Group Viib Transition Metal (i.e., Mn, Tc, Or Re) Patents (Class 205/262)
-
Patent number: 11078572Abstract: Method for preparing high-strength and durable super-hydrophobic film layer on inner wall of elongated metal tube includes roughening treatment of inner wall of a metal tube, electrodepositing preparation of nickel-phosphorus alloy layer and functional coating, heat treatment, subsequent anodizing and low surface energy modification. The method greatly reduces the influence of local mass transfer resistance, and a uniform nanocrystalline film layer is electroplated under the ultrasound induction. Since only electroplating solution is filled in the tube during the preparation process, the consumption of device and raw materials is greatly reduced. Also, since silica particles are added to the electroplating solution in preparing the nanocrystalline film layer, the surface morphology can be made more uniform and denser in terms of the microscopic morphology.Type: GrantFiled: January 14, 2019Date of Patent: August 3, 2021Assignee: NORTHEAST PETROLEUM UNIVERSITYInventors: Huaiyuan Wang, Ziyi Hu, Yanji Zhu, Yixing Zhu, Chijia Wang
-
Patent number: 9752243Abstract: The invention relates to a method of fabricating a bath of electrolyte for plating a platinum-based metal underlayer on a metallic substrate, comprising: a) providing a first system having ligands and amine functional groups, the first system being constituted by an aqueous solution of an amino ligand comprising at least one compound X—(NH2)n, where X belongs to the group constituted by (CH3, CH3—CH2, CH3—(CH2)m), or NH3 or an xP?(NH4)+p salt where x is an acid radical belonging to the group constituted by (PO43?, HPO42?, H2PO4?, HPO42?and H2PO4?, SO42?, HSO4?, H2SO4, HSO4?, and H2SO4, CH3COO?, CH3COOH, and CH3COO?), or H2SO4, or CH3COOH, and where n, m, and p are non-zero integers; b) providing a second system forming a buffer system; c) providing a third system providing a metallic salt, and constituted by an aqueous solution of platinum; d) providing a fourth system suitable for imparting the conduction property to the medium; and e) mixing together the four systems so as to obtain the electrolyte bath.Type: GrantFiled: April 18, 2013Date of Patent: September 5, 2017Assignee: SNECMAInventors: Juliette Hugot, Frederic Lagrange, Herve Molet
-
Patent number: 8652308Abstract: An electrolyzer for high temperature electrolysis capable of operating in an allothermal mode including an enclosure, at least one electrolysis plate (8) including an anode and a cathode in combination and means for heating an active fluid intended to undergo a high temperature electrolysis, characterized in that the enclosure is capable of maintaining an electrolyte bath under high or very high pressure of several tens of bars, in that said heating means ( 10) are positioned in the enclosure and use a heat transfer fluid.Type: GrantFiled: July 31, 2008Date of Patent: February 18, 2014Assignee: Commissariat a l'Energie Atomique et Aux Energies AlternativesInventor: Patrick Aujollet
-
Publication number: 20130264215Abstract: The present invention relates to an anode system for conventional electrolysis cells, a process for the production thereof and its use for the deposition of electrolytic coatings. The anode system is characterized in that the anode (2) is in direct contact with a membrane (3) which completely separates the anode space from the cathode space. This anode system is therefore a direct-contact membrane anode.Type: ApplicationFiled: December 8, 2011Publication date: October 10, 2013Applicant: UMICORE GALVANOTECHNIK GMBHInventors: Bernd Weyhmueller, Franz Kohl, Uwe Manz, Klaus Bronder, Frank Oberst, Mario Tomazzoni
-
Publication number: 20120298519Abstract: An electrolytic composition for the deposition of a matt metal layer onto a substrate and deposition process where the composition comprises a source of metal from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, In, Sn, Sb, Re, Pt, Au, Bi, and combinations thereof; a substituted or unsubstituted polyalkylene oxide or its derivative as an emulsion and/or dispersion former; and a compound comprising fluorated or perfluorated hydrophobic chains or which is a polyalkylene oxide substituted quaternary ammonium compound as wetting agent; wherein the electrolytic composition forms a microemulsion and/or dispersion.Type: ApplicationFiled: June 4, 2012Publication date: November 29, 2012Applicant: ENTHONE INC.Inventors: Andreas Königshofen, Danica Elbick, Christoph Werner, Wolfgang Clauberg, Peter Pies, Andreas Möbius
-
Publication number: 20110045351Abstract: A method, including placing a substrate of a battery in a bath consisting of a metal M chosen from a metal group consisting of Fe, Ni, Co, Cu, W, V, and Mn, an oxidant selected from an oxidant group consisting of oxygen and sulfur, and a polymer. The method also includes applying an electrical current so as to form on the substrate a metal M compound cathode having a nanoscale grain structure.Type: ApplicationFiled: August 19, 2010Publication date: February 24, 2011Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.Inventors: Emanuel Peled, Diana Golodnitsky, Hadar Mazor-Shafir, Kathrin Freedman, Tania Ripenbein
-
Publication number: 20100044240Abstract: When depositing a metal or a compound of the metal from a liquid crystal phase comprising a metal compound, e.g. a metal salt, by electrochemical means, high concentrations of the salt may be employed by using an ionic surfactant in place of the commonly used non-ionic surfactant.Type: ApplicationFiled: September 7, 2007Publication date: February 25, 2010Inventors: Jennifer Kimber, Daniel Peat
-
Publication number: 20090224422Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.Type: ApplicationFiled: January 9, 2009Publication date: September 10, 2009Inventor: Valery M. Dubin
-
Publication number: 20090223830Abstract: A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.Type: ApplicationFiled: October 2, 2006Publication date: September 10, 2009Applicants: C. UYEMURA & CO., LTD., OSAKA UNIVERSITYInventors: Masanobu Tsujimoto, Isamu Yanada, Katsuaki Suganuma, Keunsoo Kim
-
Publication number: 20090098310Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.Type: ApplicationFiled: October 10, 2007Publication date: April 16, 2009Applicant: ZIMMER, INC.Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
-
Publication number: 20090008258Abstract: A porous catalyst structure with a high specific surface area comprising a porous substrate with a catalyst layer thereon is provided. The porous catalyst structure can be prepared by a process comprising depositing a metallic layer onto the surface of a porous, metallic substrate by electroplating, and optionally oxidizing the metallic layer into the metal oxide layer. Any conductive porous metallic substrate can be used as the substrate of the subject invention, and the metallic layer may comprise any suitable metal(s) and/or metal oxide(s) with desired catalytic function(s).Type: ApplicationFiled: May 23, 2008Publication date: January 8, 2009Applicant: GREEN HYDROTEC INC.Inventors: Min Hon Rei, Shih Chung Chen, Yu Ling Kao, Chia Yeh Hung
-
Publication number: 20080302668Abstract: An electrolytic composition for the deposition of a matt metal layer onto a substrate and deposition process where the composition comprises a source of metal from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, In, Sn, Sb, Re, Pt, Au, Bi, and combinations thereof; a substituted or unsubstituted polyalkylene oxide or its derivative as an emulsion and/or dispersion former; and a compound comprising fluorated or perfluorated hydrophobic chains or which is a polyalkylene oxide substituted quaternary ammonium compound as wetting agent; wherein the electrolytic composition forms a microemulsion and/or dispersion.Type: ApplicationFiled: July 7, 2008Publication date: December 11, 2008Applicant: ENTHONE INC.Inventors: Andreas Konigshofen, Danica Elbick, Christoph Werner, Wolfgang Clauberg, Peter Pies, Andreas Mobius
-
Patent number: 7214306Abstract: A method of depositing rhenium onto a substrate comprising dissolving rhenium oxide in a hydrogen peroxide solution, immersing a negative and a positive electrode into the solution, immersing a substrate to be coated with rhenium into the solution next to the negative electrode or, alternatively, using the substrate to be coated as the negative electrode, and applying a current between the two electrodes.Type: GrantFiled: April 18, 2005Date of Patent: May 8, 2007Assignee: The United States of America as represented by the Secretary of the NavyInventor: William A. Ferrando
-
Publication number: 20030085132Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The Metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.Type: ApplicationFiled: October 2, 2001Publication date: May 8, 2003Applicant: Shipley Company, L.L.C.Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
-
Publication number: 20020070122Abstract: Lightweight and reactive metals can be produced from ore, refined from alloy, and recycled from metal matrix composites using electrolysis in electrolytes including an ionic liquid containing a metal chloride at or near room temperature. Low electric energy consumption and pollutant emission, easy operation and low production costs are achieved.Type: ApplicationFiled: October 19, 2001Publication date: June 13, 2002Applicant: THE UNIVERSITY OF ALABAMAInventors: Banqiu Wu, Ramana G. Reddy, Robin D. Rogers
-
Patent number: 6294070Abstract: A process for electrolytically producing an amalgam from metal salt, using an anion exchanger membrane. The chlorine-free process provides amalgam produced from metal salt and having a high degree of purity, and ensures advantageous parameters, such as a low cell voltage and high current efficiencies.Type: GrantFiled: March 19, 1999Date of Patent: September 25, 2001Assignee: Degussa-Huels AktiengesellschaftInventors: Carl Heinz Hamann, Peter Schmittinger, Joerg Helling
-
Patent number: 6183545Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1) in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.Type: GrantFiled: June 28, 1999Date of Patent: February 6, 2001Assignee: Daiwa Fine Chemicals Co., Ltd.Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune
-
Patent number: 5894077Abstract: A radioactive waste stream (12) is of high pH and contains a wide variety of different fission products and also organic materials which act as complexants. Technetium and/or ruthenium are removed by first electrolytically oxidising the organic materials at an anodically stable anode (26), and then electrolytically reducing the technetium and/or ruthenium at a porous fluid-permeable cathode (42). The cathode (42) might for example be of lead wool.Type: GrantFiled: October 21, 1997Date of Patent: April 13, 1999Assignee: AEA Technology plcInventors: Christopher Peter Jones, Paul Antony Harry Fennell, Patrick Alan Fletcher