: June 29, 2004
    Assignee: UT-Battelle, LLC
    Inventors: James Weifu Lee, Douglas H. Lowndes, Vladimir I. Merkulov, Gyula Eres, Yayi Wei, Elias Greenbaum, Ida Lee
  • Patent number: 6632341
    Abstract: Described is a process for producing a self-supporting metal foil (40), in particular copper foil, which by virtue of its constitution has a low shearing strength and which can be structured in a sharp-edged configuration. In this case a base layer of the metal foil (40) is galvanically deposited on a roller cathode (22). A cauliflower structure (60) comprising the metal is deposited in firmly adhering relationship on the metal base layer (58) by means of an additional anode (32) provided between the roller cathode (22) and the anode cage (24). The metal foil (40) comprising the metal base layer (58) and the cauliflower structure (60) is detached from the roller cathode (22), rinsed and dried. The dried foil (40) comprising the metal base layer (58) provided with the cauliflower structure (60) is moved through a black oxide bath (46). There then follows a rinsing operation and a drying operation.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: October 14, 2003
    Assignee: Bolta-Werke GmbH
    Inventors: Axel Schäfer, Oswald Beetz, Jürgen Hackeŕt
  • Patent number: 6521114
    Abstract: From the time that they are immersed into a marine environment, bronze propellers are prone to attack by marine organisms, such as barnacles, coral and algae, which attach themselves to the bronze metallic surface, creating lumps on the propeller, which adversely affect its balance and cause impedance and vibration of the propeller and its boat in the water. Anti-fouling paints are either too toxic for the marine environment or lack smoothness on the surface. These problems have been overcome by polishing the propeller to prepare it for electroplating, cleansing to remove dirt and grease, electroplating with copper, followed by spraying with a standard solution (5%) of sodium hypochlorite and sodium chloride and allowing sufficient time for a reaction of the hypochlorite solution with the copper to form a firmly adhering conversion coating of basic cupric chloride. The coating is blue-green in color.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: February 18, 2003
    Assignee: Propeller Antifouling Pty Ltd.
    Inventor: Ronald Kempin
  • Patent number: 6419811
    Abstract: Disclosed is a process of treating the surface of copper foil without using harmful elements such as arsenic, selenium and tellurium unlike in the prior art. It is possible to, in an easy way, obtain a uniform rough condition and low roughness and produce a high peel strength to such resin base materials as polyimide resin which is weak in peel strength. The process comprises a roughening treatment involving a cathodic electrolysis of at least one side of copper foil near or above the limiting current density in an electrolytic bath containing titanium ions and tungsten ions and prepared by adding sulfuric acid and copper sulfate so as to have copper protrusions deposited and then coating the depositions with copper or copper alloy in a cathodic electrolysis, followed by giving to the surface of the above-mentioned copper or the copper alloy at least one rust-proofing treatment.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: July 16, 2002
    Assignee: Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Hisanori Manabe, Masasto Takami, Masaru Hirose
  • Publication number: 20020090506
    Abstract: The invention relates to a plastic body with a microporous, waterproof and gas-permeable membrane for electronic housings. The plastic body has a metalized surface. Consequently, the plastic body and the housing act as a shield against the entering and leaving of electromagnetic waves. The metalized surface is preferably formed by a layer of electrically conductive material. This layer is applied to the surface of the plastic body by electroplating. At the same time, there is a high gas permeability of the membrane for venting of the electronic housing. The invention also relates to a method of producing a plastic body of this kind.
    Type: Application
    Filed: October 11, 2001
    Publication date: July 11, 2002
    Inventors: Claudia Protzner, Robert Schwarz
  • Patent number: 6355366
    Abstract: A process is provided for coating a workpiece with a lubricant based on molybdenum disulfide. In the process the workpiece is exposed to a galvanic chromium plating bath prior to coating, so that a hard chromium plating with a hardness of at least 600 HV forms with a beaded or columnar structured surface. This structured surface is then filled and smoothed by the lubricant based on molybdenum disulfide.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: March 12, 2002
    Assignee: Duralloy AG
    Inventor: Marco Santini
  • Publication number: 20010045363
    Abstract: A electrolyte for use in electrolytic platinum plating that results in reduced Cl, S, or P contaminant production. The bath comprises 0.01 to 320 g/lit of platinum in the form of the platinum salt dinitrodiammine platinum, [Pt(NH3)2(NO2)2] or variants thereof and 0.1 to 240 g/lit of alkali metal carbonate M2CO3 or bicarbonate MHCO3 where M is selected from a group comprising lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). A method of improving oxidation resistance of a platinum modified aluminide diffusion coating on a substrate, comprises electroplating the substrate using this electrolyte and then aluminizing the electroplated substrate at an elevated temperature to grow a platinum modified aluminide diffusion coating.
    Type: Application
    Filed: June 29, 2001
    Publication date: November 29, 2001
    Applicant: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Derek Raybould, Alex Kozlov
  • Publication number: 20010025797
    Abstract: Nitride layer formation includes a method wherein a material is electrodeposited on a substrate and converted, at least in part, to a layer comprising nitrogen and the electrodeposited material. The electrodepositing may occur substantially selective on a conductive portion of the substrate. Also, the converting may comprise exposing the electrodeposited material to a nitrogen-comprising plasma. Chromium nitride and chromium oxynitride are examples of nitrogen-comprising materials. Copper or gold wiring of an integrated circuit are examples of a substrate. The processing temperature during the electrodepositing and the converting may be selected not to exceed 500° C. The thickness and composition of the nitride layer may be effective to limit diffusion of the wiring through the nitride layer. A diffusion barrier forming method may include forming a patterned layer of integrated circuit copper wiring over a substrate.
    Type: Application
    Filed: June 4, 2001
    Publication date: October 4, 2001
    Inventor: Rita J. Klein
  • Patent number: 6280597
    Abstract: The known flourinated layer has usually a thickness of from 1000 to 3000 angstroms. After the forced oxidation of metal, the forcibly oxidized surface is flourinated. As a result of the preceding forcing oxidation, a 1 &mgr;m or more thick fluorinated layer is formed on the surface of the metal.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: August 28, 2001
    Assignee: Showa Denko K.K.
    Inventors: Kunio Kashiwada, Takanori Kodama, Hiroyasu Taguchi, Satoshi Hirano
  • Patent number: 6254979
    Abstract: A low friction, low contact resistance coating for electrical terminal members, especially members made of copper base alloys and low carbon steel alloys and plastics, is formed of a coarse electroplate of tin or silver characterized by grains having an average dimension in the range of about 0.5 to 10 micrometers where such grains carry very small particles of polytetrafluoroethylene or the like having average diameters in the range up to about 0.30 micrometers.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: July 3, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: George Albert Drew, Mark S. Ricketts, Bryan A. Gillispie, Yang-Tse Cheng, Robert A. Suchanek
  • Patent number: 6174426
    Abstract: A method is provided for enhancing the adhesion of organic polymer coatings to electrolytically passivated (CDC) tin-plated steel strip. The method includes applying a solution comprising 0.1 to 7 percent of an adhesion promoter to the electrolytically tin-plated strip during the processing of the strip on an electrolytic tin-plating line. The adhesion promoter may be at least one selected from the group consisting of: where n is within a range of from 4 to 99; (b) C16H33+N(CH3) 3 M where M is member of the halogen group; and (c) Rn—Si—(X)4−n where R is a non-hydrolyzable organic radical selected from the group consisting of glycol, epoxy, amine, diamine or mercapto groups, and mixtures thereof, containing from 3 to 10 carbon atoms; the number n is an integer from 1 to 3; and X is a hydrolyzable group selected from the group consisting of Cl—, OCH3, OCH2CH5, OOCCH3, OCH2OCH3, amine, diamine, triamine, acyloxy and alkoxysilanes, and mixtures thereof.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: January 16, 2001
    Assignee: USX Corporation
    Inventor: Gabriel Jeminiwa Osanaiye
  • Patent number: 6036834
    Abstract: A method and device for the electrolytic formation of a deposit on a group of electrodes of an electrolysis support. The support has a plurality of electrodes. Electric charges are selectively deposited on chosen electrodes. The support is placed in the presence of an electrolyte to produce the deposit on the chosen electrodes by electrolysis. The electric charges deposited on the electrodes provide an electrolysis current for each chosen electrode. The formed device may be used as a biological sensor.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: March 14, 2000
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Jean-Frederic Clerc
  • Patent number: 5985125
    Abstract: A selective copper deposition method, comprising the steps of: forming barrier metal patterns on a wafer; and depositing copper only on the barrier metal patterns by electrochemistry, by which high pure copper film patterns can be formed simultaneously with deposition of copper, with ease.
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: November 16, 1999
    Assignee: LG Semicon Co., Ltd.
    Inventor: Jae-Jeong Kim
  • Patent number: 5932083
    Abstract: A process for enhancing the corrosion resistance of an aluminum-containing component with a cerium based coating. An aluminum-containing cathode and an oxygen-evolving anode are immersed in an electrolyte comprising water, solvent, oxidizing agent and cerium ions. An electrical current is passed through the electrolyte by applying electrical current to deposit a cerium based coating onto the cathode. An electrolyte for use in depositing a cerium based coating. An electrodeposited cerium-based coating. An aluminum aircraft structural component having a cerium-based coating thereon.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: August 3, 1999
    Assignee: The Curators of the University of Missouri
    Inventors: James O. Stoffer, Thomas J. O'Keefe, Xuan Lin, Eric Morris, Pu Yu, Srinivas Pravin Sitaram
  • Patent number: 5897762
    Abstract: A method for coloring tool bits includes cutting a beam having a hexagonal cross section into a number of segments. The segments are electroplated for forming an outer layer on the segments. The segments each have one or two of the ends machined to form a tool bit end for engaging with fasteners. The segments are then dyed for allowing color material to be attached onto the tool bit end and for coloring the tool bit end. The electroplated outer layer may prevent the color material from attaching onto the outer peripheral portion of the segments.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: April 27, 1999
    Inventor: Kuo Tien Liu
  • Patent number: 5885436
    Abstract: In one embodiment, the present invention relates to a method of treating metal foil including sequentially contacting the metal foil with a first solution containing a metal foil oxidizer and less than about 5 g/l of a hydroxide compound, contacting the metal foil with a chromium containing electrolytic bath and electrolyzing the bath, wherein the bath contains about 0.1 to about 5 g/l of a chromium compound, and contacting the metal foil with a second solution containing from about 0.1 to about 10% v/v of a silane compound, with the proviso that the metal foil is not contacted with a reducing agent after contact with the first solution.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: March 23, 1999
    Assignee: Gould Electronics Inc.
    Inventors: Thomas J. Ameen, Stacy A. Riley
  • Patent number: 5833829
    Abstract: A method of producing a coating on a substrate by electrolytically co-depositing a metal matrix M.sub.1 and particles of CrAlM.sub.2, where M.sub.1 is Ni, Co or Fe or two or all of these elements and M.sub.2 is Y, Si, Ti, Hf, Ga, Nb, Mn, Pt, a rare earth element or two or more of these elements. The co-deposition is carried out at a current density of less than 5mA per square centimeter. Preferably, the co-deposition forms a layer less than 50 microns thick, and occurs at a bath loading of less than 40 grams per liter of the particles. In a preferred embodiment, the particle size distribution in the plating bath is 25 percent between 15 and 12 microns, 45 percent between 12 and 10 microns and 30 percent less than 10 microns. The method is particularly useful for coating a gas turbine part.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: November 10, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: John Foster
  • Patent number: 5779872
    Abstract: Disclosed are a composite material having an anti-wear property and a process for producing the same. The composite material includes a matrix of a low melting point Sn alloy having a melting point of from 80.degree. to 280.degree. C., and metallic dispersing particles dispersed in the matrix in an amount of from 10 to 50% by volume. When the composite material is utilized to make a rough mold for preparing a prototype, it sharply improves the anti-wear property of the rough mold, and it can be re-used for a plurality of times without adversely affecting the sharply improved anti-wear property. The composite material provides the advantageous effect best when the metallic dispersing particles are Fe--C alloy dispersing particles and/or Fe--W--C alloy dispersing particles which were subjected to a surface treatment including an Sn or Ni electroplating followed by a ZnCl.sub.2 .multidot.NH.sub.4 Cl flux depositing.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: July 14, 1998
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nisshin Steel Co., Ltd.
    Inventors: Satoru Kito, Masahito Ito, Fuminori Matuda, Eiki Takeshima, Yasuji Tanaka, Takahiro Fujii, Kenjiro Izutani
  • Patent number: 5660707
    Abstract: A post plating or post coating method for improving formability and weldability properties in sheet steel product having a protective zinc or zinc alloy layer formed on at least one surface thereof. The steps of the method comprise immersing the sheet steel product into a bath containing at least zinc to apply the protective layer, removing the sheet steel product from the bath, the sheet steel product having a protective zinc or zinc alloy layer formed on at least one surface thereof, and applying an alkaline solution to the protective layer to form a zinc oxide layer thereon, the alkaline solution being applied at a location outside the bath.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: August 26, 1997
    Assignee: Bethlehem Steel Corporation
    Inventors: C. Ramadeva Shastry, Stavros G. Fountoulakis, Elmer J. Wendell
  • Patent number: 5534128
    Abstract: A copper foil for a printed wiring board which has a carbon-containing copper-zinc coating comprising 40 to 90 atomic % of copper, 5 to 50 atomic % of zinc and 0.1 to 20 atomic % of carbon is produced by dipping a copper foil in a non-cyanide copper-zinc electroplating bath containing a copper salt, a zinc salt, a hydroxycarboxylic acid or a salt thereof, an aliphatic dicarboxylic acid or a salt thereof and a thiocyanic acid or a salt thereof, and carrying out electrolysis in the non-cyanide copper-zinc electroplating bath using the copper foil as a cathode to form on at least one surface of the copper foil a carbon-containing copper-zinc coating.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: July 9, 1996
    Assignee: Nippon Denkai, Ltd.
    Inventors: Kazuyoshi Aso, Masami Noguchi, Katsumi Kobayashi, Takeshi Yamagishi
  • Patent number: 5456816
    Abstract: A method for manufacturing a nickel alloy electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability, which comprises the steps of: (a) cold-rolling a hot-rolled steel sheet at a reduction ratio of from 60 to 85% to prepare a cold-rolled steel sheet consisting essentially of: up to 0.06 wt. % carbon, up to 0.5 wt. % silicon, up to 2.5 wt. % manganese, up to 0.1 wt. % phosphorus, up to 0.025 wt. % sulfur, up to 0.10 wt. % soluble aluminum, up to 0.05 wt. % nitrogen, and the balance being iron and incidental impurities; then, (b) subjecting the cold-rolled steel sheet to a continuous annealing treatment which comprises heating the cold-rolled steel sheet to a recrystallization temperature and then slowly cooling same; then, (c) forming, on at least one surface of the annealed cold-rolled steel sheet, a nickel alloy electroplating layer having a plating weight of from 5 to 60 mg/m.sup.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: October 10, 1995
    Assignee: NKK Corporation
    Inventors: Toyofumi Watanabe, Akihiko Furuta, Tadashi Ono, Yoshinori Yomura, Shuichi Iwado
  • Patent number: 5326454
    Abstract: A method is disclosed for the production of highly diffusive or absorptive metal surfaces. A dendritic crystal structure surface layer of metal is electrodeposited on a substrate, using a bipolar pulse plating technique. This metal surface layer may then be oxidized to provide a highly anti-reflective surface.
    Type: Grant
    Filed: February 28, 1992
    Date of Patent: July 5, 1994
    Assignee: Martin Marietta Corporation
    Inventor: Darell E. Engelhaupt
  • Patent number: 5294266
    Abstract: The invention is in a composition and process for the chromium free passivating postrinsing of conversion layers on metals before the application of a paint or adhesive. The conversion layers can be on the bases of phosphate layers, at least two polyvalent metal ions with complex formers, titanium, zirconium and/or hafnium. The postrinsing agent is an aqueous solution which has been adjusted to a pH value of up to 5 and which contains an aluminum fluorozirconate having an Al:Zr:F mole ratio of (0.15 to 8.0):1:(5 to 52), and in which solutions the total concentration of Al+Zr+F is 0.1 to 8.0 g/l. The postrinsing solutions may additionally contain at least one of the anions benzoate, caprylate, ethyl hexoate, salicylate in a total concentration of 0.05 to 0.5 g/1 and may preferably be adjusted to the required pH value with cations of volatile bases, such as ammonium, ethanolammonium and di- and triethanolammonium.
    Type: Grant
    Filed: November 18, 1992
    Date of Patent: March 15, 1994
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Dieter Hauffe, Thomas Kolberg, Gerhard Muller, Horst Gehmecker, Werner Rausch, Peter Schubach, Thomas Wendel