Predominantly Titanium, Vanadium, Zirconium, Niobium, Hafnium, Tantalum, Molybdenum, Or Tungsten Substrate Patents (Class 205/212)
  • Patent number: 10138567
    Abstract: An electroplating apparatus includes a container containing plural portions and an ionic liquid plating solution that is capable of flowing therebetween. The plural portions include at least a first portion containing a counter electrode that includes coating donor material and a second portion that includes a workpiece. A porous scrubber separating the first and second portions has a plurality of metallic outer surfaces in contact with the ionic liquid plating solution. Coating, repair, and regeneration methods using an ionic liquid plating solution are also described.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: November 27, 2018
    Assignee: United Technologies Corporation
    Inventor: Lei Chen
  • Patent number: 9267218
    Abstract: Described herein a bucket for use in the last stage of a steam turbine engine. The bucket includes a titanium-based alloy having a leading edge wherein the leading edge includes titania having a plurality of pores and a top sealing layer filling the plurality of pores, the sealing layer selected from the group consisting of: chromium, cobalt, nickel, polyimide, polytetrafluoroethylene and polyester.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: February 23, 2016
    Assignee: General Electric Company
    Inventors: Yuefeng Luo, William Edward Adis
  • Publication number: 20150101935
    Abstract: An electroplating apparatus includes a container containing plural portions and an ionic liquid plating solution that is capable of flowing therebetween. The plural portions include at least a first portion containing a counter electrode that includes coating donor material and a second portion that includes a workpiece. A porous scrubber separating the first and second portions has a plurality of metallic outer surfaces in contact with the ionic liquid plating solution. Coating, repair, and regeneration methods using an ionic liquid plating solution are also described.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 16, 2015
    Inventor: Lei Chen
  • Patent number: 8595921
    Abstract: An electrode is formed using a sanding mechanism to condition the surface of the electrode for electrochemical purposes. Hazardous particles emitted during sanding are captured using jetted liquid, and may be recycled for later use. The sanded surface provides increased electrode lifespan and lead oxide adherence.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: December 3, 2013
    Assignee: RSR Technologies, Inc.
    Inventors: Timothy W. Ellis, Matthew Burr
  • Patent number: 8354036
    Abstract: A method for the pre-treatment of titanium components for the subsequent coating thereof is provided. The method includes at least the following steps: a) etching of the component in an acidic solution containing fluoride and nitric acid (HNO3); b) activation pickling of the etched component in a solution containing at least sodium nitrate (NaNO3) and tetrafluoroboric acid (HBF4); and c) activation of the activation-pickled component in a bath containing acid or in an acidic bath containing nickel.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: January 15, 2013
    Assignee: MTU Aero Engines GmbH
    Inventors: Helena Catalan-Asenjo, Michael Scheid, Josef Linska, Matthias Schmidt
  • Patent number: 8012338
    Abstract: A method for selectively dissolving the beta (?) phase of a titanium alloy out of the surface of the alloy, thereby leaving behind a nano-scale porous surface having enhanced bonding properties with either a biological tissue, such as bone, or an adhesive material, such as a polymer or ceramic by immersing the alloy in an ionic aqueous solution containing high levels of hydrogen peroxide and then exposing the alloy to an electrochemical voltage process resulting in the selective dissolution of the beta phase to form a nano-topographic metallic surface.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: September 6, 2011
    Assignee: Syracuse University
    Inventors: Jeremy Gilbert, Zhijun Bai, Nithya Chandrasekaran
  • Patent number: 7884044
    Abstract: The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably platinum group metal oxides with or without valve metal oxides, and containing a transition metal component such as palladium, rhodium or cobalt. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell for the electrolysis of a halogen-containing solution wherein the palladium component reduces the operating potential of the anode and eliminates the necessity of a “break-in” period to obtain the lowest anode potential.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: February 8, 2011
    Assignee: Eltech Systems Corporation
    Inventors: Dino F. DiFranco, Kenneth L. Hardee
  • Publication number: 20100089761
    Abstract: There is provided a metallic glass component with its surface layer having both durability of a film and chromatic color properties, and a method for forming the surface layer. Surface active treatment is performed wherein the surface of the metallic glass component is reacted with a mixed aqueous solution of nitric acid and hydrofluoric acid to remove an oxide film and to provide an anchor bond shape on the surface of a metallic glass component, and electroplating or electroless plating is then performed, to form a plating film on the surface of the metallic glass component. It is thereby possible to form a surface layer of a metallic glass which has both durability and a chromatic color.
    Type: Application
    Filed: March 13, 2007
    Publication date: April 15, 2010
    Applicants: TOHOKU UNIVERSITY, EYETEC CO., LTD., NGK INSULATORS, LTD., MAKABE R&D CO., LTD.
    Inventors: Xin Min Wang, Naokuni Muramatsu, Junsuke Kiuchi, Hiroshi Suzuki, Tatsue Arakawa, Hisamichi Kimura, Akihisa Inoue, Eiichi Makabe
  • Publication number: 20090218232
    Abstract: A method for the pre-treatment of titanium components for the subsequent coating thereof is provided. The method includes at least the following steps: a) etching of the component in an acidic solution containing fluoride and nitric acid (HNO3); b) activation pickling of the etched component in a solution containing at least sodium nitrate (NaNO3) and tetrafluoroboric acid (HBF4); and c) activation of the activation-pickled component in a bath containing acid or in an acidic bath containing nickel.
    Type: Application
    Filed: November 14, 2006
    Publication date: September 3, 2009
    Applicant: MTU Aero Engines GmbH
    Inventors: Helena Catalan-Asenjo, Michael Scheid, Josef Linska, Matthias Schmidt
  • Patent number: 7273536
    Abstract: A conductive diamond electrode including an electrode substrate comprising a material selected from the group consisting of a valve metal and an alloy based on the valve metal, at least a surface of the metal or alloy having been subjected to plasticization processing, or heat treatment in vacuum or inert atmosphere; and a conductive diamond film formed on the plasticization processed surface of the electrode substrate. When the electrode substrate is subjected to plasticization processing and heat treatment, peeling resistance of the conductive diamond film is improved, thereby an electrode life is prolonged.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: September 25, 2007
    Assignee: Permelec Electrode Ltd.
    Inventors: Tomoyasu Shibata, Masashi Hosonuma, Tsuneto Furuta
  • Patent number: 7267859
    Abstract: The presently disclosed invention provides for the fabrication of porous anodic alumina (PAA) films on a wide variety of substrates. The substrate comprises a wafer layer and may further include an adhesion layer deposited on the wafer layer. An anodic alumina template is formed on the substrate. When a rigid substrate such as Si is used, the resulting anodic alumina film is more tractable, easily grown on extensive areas in a uniform manner, and manipulated without danger of cracking. The substrate can be manipulated to obtain free-standing alumina templates of high optical quality and substantially flat surfaces PAA films can also be grown this way on patterned and non-planar surfaces. Furthermore, under certain conditions the resulting PAA is missing the barrier layer (partially or completely) and the bottom of the pores can be readily accessed electrically.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: September 11, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Oded Rabin, Paul R. Herz, Mildred S. Dresselhaus, Akintunde I. Akinwande, Yu-Ming Lin
  • Patent number: 7201830
    Abstract: The invention concerns an anode for gas evolution in electrochemical applications comprising a titanium or other valve metal substrate characterized by a surface with a low average roughness, having a profile typical of a localized attack on the crystal grain boundary. The invention further describes a method for preparing the anodic substrate of the invention comprising a controlled etching in a sulfuric acid solution.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 10, 2007
    Assignee: De Nora Elletrodi S.p.A.
    Inventors: Corrado Mojana, Ulderico Nevosi
  • Patent number: 7169284
    Abstract: The present invention is directed to a conductive polyethylenedioxythiophene (PEDOT) polymer coated electrode adapted for use as a cathode electrode of an electrolytic capacitor and a method of manufacturing the same. According to the present invention, a metal foil substrate is placed in an aqueous solution of a doped 3,4-ethylenedioxythiophene (EDOT) monomer and a co-solvent, to dissolve the EDOT monomer, and a current is applied until the desired thickness of the polymer coating is electrochemically deposited. Additionally, an organic acid is added to the aqueous solution to act as an oxidizer. In order to improve the uniformity and adherence of the coating a surfactant may also be added. In a preferred embodiment, the EDOT monomer and cosolvent are first mixed, and then added to a water solution of oxidizer and dopant. The polymer film is deposited electrochemically onto the substrate by applying a DC current between 0.05 mA/cm2 and 5.0 mA/cm2 for 1 to 60 minutes, more preferably between about 0.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: January 30, 2007
    Assignee: Pacesetter, Inc.
    Inventors: Naixiong Jiang, Timothy Marshall, Melissa Moore, Christopher R. Feger, Thomas F. Strange
  • Patent number: 6974776
    Abstract: The invention provides a method of plating an integrated circuit. An activation plate is positioned adjacent to at least one integrated circuit. The integrated circuit includes a plurality of bond pads comprising a bond-pad metal, and the activation plate also comprises the bond-pad metal. A layer of electroless nickel is plated on the bond pads and the activation plate, and a layer of gold is plated over the layer of electroless nickel on the bond pads and the activation plate. An integrated circuit with bond pads plated using the activation plate, and a system for plating an integrated circuit is also disclosed.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: December 13, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Timothy B. Dean, William H. Lytle
  • Patent number: 6967164
    Abstract: A method and apparatus is disclosed for sequential processing of integrated circuits, particularly for conductively passivating a contact pad with a material which resists formation of resistive oxides. In particular, a tank is divided into three compartments, each holding a different solution: a lower compartment and two upper compartments divided by a barrier, which extends across and partway down the tank. The solutions have different densities and therefore separate into different layers. In the illustrated embodiment, integrated circuits with patterned contact pads are passed through one of the upper compartments, in which oxide is removed from the contact pads. Continuing downward into the lower compartment and laterally beneath the barrier, a protective layer is selectively formed on the insulating layer surrounding the contact pads. As the integrated circuits are moved upwardly into the second upper compartment, a conducting monomer selectively forms on the contact pads prior to any exposure to air.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: November 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Li Li
  • Patent number: 6960370
    Abstract: Medical devices that include oxidizable portions can be plated after a two step activation process that includes successive applications of two aqueous solutions of ammonium bifluoride. Once plated, such materials can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical devices that are more visible to fluoroscopy.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: November 1, 2005
    Assignee: SciMed Life Systems, Inc.
    Inventors: Vittorino Monni, Verivada Chandrasekaran, Outhay Voraphet
  • Patent number: 6932897
    Abstract: A method for plating a titanium-containing metal, comprising the steps of: (a) surface treating the titanium-containing metal in a solution consisting essentially of an aqueous solvent and hydrochloric acid for a period of time sufficient to activate the surface of the titanium-containing metal; (b) plating the surface of the surface treated titanium-containing metal with a metallic coating in an electrolyte bath; and (c) non-oxidatively heat treating the plated titanium-containing metal for a period of time sufficient to cause diffusion bonding between the metallic coating and the titanium-containing metal. The present invention also provides parts made in accordance with the methods disclosed herein.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: August 23, 2005
    Assignee: Com Dev Ltd.
    Inventors: Florin Burca, John Darmon
  • Publication number: 20040188261
    Abstract: Medical devices that include oxidizable portions can be plated after a two step activation process that includes successive applications of two aqueous solutions of ammonium bifluoride. Once plated, such materials can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical devices that are more visible to fluoroscopy.
    Type: Application
    Filed: March 27, 2003
    Publication date: September 30, 2004
    Applicant: SCIMED LIFE SYSTEMS, INC.
    Inventors: Vittorino Monni, Verivada Chandrasekaran, Outhay Voraphet
  • Patent number: 6726829
    Abstract: Disclosed herewithin is an apparatus for fabricating a stent which involves processing a tubular member whereby no connection points to join the edges of a flat pattern are necessary. The process includes the steps of: a) preparing the surface of a tubular member, b) coating the outside surface of the tubular member with a photo-sensitive resist material, c) placing the tubular member in an apparatus designed to simultaneously rotate the tubular member while passing a specially configured photographic frame negative between a light source and the tubular member, d) exposing the tubular member to a photoresist developer, e) rinsing the excess developer and uncured resist from the exposed tubular member, f) sealing the inner lumen of the tubular member, and g) treating the tubular member with a chemical or electro-chemical process to remove uncovered metal. By modifying the photographic negative, this process can be employed to fabricate a virtually unlimited number of stent designs and configurations.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: April 27, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventor: Thomas Trozera
  • Patent number: 6630400
    Abstract: A method and apparatus is disclosed for sequential processing of integrated circuits, particularly for conductively passivating a contact pad with a material which resists formation of resistive oxides. In particular, a tank is divided into three compartments, each holding a different solution: a lower compartment and two upper compartments divided by a barrier, which extends across and partway down the tank. The solutions have different densities and therefore separate into different layers. In the illustrated embodiment, integrated circuits with patterned contact pads are passed through one of the upper compartments, in which oxide is removed from the contact pads. Continuing downward into the lower compartment and laterally beneath the barrier, a protective layer is selectively formed on the insulating layer surrounding the contact pads. As the integrated circuits are moved upwardly into the second upper compartment, a conducting monomer selectively forms on the contact pads prior to any exposure to air.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: October 7, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Li Li
  • Patent number: 6533916
    Abstract: An electrode consisting of a substrate and a diamond layer applied to the substrate, in which the applied diamond layer is pore-free, and a process for producing a diamond-coated electrode, in which the process comprises at least the following steps: a) cleaning the surface of the substrate; b) seeding the surface of the substrate with a high diamond nucleation density; c) coating the surface of the substrate with diamond.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: March 18, 2003
    Assignees: BASF Aktiengesellschaft, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Hermann Puetter, Andreas Weiper-Idelmann, Claudia Merk, Matthias Fryda, Claus-Peter Klages, Lothar Schaefer, Alexander Hampel
  • Patent number: 6344127
    Abstract: The object of the invention is to provide a method for producing a photocatalytic material which consists of a titanium oxide, exhibits a higher photocatalytic activity and has excellent appearances. The above object is attained by the provision of a method for preparing a photo catalytic material by oxidizing the surface of a substrate consisting of titanium or a titanium alloy, the method comprising a step of anodizing the substrate in an electrolyte containing an organic acid and/or a salt of the organic acid and a step of further oxidizing the anodized substrate in an atmosphere.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: February 5, 2002
    Inventor: Yoshihisa Itoh
  • Publication number: 20010052468
    Abstract: The invention is relative to an electrode for gas evolution in electrolytic and electrometallurgical industrial applications, made of a metal substrate having a surface morphology characterized by a combination of micro-roughness and macro-roughness which favors high adherence of a superficial catalytic layer in order to prevent detachment of the same and passivation of the substrate even under critical operating conditions.
    Type: Application
    Filed: May 16, 2001
    Publication date: December 20, 2001
    Inventors: Ruben Ornelas Jacobo, Giuseppe Faita, Lawrence Gestaut, Corrado Mojana
  • Patent number: 6066403
    Abstract: Novel metallic bodies are provided which present an essentially oxide-free surface protected by phosphate groups which directly and chemically bond to surface metal atoms. Metal surfaces such as Al or Fe can be protected by deposition of a phosphate film directly onto etched metal surfaces without intermediate naturally occurring oxides between the metal ions and protective phosphate groups. Preferably, metallic surfaces to be protected are first etched to remove oxides and other contaminants, followed by electrochemical treatment with a phosphate electrolyte to generate a protective film having a thickness of from about 20-100 .ANG. which is stable in ambient air.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: May 23, 2000
    Assignee: Kansas State University Research Foundation
    Inventors: Peter M. A. Sherwood, John A. Rotole
  • Patent number: 5961810
    Abstract: A method for making high power electrochemical charge storage devices, provides for depositing an electrically conducting polymer (16), (18), onto a non-noble metal substrate (10), which has been prepared by treatment with a surfactant. Using this method, high power, high energy electrochemical charge storage devices may be fabricated with highly reproducible low cost.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: October 5, 1999
    Assignee: Motorola, Inc
    Inventors: Changming Li, Ke Keryn Lian, Han Wu
  • Patent number: 5948222
    Abstract: Disclosed is a method of reactivating a deactivated anode that has a coating of a noble metal or noble metal oxide on a substrate. A coating of a noble metal is deposited on the anode either electrolessly or electrolytically. The noble metal in the deposited coating can be platinum, palladium, iridium, rhodium, ruthenium, osmium, or a mixture thereof.
    Type: Grant
    Filed: May 1, 1995
    Date of Patent: September 7, 1999
    Assignee: Occidental Chemical Corporation
    Inventors: Chao-Peng Chen, Tilak V. Bommaraju
  • Patent number: 5858557
    Abstract: A copper-tungsten or copper-molybdenum substrate is plated with a nickel/gold plating by first activating a surface of the substrate. In activating, the surface is contacted to a concentrated alkaline solution at elevated temperature, and then to a concentrated acidic solution. The surface is thereafter plated with a nickel strike layer, plated with a nickel primary layer overlying the nickel strike layer, sintered, re-activated in a concentrated acidic solution, plated with a nickel secondary layer overlying the nickel primary layer, and plated with a gold layer overlying the nickel secondary layer.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: January 12, 1999
    Inventors: Sunghee Yoon, William A. Reed
  • Patent number: 5837117
    Abstract: A process for polishing a metal surface, typically based on Al, Mg, Ta, Ti, Zr, Hf or their alloys, comprises a first conventional polishing step by chemical or electrolytic means and a second electrolytic micro-polishing step by anodizing in a mineral, organic or mixed acid solution to form a oxide layer of the barrier type having a thickness between 100 and 500 nm.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: November 17, 1998
    Assignee: Satma
    Inventor: Francis Allegret
  • Patent number: 5780173
    Abstract: The durability and reliability of a polymer layer/metal layer sensor structure is improved by the incorporation of a metal oxide, e.g., tantalum oxide (Ta.sub.2 O.sub.5), layer between the polymer, e.g., polyimide, and the metal, e.g., platinum. sensor element.
    Type: Grant
    Filed: September 4, 1996
    Date of Patent: July 14, 1998
    Assignee: General Motors Corporation
    Inventors: Charles Robert Harrington, Marie Irene Harrington, Michel Farid Sultan, John Richard Troxell
  • Patent number: 5630933
    Abstract: Metal hydrides are activated by an electrochemical procedure. In this procedure, a bulk sample of the corresponding metal is immersed in an aqueous electrolyte and contacted by a cathode. Current passed through the aqueous electrolyte causes electrolysis of the water and a concomitant reaction with the formation of metal hydride. As a result, the metal hydride is fractured and smaller particles result. Additionally, the resulting metal hydride has a substantial amount of absorbed hydrogen. A novel plating method, taking advantage of the reducing power of hydrogen absorbed in a metal hydride, is useful to encapsulate such metal hydride with a variety of metals. Therefore, such hydrides are uniformly coated by using plating solutions without the standard reducing agent and stabilizer.
    Type: Grant
    Filed: July 14, 1995
    Date of Patent: May 20, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Henry H. Law, Brijesh Vyas
  • Patent number: 5591318
    Abstract: A method for making high power electrochemical charge storage devices, provides for depositing an electrically conducting polymer (16), (18), onto a non-noble metal substrate (10), which has been prepared by treatment with a surfactant. Using this method, high power, high energy electrochemical charge storage devices may be fabricated with highly reproducible low cost.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: January 7, 1997
    Assignee: Motorola Energy Systems, Inc.
    Inventors: Changming Li, Ke K. Lian, Han Wu
  • Patent number: 5578175
    Abstract: A process for manufacturing an iridium and palladium oxides-coated titanium electrode comprises preparing a titanium substrate having a surface, applying iridium and palladium to be formed on the surface of the titanium substrate, and heat-treating the iridium and palladium oxides-applied titanium substrate to obtain an iridium and palladium oxides-coated titanium electrode. This invention provides a process for obtaining a coated titanium electrode having therein a good adhesion between the coating material and the titanium electrode, and having an excellent electrochemical stability and a superior catalytic activity in an acidic environment.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: November 26, 1996
    Assignee: National Science Council
    Inventors: Kwang-Lung Lin, Ju-Tung Lee, Yuan-Po Lee
  • Patent number: 5547518
    Abstract: Foils used to manufacture superconductor materials can effectively be cleaned by heat treatment prior to anodization and further processing steps. The heat treatment can be in conjunction with other cleaning processes or separate.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: August 20, 1996
    Assignee: General Electric Company
    Inventors: Neil A. Johnson, Thomas R. Raber, Louis E. Hibbs, Jr., Melissa L. Murray, Mark G. Benz
  • Patent number: 5464524
    Abstract: A plating method for a nickel-titanium alloy member is provided which comprises the steps of: subjecting a nickel-titanium alloy member to an anodic electrolyzing treatment and a cathodic electrolyzing treatment in succession by using an electrolyte containing hydrochloric acid as an essential component thereof, in particular, an electrolyte having a chloride ion concentration of 0.1 mol/l or more and a pH value of 2 or less, or an electrolyte having a chloride ion concentration of 0.4 mol/l or more, or still preferably, an electrolyte having a chlorine ion concentration of 0.3 mol/l or more and a pH value of 2 or less; strike plating the treated nickel-titanium alloy member with a desired metal; and electroplating the struck nickel-titanium alloy member with a desired metal. The adhesion between the nickel-titanium alloy member and a plating layer is very good.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: November 7, 1995
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yoshiaki Ogiwara, Masaki Yasuhara, Akira Matsuda
  • Patent number: 5456819
    Abstract: This invention relates to an electrochemical treatment of metal substrates, including so-called "difficult to plate metals" such as tungsten and molybdenum, wherein deoxidation and plating are carried out in the same electrolyte bath by exploiting the electrochemical window in potential and pH of a reduction/deposition. This window may be illustrated using Pourbaix diagrams. In the first step of the treatment, a direct current at a reduction potential is applied to the substrate to reduce oxides present on the surface of the substrate without causing metal to be deposited from the electrolyte. In the second step, the reduction potential is changed to a more negative deposition potential, and a direct current at this deposition potential is applied for a time sufficient to deposit metal from the electrolyte.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: October 10, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, David Kelley
  • Patent number: 5264109
    Abstract: A zirconium or zirconium alloy passivation process comprises providing an electrolyte which is capable of removing nickel, nickel alloys and alloys containing nickel from the surface of a zirconium or zirconium alloy article, keeping the dissolved metal in solution while simultaneously anodizing the article surfaces. Such nickel, if not removed provides a window for hydride accumulation to occur, detrimentally affecting the alloy properties when subject to a nuclear reactor environment. An article placed in the electrolyte in proximity to a cathode and connected to a power source has the trace nickel, nickel alloys and alloys containing nickel removed to background levels and reduces the potential for hydride accumulation within the article in a nuclear reactor environment, and provides for increased article life.
    Type: Grant
    Filed: September 16, 1991
    Date of Patent: November 23, 1993
    Assignee: Siemens Power Corporation
    Inventor: Michael J. Kirkman
  • Patent number: 5215606
    Abstract: A method for preparing decorative lacquered Ti-based articles is disclosed, which method comprises the steps of: (a) heating to 900.degree. to 1300.degree. in vacuum a base of titanium or its alloy whose surface serves as a base material, to grow the crystal grains on the surface of the base while simultaneously thermally etching the surface, so as to make the base surface uneven; (b) cooling the base; (c) etching the surface of the base with an etchant to enlarge the unevenness of the surface; (d) anodizing the base; (e) applying an undercoat onto the surface of the base; (f) optionally heating the undercoat to cure the same; and (g) further applying a coating onto the undercoat and then drying it. The method makes it possible to prepare decorative lacquered Ti-based articles having a Raden-, Hyomon- or Heidatsu, Kyushitsu- or Makie-like appearance utilizing titanium or its alloy as a base material.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: June 1, 1993
    Assignee: Zivaco, Co., Ltd.
    Inventor: Shoji Tsukamoto
  • Patent number: 5154816
    Abstract: A process for depositing an anti-wear coating on a titanium-based substrate comprises:a) roughening the substrate by sanding;b) deposition of a keying nickel sub-layer on the substrate by cathodic spraying (cathode sputtering);c) intermediate cleaning;d) activation of the cleaned part by immersion of the part in a cyanide bath;e) electrolytic deposition of nickel; andf) deposition of a final, anti-wear layer of a material selected from the group consisting of Ag, Cr, Ni, Co, and mixtures thereof, with or without ceramic particles such as SiC, Cr.sub.2 C.sub.3, Al.sub.2 O.sub.3, Cr.sub.2 O.sub.3.
    Type: Grant
    Filed: July 26, 1991
    Date of Patent: October 13, 1992
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A."
    Inventors: Robert L. Martinou, Michel M. Ruimi
  • Patent number: 5149420
    Abstract: A method for plating palladium on Group IV-B and V-B metals, particularly niobium, vanadium, zirconium, titanium and tantalum as pure metals and as alloys is described. The method provides the metal to be plated with a roughened exposed surface to be plated which has been electrolytically hydrided and then the surface is plated using electroless or electrolytic plating. Hydride is removed from the plated surface, usually by heating. This also removes other surface impurities and aids the coat adhesion. The resulting palladium plated metal articles are usful for hydrogen extraction.
    Type: Grant
    Filed: July 16, 1990
    Date of Patent: September 22, 1992
    Assignee: Board of Trustees, operating Michigan State University
    Inventors: Robert E. Buxbaum, Peter C. Hsu
  • Patent number: 5098528
    Abstract: A method for the making of an integrated type of LC component comprises the following steps;the coiling of an elongated element made of a metal with valve effect, the ends of which constitute two electrodes;the anodization of the element to form a dielectric layer;impregnation by an electrolyte, andthe positioning of a third electrode in a known way.Application to integrated passive components.
    Type: Grant
    Filed: June 26, 1991
    Date of Patent: March 24, 1992
    Assignee: Compagnie Europeene de Composants Electroniques LCC
    Inventors: Francois DeLalande, Dominique Poupard
  • Patent number: RE33800
    Abstract: This invention relates to an improved method for electroplating a layer of nickel into titanium base alloy substrates. It is particularly useful in electroplating a layer of nickel onto titanium alloys which contain refractory metal elements, such as the alloy Ti-8Al-1V-1Mo. The method includes the steps of etching the surface of the substrate with a solution containing hydrofluoric acid and hydrochloric acid, followed by electroplating the etched surface in a nickel sulfamate solution.
    Type: Grant
    Filed: December 27, 1990
    Date of Patent: January 21, 1992
    Assignee: United Technologies Corporation
    Inventors: Donald E. Fornwalt, Gary M. Lomasney, Kostas Routsis