Predominantly Aluminum Substrate Patents (Class 205/201)
  • Patent number: 6652669
    Abstract: The invention relates to a method for producing an ultraphobic surface on aluminium as the supporting material and to the resulting surface and its use. According to said method, the surface of an aluminium support is anodized, especially by anodic oxidation, and/or electrochemically pickled in an acid solution with an alternating voltage, treated in hot water or water vapor at a temperature of 50 to 100° C., optionally coated with an adhesion promoter layer and then provided with a hydrophobic or especially oleophobic coating.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 25, 2003
    Assignee: Sunyx Surface Nanotechnologies GmbH
    Inventors: Karsten Reihs, Daniel-Gordon Duff, Georg Wiessmeier, Burkhard Koehler, Matthias Voetz, Juan Gonzalez-Blanco, Eckard Wenz
  • Publication number: 20030213698
    Abstract: A lubrication-treating process for an Al or Al alloy material is carried out by cleaning the material; applying an anodic oxidation to the cleaned material surface to form a 3 to 30 &mgr;m thick anode oxidation coating; and forming a lubrication coating including a polyester resin (30 to 70 mass parts), a particulate PTFE (30 to 70 mass parts) and ceramic (alumina) particles (0.5 to 5 mass parts), and 2 to 20 &mgr;m thick, to thereby impart excellent resistances to adhesion and seizure, and a low friction, to the Al or Al alloy material at a low cost and with no or a very low pollution of the environment.
    Type: Application
    Filed: May 1, 2003
    Publication date: November 20, 2003
    Inventors: Ryosuke Kawagoshi, Masayuki Yoshida, Hiroshi Sumiya
  • Patent number: 6649039
    Abstract: A process of surface treating an aluminum or aluminum alloy article includes the steps of: (1) forming an oxide layer on the aluminum or aluminum alloy article by anodizing; (2) sealing the oxide layer of the article; and (3) forming a protective film on the sealed oxide layer of the article. The process may further comprise a step of coloring the oxide layer of the aluminum or aluminum alloy article between the steps (1) and (2). The aluminum or aluminum alloy article is corrosion-resistant and resistant to damage by contact, by virtue of the protective film formed on the scaled oxide layer in the step (3). In addition, the protective film can also give the aluminum or aluminum alloy article a long-lasting attractive appearance by preventing a colored sealed oxide layer of the aluminum or aluminum alloy article from fading.
    Type: Grant
    Filed: December 29, 2001
    Date of Patent: November 18, 2003
    Assignee: Hon Hai Precision Ind. Co., Ltd.
    Inventors: Che-Yuan Hsu, Fu-Keng Yang, Wen-Shan Chien
  • Patent number: 6531013
    Abstract: An adhesive bonding process for making vehicle structures wherein a surface portion of an aluminum alloy body is anodized in an aqueous solution of hypophosphorous acid (H3PO2) to form an anodic oxide coating. A layer of adhesive is applied onto the surface portion and the adhesive coated anodized surface portion is joined to an adjacent metal structure. The phosphorous acid anodizing is preferably carried out for less than 1 minute at about 5-40 volts and a current density of about 1-50 mA/cm2 in a solution containing about 1-25 wt % hypophosphorous acid. Anodization time is more preferably about 10-30 seconds and is about 20 seconds in a particularly preferred embodiment.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: March 11, 2003
    Assignee: Alcoa Inc.
    Inventor: Gary A. Nitowski
  • Patent number: 6447982
    Abstract: A litho strip for use as an offset printing plate is described which has a composition of 0.05-0.25% Si, 0.30-0.40% Fe, 0.10-0.30% Mg, max. 0.05% Mn, and max. 0.04% Cu. The strip is produced from a continuous cast ingot of the above composition which is hot rolled to a thickness of up to 2-7 mm. The residual resistance ratio of the hot rolled strip is RR=10-20. The cold rolling is carried out with or without intermediate annealing, wherein the degree of rolling reduction after intermediate annealing is >60%. The further processing up to the EC roughening takes place with the microstructure adjusted in the rolling process at <100° C. The litho strip is characterized by a high thermal stability, a good roughening behavior in the EC processes, and a high reverse bending fatigue strength perpendicular to the rolling direction.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 10, 2002
    Assignee: VAW Aluminium AG
    Inventors: Wolfgang von Asten, Bernhard Kernig, Barbara Grzemba
  • Patent number: 6440290
    Abstract: There is disclosed a method for surface treating aluminum products, especially vehicle wheels, to improve their brightness. The method comprises: (a) applying a chemical brightening composition to these products; (b) deoxidizing the surface of these wheel products in a nitric acid-based bath; (c) forming a porous oxide on that with an electrolytic bath containing phosphoric acid; and (d) applying, preferably spraying, a siloxane-based film to that porous oxide. In many instances, intermediate rinsing substeps are performed between these respective main steps.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: August 27, 2002
    Assignee: Alcoa Inc.
    Inventors: Luis F. Vega, Kevin M. Robare, Mark A. Holtz, John R. Grassi, Neal R. Dando
  • Publication number: 20020043168
    Abstract: The present invention provides a process for the manufacture of a substrate for use in the production of lithographic printing plates, the process comprising the steps of:
    Type: Application
    Filed: July 2, 2001
    Publication date: April 18, 2002
    Inventors: Felton Rudolph Mayers, Tu Vinh Chau
  • Patent number: 6372115
    Abstract: A process for anodizing an Si-based aluminum alloy comprises the steps of subjecting the Si-based aluminum alloy to electrolysis in an electrolyte containing phosphate and fluoride to form an anodized film on the aluminum alloy, infiltrating a photosetting or thermosetting resin in liquid form into microholes in the anodized film, and radiating light or heat at the infiltrated resin to make the resin become hardened. Phosphate makes diameters of the microholes large while fluoride dissolves Si moderately and facilitates growth of the film. As a result, a large amount of the photosetting or thermosetting resin can be infiltrated into the microholes of the film, thereby making a surface of the film flat.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: April 16, 2002
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hajime Miyasaka, Haruaki Matsukawa
  • Patent number: 6358566
    Abstract: A process of producing an aluminum beverage can body having a decorative surface exhibiting a dichroic effect when observed in white light. In the process, a can body is formed from a sheet of metal selected from aluminum and aluminum alloy by drawing and ironing, surfaces of the can body are cleaned to produce a cleaned can body, a decorative structure exhibiting a dichroic effect is applied to a surface of the cleaned can body, and the can body is subjected to finishing operations. The decorative structure is applied by the steps of: applying a layer of dielectric material directly onto the metal of the cleaned can body without pre-treatment of the metal with a metal brightener, and forming a semi-transparent metal layer on or within the dielectric layer.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: March 19, 2002
    Assignee: Alcan International Limited
    Inventor: Aron Marcus Rosenfeld
  • Patent number: 6280597
    Abstract: The known flourinated layer has usually a thickness of from 1000 to 3000 angstroms. After the forced oxidation of metal, the forcibly oxidized surface is flourinated. As a result of the preceding forcing oxidation, a 1 &mgr;m or more thick fluorinated layer is formed on the surface of the metal.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: August 28, 2001
    Assignee: Showa Denko K.K.
    Inventors: Kunio Kashiwada, Takanori Kodama, Hiroyasu Taguchi, Satoshi Hirano
  • Patent number: 6106689
    Abstract: A process for forming a zinc oxide film including immersing an electroconductive substrate having a surface including a plurality of linear projections in an aqueous solution containing at least nitrate ions and zinc ions to form a zinc oxide film on the electroconductive substrate by a liquid-phase deposition. The plurality of linear projections may preferably provide an uneven surface which has a center-line average surface roughness Ra(X) of 15-300 nm when scanned in a direction parallel to the linear projections, a center line average surface roughness Ra(Y) of 20-600 nm when scanned in a direction perpendicular to the linear projections, and an Ra(X)/Ra(Y) ratio of at most 0.8. The thus formed zinc oxide film is provided with an uneven surface suitable for an optical-confinement layer of a photo-electricity generating device excellent in photoelectric performances.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: August 22, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventor: Jinsho Matsuyama
  • Patent number: 6045677
    Abstract: A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: April 4, 2000
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler, John Steinbeck, David R. Winn
  • Patent number: 5961809
    Abstract: A process for improving the adherence of paint applied after thin-film anodization is characterized in that the anodized metal surfaces are brought into contact with an aqueous solution containing one or more of the following components: (a) 200 to 2000 ppm of a homopolymer or copolymer of acrylic acid, methacrylic acid, and/or their esters; (b) 200 to 3000 ppm of a poly(vinyl phenol) compound in which at part of the phenol rings carry an alkylamino substituent; (c) 200 to 3000 ppm of hexafluorotitanic acid, hexafluorozirconic acid, and/or their anions.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: October 5, 1999
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Wolf-Achim Roland, Andreas Nowak
  • Patent number: 5837117
    Abstract: A process for polishing a metal surface, typically based on Al, Mg, Ta, Ti, Zr, Hf or their alloys, comprises a first conventional polishing step by chemical or electrolytic means and a second electrolytic micro-polishing step by anodizing in a mineral, organic or mixed acid solution to form a oxide layer of the barrier type having a thickness between 100 and 500 nm.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: November 17, 1998
    Assignee: Satma
    Inventor: Francis Allegret
  • Patent number: 5755949
    Abstract: A plate-, foil- or web-shaped workpiece of aluminum or an alloy thereof is subjected, in an electrolyte bath, to an alternating current at a frequency of 0.1 to 25 Hz. During the AC treatment, an anodic potential is imposed on the workpiece, in the range of 0 to 5 Volts. The total charge input is 10 to 60 kC/m.sup.2. Prior to the electrochemical graining, the workpiece is mechanically grained. After the graining steps, an etching treatment as well as an anodical oxidation and, thereafter, a hydrophilization are performed.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: May 26, 1998
    Assignee: AGFA-Gevaert AG
    Inventor: Martin Philip Amor
  • Patent number: 5731124
    Abstract: The present invention provides a method for preparing an aluminium foil comprising the steps of roughening an aluminium foil and subsequently anodizing said aluminium foil characterized in that after said anodization said aluminium foil is cleaned using an aqueous bicarbonate containing solution. The present invention further provides a mono-sheet silver salt diffusion transfer material having as a support the alumium foil obtainable from the above defined method. The step of cleaning in the bicarbonate containing solution improves the adhesion of an image receiving layer containing physical development nuclei to the aluminum foil as revealed from the increased amount of silver precipitated in the image receiving layer when the aluminum foil provided with an image receiving layer is used in a diffusion transfer reversal (DTR) process.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: March 24, 1998
    Assignee: AGFA-Gevaert, N.V.
    Inventors: Marcus Jonckheere, Paul Coppens
  • Patent number: 5705225
    Abstract: Anodized aluminum coatings employed in semiconductor processing equipment are treated to reduce their sensitivity to halogenated species. The pores of the aluminum oxide surface can be filled either by a metal, such as magnesium or aluminum, forming the corresponding metal oxide that is resistant to reaction with halogens, or by filling the pores with a getter for halogens, such as hydrogen ions. The hydrogen ions adsorbed on the surface of the aluminum oxide react with halogens to form volatile hydrogen halides that can be pumped away in the exhaust system of the semiconductor processing chambers, thereby preventing or reducing reaction of the underlying aluminum oxide with the halogens.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: January 6, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Charles Dornfest, Fred C. Redeker, Mark Anthony Fodor, Craig Bercaw, H. Steven Tomozawa
  • Patent number: 5556531
    Abstract: A process for the treatment of a material having an aluminum oxide layer comprising (a) treating the aluminum oxide layer with an aqueous solution of a pure and crystalline alkali metal silicate, and (b) rinsing the treated aluminum oxide layer with ion-containing water. A substrate so produced is useful in offset printing.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: September 17, 1996
    Assignee: Agfa-Gevaert AG
    Inventor: Wolfgang Wiedemann
  • Patent number: 5554231
    Abstract: A non-chromium aluminum conversion coating composition for coating aluminum or an aluminum alloy which has as the essential ingredients an alkaline metal permanganate and aluminum nitrate and a pH of about 2.5 to about 4.0. The composition is effective in protecting aluminum and aluminum alloys for more than 168 hours in salt fog at 95.degree. F. according to standard ASTM method B-117. The process, of coating the aluminum or aluminum alloy is generally carried out by cleaning the aluminum or aluminum alloy with sodium hydroxide, and nitric acid-hydrofluoric acid mixture, and then coating with the permanganate-nitrate composition. There is also provided an anodized aluminum or aluminum alloy coated with a non-chromium permanganate composition.
    Type: Grant
    Filed: July 7, 1995
    Date of Patent: September 10, 1996
    Assignee: Sanchem, Inc.
    Inventor: John W. Bibber
  • Patent number: 5494713
    Abstract: An alumite coating film is formed on a surface of an aluminum electrode by anodic oxidation. Pores formed on the alumite coating film are sealed. Thereafter, a silicon nitride film is formed on a surface of the alumite coating film by plasma CVD. In a plasma etching apparatus using the aluminum electrode on which the alumite coating film and the silicon nitride film are sequentially layered, HBr/HCl gas is used as process gas to perform plasma etching of a wafer. An active radical generated from HBr/HCl etches the wafer and attacks the aluminum electrode. Since the aluminum electrode is protected with the silicon nitride film, an aluminum substrate and the alumite coating film are prevented from being etched. Therefore, impurity materials of the aluminum substrate and the alumite coating film are not dispersed into the chamber of the plasma etching apparatus. As a result, the wafer can be prevented from being contaminated by the impurity materials.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: February 27, 1996
    Assignee: Tokyo Electron Limited
    Inventor: Hayashi Ootuki
  • Patent number: 5487825
    Abstract: A method of producing composite oxide ceramic fluorine polymer layers on articles of aluminum, magnesium, titanium or their alloys, particularly of light metal components, includes introducing particles of fluorine polymers into the capillary system of an oxide ceramic layer. The particles have a particle size which at least in one dimension is smaller than the diameter of the capillaries. The article is then subjected to alternating pressure conditions.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: January 30, 1996
    Assignee: Electro Chemical Engineering GmbH
    Inventors: Peter Kurze, Hans-Jurgen Kletke
  • Patent number: 5470636
    Abstract: A magnetic recording medium having a substrate made of aluminum or aluminum alloy and an anodic-oxide film, e.g., alumite film, formed by effecting the anodic oxidation process, wherein the surface of the alumite film has protruding portions formed in addition to micro-irregularities which are formed in response to the cell-pore structure of the alumite film and height of the protruding portions is higher than that of the micro-irregularity, and density of the protruding portions is ranging from 10.sup.2 to 10.sup.7 per one square millimeter, these protruding portions are formed by processing the alumite film in the fluorine-contained solution (e.g., hydrofluoric acid) or in solution containing one of the acid (HCl), base (NaOH) and strong-acid salt ((NH.sub.4)SO.sub.4), Cr film and magnetic film are sequentially formed on the alumite film by the sputtering process.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: November 28, 1995
    Assignee: Yamaha Corporation
    Inventors: Yukio Wakui, Yoshiki Nishitani, Kenichi Miyazawa
  • Patent number: 5449449
    Abstract: Disclosed is a improvement in the fabrication of a scintillator, notably for the input screen of an X-ray image intensifier tube. According to the disclosure, the substrate on which a layer of scintillating material such as cesium iodide deposited in is made to grow is subjected to a treatment resulting in the formation of an alveolate structure or surface state, the consequence of which is the formation of thinner needles. The reduction of the mean diameter of the needles results in a improvement of the resolution of the device.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: September 12, 1995
    Assignee: Thomson-CSF
    Inventors: Gerard Vieux, Paul De Groot
  • Patent number: 5437779
    Abstract: A method of making a-magnetic record medium comprising the steps of: texturing a surface of a substrate by a first surface treatment; electrolyzing the surface of the textured substrate in an electrolyte of an acidic solution by applying an electric potential on the nonmagnetic substrate by a second surface treatment; and forming an undercoating layer and a magnetic layer on the surface of the electrolyzed substrate.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: August 1, 1995
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Tomoo Shige, Yasushi Makabe, Masataka Yokoyama
  • Patent number: 5417839
    Abstract: Aluminum foils used as a material of electrodes in electrolytic capacitors are manufactured by a method which comprises a step of forming at first an initial internal oxide coating 5 to 50 .ANG. thick on the surface of the aluminum foils before they are electrochemically or chemically etched later. The aluminum foils are then subjected to high temperature heat treatment such that the whole thickness of the oxide coating does not exceed 70 .ANG..
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: May 23, 1995
    Assignee: Showa Aluminum Corporation
    Inventors: Masashi Sakaguchi, Tadao Fujihira, Kiyoshi Tada, Hisatsugu Nakaya, Shozo Umetsu, Takashi Tamura
  • Patent number: 5374347
    Abstract: Corrosion resistant seal-coatings are formed on anodized aluminum by immeon in aqueous solutions containing trivalent chromic compounds with an alkali added near or slightly beyond the precipitation of insoluble basic compounds. Trivalent chromium seals formed on the anodized aluminum when tested in 5% NaCl salt spray chamber showed improved corrosion resistance. After a post-treatment in a peroxide or permanganate solution, the corrosion resistance for the anodized aluminum showed even greater improvement in the salt chamber.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: December 20, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Fred Pearlstein, Vinod S. Agarwala
  • Patent number: 5372697
    Abstract: An ink transfer medium, and a method for manufacturing the medium are provided. The ink transfer medium is of the electrically fusible type, and has an anisotropically electrically conductive layer characterized by greater electrical conductivity in the direction normal to the surface of the layer than in a direction parallel to the surface of the layer. Other layers sequentially provided next to each other, include a resistive layer for converting an electrical signal into heat, a conductive layer, an ink separation layer, and a fusible ink layer. Examples are given illustrating the use of the ink transfer medium. The anisotropically electrically conductive layer may be made by anodizing an aluminum cylinder to form an alumina body defining a plurality of through-pores and electrolytically filling the through-pores with a metal such as nickel or cobalt.
    Type: Grant
    Filed: November 7, 1991
    Date of Patent: December 13, 1994
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Eiichi Akutsu, Hiroo Soga, Yuzuru Fukuda, Shigehito Ando
  • Patent number: 5362569
    Abstract: Copper alloys of aluminum are afforded extended protection against surface corrosion by anodizing the aluminum surface to be protected, treating the surface with a heterocyclic aromatic azole treating agent having up to 16 carbon atoms before, during or after the anodizing step, and coating the treated surface after anodize with a fatty acid of 5 to 24 carbon atoms.
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: November 8, 1994
    Inventor: Albert J. Bauman
  • Patent number: 5358623
    Abstract: A method of protecting a non-chromium anodized aluminum or aluminum alloy by rinsing the anodized aluminum or aluminum alloy with warm water to warm the anodized aluminum or aluminum alloy, coating the warm anodized aluminum or aluminum alloy with, a non-chromium alkali metal permanganate solution having a pH in the range of about 4.0 to about 8.0, and a temperature of from about 170.degree. F. to about 212.degree. F., and forming a non-chromium mixed metal oxide coating of aluminum and manganese oxides on the anodized aluminum or aluminum alloy.
    Type: Grant
    Filed: April 21, 1993
    Date of Patent: October 25, 1994
    Assignee: Sanchem, Inc.
    Inventor: John W. Bibber
  • Patent number: 5348640
    Abstract: The method for forming a chemical conversion film on a substrate made of aluminum or its alloy which comprises the steps of: (a) etching a surface of the substrate with an aqueous solution of acid or alkali; (b) immersing the etched substrate in an aqueous, phosphate-based chemical conversion solution which is substantially free from fluoride ions; and (c) applying a negative voltage to the substrate during at least a part of the immersion step so that a potential of the substrate reaches a predetermined minimum potential which is lower than a natural electrode potential of the substrate in the aqueous chemical conversion solution.
    Type: Grant
    Filed: April 2, 1993
    Date of Patent: September 20, 1994
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Toshiaki Shimakura, Yutaka Ishida, Tomomi Watanabe
  • Patent number: 5340463
    Abstract: A process for obtaining a multilayer material suitable for transformation by drawing or drawing and ironing into a hollow body having a height to diameter ratio greater than 2.5. The process comprises subjecting an aluminum alloy substrate to an anodizing or chemical conversion surface treatment for improving adherence thereto, covering one of the surfaces of the substrate by adhering a plastic material film thereto, and covering the other of the surfaces with a coating of varnish including a solid lubricant in the form of particles which are harder than the varnish. The coated substrate is subsequently drawn or drawn and ironed into a hollow body utilizing tools having a hardness which is greater than the particles.
    Type: Grant
    Filed: December 1, 1992
    Date of Patent: August 23, 1994
    Assignee: Cegedur Pechiney Rhenalu
    Inventors: Rene Layre, Richard Bosc
  • Patent number: 5304298
    Abstract: A process for roughening aluminum or aluminum alloys useful as support material for printing plates, in which process two electrochemical roughening steps are carried out in direct succession and are followed by a pickling step. Printing plates are produced from this support material by coating with light-sensitive coatings, which printing plates, when exposed and developed, give corresponding printing formes of very uniform topography, high run stability and good damping agent supply.
    Type: Grant
    Filed: September 1, 1992
    Date of Patent: April 19, 1994
    Assignee: Hoechst Aktiengesellschaft
    Inventor: Michael Brenk
  • Patent number: 5290424
    Abstract: A shaped strip of highly reflective aluminum protected by an anodic oxide coating and a light-permeable fluoropolymer coating which is non-adhesively interstitially mechanically bonded to the microscopic irregularities of the anodic oxide surface. There is no adhesive used to obtain chain entanglement. The highly reflective strip may be substituted for polished stainless steel and/or bi-metal and used under comparably aggressive conditions for a prolonged period without deleteriously affecting the initial D/I (distinctness of reflected image) of the shaped strip. The strip of arbitrary length is shaped in rolling dies so that at least a portion of the strip has a radius of less than 10 mm without damaging or separating the fluoropolymer coating. The specific steps of the claimed process require starting with a clean strip which is brightened to a nearmirror-like finish, then treated to carry a thin porous aluminum oxide coating in a phosphoric acid bath under direct current (DC).
    Type: Grant
    Filed: January 31, 1992
    Date of Patent: March 1, 1994
    Assignee: Aluminum Company of America
    Inventors: Frank A. Mozelewski, Daniel L. Serafin, Robert E. Bombalski, Romeo C. Pascasio, Donald L. Nock
  • Patent number: 5282952
    Abstract: A method for preparing a substrate for lithographic printing plates comprises the steps of forming a hydrated oxide layer on the surface of an aluminum plate and then anodizing the plate in a sulfuric acid electrolyte; a lithographic printing plate comprises the substrate; and the substrate per se prepared by the method is also disclosed herein.The presensitized plate for use in making lithographic printing plates which comprises the substrate has very high sensitivity which makes the presensitized plate applicable to new exposure methods and is capable of being developed with a developer of an aqueous solution system. The light-sensitive layer and the substrate of the presensitized plate are strongly adhered to one another and, therefore, the resulting lithographic printing plate has excellent printing durability and good printability.
    Type: Grant
    Filed: August 15, 1991
    Date of Patent: February 1, 1994
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Hirokazu Sakaki
  • Patent number: 5225068
    Abstract: A method is described of compacting an anodically produced layer of oxide on parts of aluminum or aluminum alloy. In accordance with the invention, the oxide layer is compacted in two process stages, the parts being pretreated in the first process stage in a solution containing about 6% cobalt fluoride and about 30% nickel fluoride in completely desalinified water at about 30.degree. C. for about 10 minutes and then being treated in a second process stage in completely desalinified water with the addition of a coating inhibitor of about 2 ml/l of triazine derivative at an operating temperature of about 70.degree. C. to the boiling point for about 50 minutes.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: July 6, 1993
    Assignee: Gebr. Happich GmbH
    Inventors: Klaus-Dieter Bartkowski, Peter Venn
  • Patent number: 5169458
    Abstract: Corrosion resistance of anodized aluminum surfaces is improved by conditioning the surface with a low molecular weight (2-7 carbon atoms) alcohol, and sealing the surface with long chain (10-24 carbon atom) carboxylic acid at low temperatures below about 35-50 degrees centigrade, the alcohol being a solvent for the acid.
    Type: Grant
    Filed: February 2, 1990
    Date of Patent: December 8, 1992
    Inventors: Garson F. Shulman, Albert J. Bauman
  • Patent number: 5135618
    Abstract: A process for manufacturing a solid state electrolytic capacitor having on an anode a dielectric coating layer and a solid state electrolytic layer, comprises the steps of forming a conductive polymer compound layer as the solid state electrolytic layer, and subsequently forming the dielectric coating layer by anodizing.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: August 4, 1992
    Assignee: NEC Corporation
    Inventors: Yoshihiko Saiki, Eishun Tsuchida, Kimihisa Yamamoto, Shinji Takeoka
  • Patent number: 5132200
    Abstract: An electrophotographic photoreceptor is disclosed, comprising at least a substrate having thereon a charge transporting layer and a charge generating layer, wherein said charge transporting layer is a porous anodized aluminum film which is formed by anodizing a substrate at least a surface of which comprises aluminum or an aluminum alloy by using an alternating current having an effective voltage of from 3 to 40 V or an electrical current of alternating waveform having substantially the equal action.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: July 21, 1992
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yuzuru Fukuda, Shigeru Yagi, Ken Ebihara, Yasunobu Iwata
  • Patent number: 5131987
    Abstract: Disclosed is a process for anodically oxidizing aluminum alloy surfaces as a pretreatment for structural adhesive bonds or laminates. The process is comprised of anodically oxidizing aluminum and its alloys in phosphorous acid containing electrolyte to form a porous film comprised of Al, O and P. This film provides a very effective substrate for adhesively bonding aluminum articles and laminates.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: July 21, 1992
    Assignee: Aluminum Company of America
    Inventors: Gary A. Nitowski, Karl Wefers, Larry F. Wieserman
  • Patent number: 5120423
    Abstract: A method for the formation of an electrolyte layer of solid electrolytic capacitors is provided. The method comprises: (1) forming an oxide film with dielectric properties on the surface of a porous electrode made of a valve metal, the electrode being electrically connected to an anode lead made of a valve metal, (2) impregnating the electrode, on which the oxide film has been formed, with a solution of manganese nitrate, (3) electrostatically depositing electrolyte powder particles on the surface of the electrode which has been impregnated with the solution, and (4) pyrolyzing the manganese nitrate to manganese dioxide to form an electrolyte layer on the surface of the oxide film.
    Type: Grant
    Filed: March 19, 1990
    Date of Patent: June 9, 1992
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Junichi Kurita, Tsutomu Irikura
  • Patent number: 5114825
    Abstract: An aluminum alloy substrate for presensitized plates for use in making lithographic printing plates comprises an aluminum alloy plate composed of not less than 0.05% by weight and less than 0.5% by weight of Si; 0.2 to 0.7% by weight of Fe; 0.3 to 1.5% by weight of Mn; less than 0.5% by weight of Cu; and the balance of aluminum and unavoidable impurities, the surface of the aluminum alloy plate being subjected to electrolytic graining treatment. The aluminum alloy substrates for PS plates are favorable for appropriate electrolytic graining treatment and show good printing properties and sufficient strength suitable for high-speed printing operation.
    Type: Grant
    Filed: June 5, 1989
    Date of Patent: May 19, 1992
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Kazushige Takizawa, Hirokazu Sakaki
  • Patent number: 5112449
    Abstract: A process for producing a two phase metal/oxide film. The process comprises forming a porous oxide film on a substrate, introducing a weakened stratum into the oxide film so that the film (or at least an outer part of the film) can be subsequently detached along the weakened stratum, depositing a metal on and/or within the pore of the film, and detaching at least the outer film part from the substrate. The detached film so produced can be used for many purposes depending on the film thickness, position of the metal deposits on or with the pores etc. Examples include optical interference devices, magnetic media, coatings for plastics and paper, etc.
    Type: Grant
    Filed: March 22, 1990
    Date of Patent: May 12, 1992
    Assignee: Alcan International Limited
    Inventors: Mark A. Jozefowicz, Aron M. Rosenfeld
  • Patent number: 5110710
    Abstract: Disclosed is a light-sensitive lithographic printing plate which comprises an aluminum or aluminum alloy support having been pretreated and a light-sensitive layer provided thereon, wherein the surface of the support adjacent to the light-sensitive layer is treated by use of an aqueous solution containing at least one selected from the group consisting of nitric acid, nitrate, nitrous acid and nitrite. According to this invention, lithographic printing plates which are free from stain due to residual light-sensitive layer, excellent in developability, good in water retention at image area and excellent in press life, can be obtained.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: May 5, 1992
    Assignee: Konica Corporation
    Inventors: Yasuji Tomita, Hideyuki Nakai, Kiyoshi Goto
  • Patent number: 5104514
    Abstract: Aluminum articles are provided with enhanced surface protection by initially abrading the surface to produce a surface microroughness of 400-700 microinches (RMS), and hard anodizing the roughened surface to a depth of at least 0.0020 inch. The anodized surface is then coated with a protective material to a thickness of 0.0005-0.015 inch. The protective coating materials may be fusible polymers which are fused on the surface or fluid organic coating compositions which are dried on the surface.
    Type: Grant
    Filed: May 16, 1991
    Date of Patent: April 14, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: James M. Quartarone
  • Patent number: 5102507
    Abstract: A process is disclosed for treating the surface of a valve metal such as aluminum to form a two layer protective coating thereon using an anodizing bath consisting essentially of an aqueous solution having a concentration ranging from about 0.001 molar to a saturated solution of a phosphorus-containing compound selected from the class consisting of a phosphorus acid ester and salts thereof. A non-porous barrier valve metal oxide layer is formed on a surface of the valve metal, and a functionalized layer comprised of a phosphate ester is formed on the oxide layer.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: April 7, 1992
    Assignee: Aluminum Company of America
    Inventors: Larry F. Wieserman, Karl Wefers, Gary A. Nitowski
  • Patent number: 5098528
    Abstract: A method for the making of an integrated type of LC component comprises the following steps;the coiling of an elongated element made of a metal with valve effect, the ends of which constitute two electrodes;the anodization of the element to form a dielectric layer;impregnation by an electrolyte, andthe positioning of a third electrode in a known way.Application to integrated passive components.
    Type: Grant
    Filed: June 26, 1991
    Date of Patent: March 24, 1992
    Assignee: Compagnie Europeene de Composants Electroniques LCC
    Inventors: Francois DeLalande, Dominique Poupard
  • Patent number: 5069938
    Abstract: A corrosion-resistant protective coating on an aluminum substrate capable of withstanding corrosion attack by process halogen gases and plasmas is disclosed. The protective coating is formed by contacting an aluminum oxide layer on an aluminum substrate with one or more fluorine-containing gases at an elevated temperature. In a preferred embodiment, a high purity corrosion-resistant protective coating on an aluminum substrate capable of withstanding corrosion attack may be formed by first forming a high purity aluminum oxide layer on the aluminum substrate and then contacting the aluminum oxide layer with one or more high purity fluorine-containing gases at an elevated temperature to form the high purity corrosion resistant protective coating theron.
    Type: Grant
    Filed: June 7, 1990
    Date of Patent: December 3, 1991
    Assignee: Applied Materials, Inc.
    Inventors: D'Arcy H. Lorimer, Craig A. Bercaw