Palladium Patents (Class 205/265)
-
Patent number: 6743950Abstract: A novel complex salt off palladium sulfate and ethylenediamine contains 31 to 41% by weight of palladium and has a molar ratio [SO4]:[Pd] of between 0.9 and 1.15 and a ratio [ethylenediamine ]:[Pd] of between 0.8 and 1.2. The invention further relates to a process for the preparation of this complex salt, and to the use of this complex salt for introducing palladium into an aqueous electrolysis bath of acidic pH for the electrochemical deposition of palladium or one of its alloys, or for adjusting the palladium concentration of such a bath.Type: GrantFiled: October 3, 2002Date of Patent: June 1, 2004Assignee: Metalor Technologies France SASInventors: José Gonzalez, Lionel Chalumeau, Michel Limayrac
-
Patent number: 6736954Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.Type: GrantFiled: October 2, 2001Date of Patent: May 18, 2004Assignee: Shipley Company, L.L.C.Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
-
Publication number: 20040074778Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, platinum, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.Type: ApplicationFiled: October 10, 2003Publication date: April 22, 2004Applicant: Shipley Company, L.L.C.Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
-
Publication number: 20030183533Abstract: The invention relates to an aqueous electrolysis bath of acidic pH for the electrochemical deposition of palladium or its alloys, said bath comprising a palladium compound and optionally at least one compound of a secondary metal to be codeposited in the form of an alloy with the palladium, and also comprising ethylenediamine as a palladium complexing agent, and an organic brightening agent, in which bath said brightening agent is 3-(3-pyridyl)acrylic acid, 3-(3-quinolyl)acrylic acid or one of their salts.Type: ApplicationFiled: October 3, 2002Publication date: October 2, 2003Inventors: Jose Gonzalez, Lionel Chalumeau, Michel Limayrac
-
Patent number: 6620304Abstract: A bath system for galvanic deposition of metals includes a solution containing at least one metal, especially a precious metal and/or precious metal alloy in the form of a water-soluble salt, at least one water-soluble protein material or amino acid and/or at least one water-soluble sulfonic acid, at least one water-soluble nitro-containing substance, at least one water-soluble surface-active agent and at least one vitamin. The bath system galvanostatically applies high quality layers with uniform quality. The bath system can be kept free of harmful substances such as cyanides, sulfites and hard complexing agents.Type: GrantFiled: December 4, 2001Date of Patent: September 16, 2003Inventor: Gerhard Hoffacker
-
Patent number: 6596149Abstract: A capacitor having an electrode formed by electroplating, and a manufacturing method thereof are disclosed. According to an embodiment of the invention, a conductive film is formed on a conductive plug connected to an active region of a semiconductor substrate, and on an interlayer dielectric (ILD) film formed around the conductive plug. Then, a non-conductive pattern exposing a part of the conductive film on the conductive plug is formed on the conductive film, and a lower electrode, which is formed of a platinum (Pt) group metal, is formed on the conductive film by electroplating. In addition, the lower electrode can have a rectangular, T-shaped, reverse trapezoid or barrel-shaped cross-section. Electroplating can similarly form an upper electrode of the capacitor.Type: GrantFiled: June 1, 1999Date of Patent: July 22, 2003Assignee: Samsung Electronics Co., Ltd.Inventor: Hideki Horii
-
Publication number: 20030102226Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.Type: ApplicationFiled: October 2, 2001Publication date: June 5, 2003Applicant: Shipley Company, L.L.C.Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
-
Publication number: 20030085132Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The Metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.Type: ApplicationFiled: October 2, 2001Publication date: May 8, 2003Applicant: Shipley Company, L.L.C.Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
-
Publication number: 20030070934Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.Type: ApplicationFiled: October 2, 2001Publication date: April 17, 2003Applicant: Shipley Company, L.L.C.Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
-
Publication number: 20030066756Abstract: A metal plating bath and method for plating a metal on a substrate. The metal plating bath contains hydroxylamines that inhibit the consumption of additive bath components to improve the efficiency of metal plating processes. The additive bath components are added to metal plating baths to improve brightness of plated metal as well as the micro-throwing and macro-throwing power of the bath. In addition to brighteners, the additive bath components may include levelers, suppressors, hardeners, and the like. The hydroxylamines that inhibit additive consumption may be employed in metal plating baths for plating copper, gold, silver, platinum, palladium, cobalt, cadmium, nickel, bismuth, indium, tin, rhodium, iridium, ruthenium and alloys thereof.Type: ApplicationFiled: October 4, 2001Publication date: April 10, 2003Applicant: Shipley Company, L.L.C.Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
-
Publication number: 20020144909Abstract: The present invention provides a palladium plating solution comprising at least 1 to 60 g/L, in terms of the amount of palladium, of a soluble palladium salt and 0.1 to 300 g/L of a sulfamic acid or its salt, the palladium plating solution being substantially free from a brightening agent. This plating solution can be used to form, on a substrate, a palladium plating having on its surface an acicular crystal, and, thus, a plating having excellent adhesion to resin can be provided on the surface of a substrate.Type: ApplicationFiled: September 5, 2001Publication date: October 10, 2002Applicant: MATSUDA SANGYO CO., LTD.Inventor: Shinji Ueki
-
Patent number: 6346222Abstract: This invention provides a process of making a palladium replenisher comprising a complex of palladium tetraammine sulfate. The process includes distilling a palladium nitrate solution at a temperature maintained at or below about 115° C. Palladium sulfate and ammonium hydroxide are then added to make the palladium tetraamine sulfate replenisher from solution. The replenisher of the invention is used to replenish depleted palladium during palladium electroplating to maintain the palladium concentration in the bath within from about 5 to about 10 weight percent of recommended plating bath levels.Type: GrantFiled: June 1, 1999Date of Patent: February 12, 2002Assignee: Agere Systems Guardian Corp.Inventors: Joseph Anthony Abys, Conor Anthony Dullaghan, Peter Epstein, Joseph John Maisano, Jr.
-
Patent number: 6344125Abstract: A process for the electrolytic deposition of a metal, preferably copper or an alloy of copper, directly onto a barrier layer coated on a dielectric layer. The process is advantageous because it electrolytically deposits metal in a pattern that is either the duplicate of a first conductive pattern under the dielectric or the inverse image of the first conductive pattern, depending on the first conductive pattern shape. Thus, metal is deposited on the barrier layer duplicating a first conductive pattern under the dielectric layer when the first pattern is a serpentine pattern and the metal deposits in the spaces between the conductive lines of a first conductive pattern of a discrete passive element such as a spiral.Type: GrantFiled: April 6, 2000Date of Patent: February 5, 2002Assignee: International Business Machines CorporationInventors: Peter S. Locke, Kevin S. Petrarca, Seshadri Subbanna, Richard P. Volant
-
Patent number: 6336962Abstract: The present invention describes a method of producing gold coating on a workpiece having a palladium surface, having the steps of: a) making an aqueous solution containing at least one compound selected from the group of compounds containing gold(I) and gold(III) ions and additionally at least one organic compound selected from the group consisting of formic acid, aromatic carboxylic acids having the chemical formula: where R1, . . . , R4=H, alkyl, alkenyl, alkynyl, OH, and the salts, esters or amides of these compounds; b) adjusting the pH of the solution to 1 to 6 using pH adjusting agents; and c) bringing the workpiece into contact with the solution such that gold coating is plated onto the palladium surface.Type: GrantFiled: July 7, 2000Date of Patent: January 8, 2002Assignee: Atotech Deutschland GmbHInventors: Petra Backus, Hartmut Mahlkow, Christian Wunderlich
-
Publication number: 20010050232Abstract: MEMS structures are provided that compensate for ambient temperature changes, process variations, and the like, and can be employed in many applications. These structures include an active microactuator adapted for thermal actuation to move in response to the active alteration of its temperature. The active microactuator may be further adapted to move in response to ambient temperature changes. These structures also include a temperature compensation element, such as a temperature compensation microactuator or frame, adapted to move in response to ambient temperature changes. The active microactuator and the temperature compensation element move cooperatively in response to ambient temperature changes. Thus, a predefined spatial relationship is maintained between the active microactuator and the associated temperature compensation microactuator over a broad range of ambient temperatures absent active alteration of the temperature of the active microactuator.Type: ApplicationFiled: March 15, 2001Publication date: December 13, 2001Inventors: Edward Hill, Robert L. Wood, Ramaswamy Mahadevan
-
Patent number: 6323128Abstract: A method for forming a quaternary alloy film of Co—W—P—Au for use as a diffusion barrier layer on a copper interconnect in a semiconductor structure and devices formed incorporating such film are disclosed. In the method, a substrate that has copper conductive regions on top is first pre-treated by two separate pre-treatment steps. In the first step, the substrate is immersed in a H2SO4 rinsing solution and next in a solution containing palladium ions for a length of time sufficient for the ions to deposit on the surface of the copper conductive regions. The substrate is then immersed in a solution that contains at least 15 gr/l sodium citrate or EDTA for removing excess palladium ions from the surface of the copper conductive regions.Type: GrantFiled: May 26, 1999Date of Patent: November 27, 2001Assignee: International Business Machines CorporationInventors: Carlos Juan Sambucetti, Judith Marie Rubino, Daniel Charles Edelstein, Cyryl Cabral, Jr., George Frederick Walker, John G Gaudiello, Horatio Seymour Wildman
-
Publication number: 20010009724Abstract: Deposition of metal in a preferred shape, including coatings on parts, or stand-alone materials, and subsequent heat treatment to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25° C. This technique involves depositing a material in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment. This moderate heat treatment differs from other commonly employed “stress relief” heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. Coating and heat treating a spring-shaped substrate provides a resilient, conductive contact useful for electronic applications.Type: ApplicationFiled: January 29, 2001Publication date: July 26, 2001Inventors: Jimmy Kuo-Wei Chen, Benjamin N. Eldridge, Thomas H. Dozier, Junjye J. Yeh, Gayle J. Herman
-
Patent number: 6251249Abstract: Formulations and procedures for the deposition of precious metals onto solid substrates are disclosed wherein the formulations are iodide-free and contain an organosulfur compound and/or a carboxylic acid and a source of soluble precious metal ion which is one or more precious metal alkanesulfonates, precious metal alkanesulfonamides and/or precious metal alkanesulfonimides. The formulations and processes may be cyanide-free, and the deposition may be effected by electrolytic, electroless and/or immersion plating techniques.Type: GrantFiled: July 13, 1999Date of Patent: June 26, 2001Assignee: Atofina Chemicals, Inc.Inventors: Jean W. Chevalier, Michael D. Gernon, Patrick K. Janney
-
Patent number: 6203936Abstract: Thin, light weight bipolar plates for use in electrochemical cells are rapidly, and inexpensively manufactured in mass production by die casting, stamping or other well known methods for fabricating magnesium or aluminum parts. The use of a light metal, such as magnesium or aluminum minimizes weight and simultaneously improves both electrical and thermal conductivity compared to conventional carbon parts. For service in electrochemical cells these components must be protected from corrosion. This is accomplished by plating the surface of the light weight metal parts with a layer of denser, but more noble metal. The protective metal layer is deposited in one of several ways. One of these is deposition from an aqueous solution by either electroless means, electrolytic means, or a combination of the two. Another is deposition by electrolytic means from a non-aqueous solution, such as a molten salt.Type: GrantFiled: March 3, 1999Date of Patent: March 20, 2001Assignee: Lynntech Inc.Inventors: Alan J. Cisar, Oliver J. Murphy, King-Tsai Jeng, Carlos Salinas, Stan Simpson, Dacong Weng
-
Patent number: 6183545Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1) in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.Type: GrantFiled: June 28, 1999Date of Patent: February 6, 2001Assignee: Daiwa Fine Chemicals Co., Ltd.Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune
-
Patent number: 6159623Abstract: A palladium plating film having excellent soldering characteristics, including excellent solder wettability, high solder wetting speed, and especially the maintenance of these characteristics in a high-temperature atmosphere, is produced by using a palladium plating solution. The palladium plating film can be used, for example, for the plating of electrical and electronic parts. The palladium plating solution used contains a soluble palladium salt and a quaternary compound, and, if necessary, further contains a pyridine derivative or a salt thereof, and optionally further contains at least one compound selected from ammonium chloride, ammonium hydrogenphosphate, ammonium nitrate, ammonium sulfate, ammonium chloride and boric acid or a soluble selenium salt.Type: GrantFiled: May 21, 1998Date of Patent: December 12, 2000Assignee: Matsushita Electric Industrial Co., Ltd.Inventor: Hisahiro Tanaka
-
Patent number: 6143159Abstract: An electrochemical autothermal reformer (EATR) provides hydrogen. The EATR includes an autothermal reformer region, a reformer anode supply region, and a composite membrane layer separating the reformer anode from the autothermal reformer region. The composite membrane layer includes a mechanically stable porous ceramic support member with a thin gas permeable ceramic substrate layer overlaying the support member. Overlaying the substrate layer is a first thin metallic catalyst layer which promotes the dissociation of H.sub.2 to 2H.sup.+ +2e.sup.31 . Overlaying the first catalyst layer is a metallic oxide layer capable of conducting 2H.sup.+ +2e.sup.- at elevated temperatures. Overlaying the metallic oxide layer is a second thin metallic catalyst layer which promotes the recombination of 2H.sup.+ +2e.sup.31 to H.sub.2.Type: GrantFiled: May 21, 1999Date of Patent: November 7, 2000Assignee: Niagara Mohawk Power CorporationInventors: David P. Bloomfield, Arthur N. Rabe
-
Patent number: 6143431Abstract: Palladium-103 radiochemical of high radionuclidic purity can be produced in commercial scale quantities by irradiating enriched Palladium targets comprising a mixture of Pd isotopes with protons or deuterons in the 10-50 MeV energy range. Commercially viable batch sizes with acceptable specific activity of the product Pd-103 are achieved by adjusting the irradiation energy, irradiation time, irradiation current, current density, plated target mass, plated target shape, plated target size, target isotope enrichment levels, and incident angle of the target to the beam. The method for the production of Pd-103 comprises providing a target material enriched with Pd isotopes comprising atomic masses equal to or greater than Pd-103, applying the target material onto a target support; irradiating the target material with protons or deuterons of sufficient incident energy and time to convert at least some of the Pd isotopes within the target material to Pd-103; and purifying Pd from the non-Pd components.Type: GrantFiled: May 4, 1998Date of Patent: November 7, 2000Inventor: Brian A. Webster
-
Patent number: 6139977Abstract: A surface finish which provides improved wirebonding performance for integrated circuit packages is disclosed. The surface finish which is formed on a substrate includes a palladium layer and one or more material layers. The one or more material layers are interposed between the substrate and the palladium layer. The palladium layer has a hardness that is less than about 500 (KHN.sub.50) while at least one material layer has a hardness that is less than about 250 (KHN.sub.50).Type: GrantFiled: June 10, 1998Date of Patent: October 31, 2000Assignee: Lucent Technologies Inc.Inventors: Joseph Anthony Abys, Alan Blair, Chonglun Fan
-
Patent number: 5976344Abstract: An aqueous electroplating bath for the electrodeposition of palladium alloys in a mixed ligand system. A first ligand operates to form a complex of palladium and a second ligand functions to form a complex of another metal which brings the plating potentials of the two metals closer together. Palladium and the alloying metal thus exist as complexes with different structures.Type: GrantFiled: November 19, 1997Date of Patent: November 2, 1999Assignee: Lucent Technologies Inc.Inventors: Joseph Anthony Abys, Irina Boguslavsky, Heinrich K. Straschil
-
Patent number: 5948222Abstract: Disclosed is a method of reactivating a deactivated anode that has a coating of a noble metal or noble metal oxide on a substrate. A coating of a noble metal is deposited on the anode either electrolessly or electrolytically. The noble metal in the deposited coating can be platinum, palladium, iridium, rhodium, ruthenium, osmium, or a mixture thereof.Type: GrantFiled: May 1, 1995Date of Patent: September 7, 1999Assignee: Occidental Chemical CorporationInventors: Chao-Peng Chen, Tilak V. Bommaraju
-
Patent number: 5660708Abstract: It is an object of this invention to provide a process for manufacturing a lead frame by polishing a blank for a lead frame electrolytically and plating the electrolytically polished surface of the blank with a metal, which process enables the electrolytic polishing of the blank to be continued for a long time by employing a contactless electrolytic polishing apparatus, and can form an electrolytically polished surface which is sufficiently smooth to allow it to be plated with a very good metal coating.The contactless electrolytic polishing apparatus is employed for applying a direct current with ripples having a frequency of 40 to 120 Hz alternately to the anode and cathode in an electrolytic polishing tank filled with an electrolytic polishing solution, so that the time for which the blank positioned between both electrodes functions as the anode may be at least 3.3 times longer than that for which it functions as the cathode, and the blank is, then, plated with a metal by employing a customary method.Type: GrantFiled: November 21, 1995Date of Patent: August 26, 1997Assignee: Sumitomo Metal Mining Company, LimitedInventors: Yoshimaro Tezuka, Katsuhisa Tokunaga, Mitsuyuki Kakimoto, Shigeki Ogawa, Miyuki Tani, Satoshi Kobayashi, Kiyotaka Sasaki, Motoyuki Tomizawa
-
Patent number: 5580437Abstract: A particular anode comprising an electrochemically active material selected from the group consisting of the oxides of the elements tin, germanium and lead and mixtures comprising at least one of the respective oxides of such elements is useful in an electrochemical cell for the direct production of essentially dry halogen gas from essentially anhydrous halogen halide, or in a process for such production of essentially dry halogen gas. This cell or process may be used to produce halogen gas such as chlorine, bromine, fluorine and iodine from a respective anhydrous hydrogen halide, such as hydrogen chloride, hydrogen bromide, hydrogen fluoride and hydrogen iodide.Type: GrantFiled: May 20, 1994Date of Patent: December 3, 1996Assignee: E. I. Du Pont de Nemours and CompanyInventors: James A. Trainham, III, Clarence G. Law, Jr., John S. Newman, Kenneth B. Keating, Douglas J. Eames
-
Patent number: 5415685Abstract: The present invention relates to an improved metallic additive free palladium electroplating bath comprising the use of a sulfonic acid compound in combination with a special class of pyridine related nitrogen compounds to both stabilize the bath and to provide white palladium deposits over a wide range of plating thicknesses.Type: GrantFiled: August 16, 1993Date of Patent: May 16, 1995Assignee: Enthone-Omi Inc.Inventors: Vincent Paneccasio, Jr., Elena Too
-
Patent number: 5217599Abstract: Disclosed is a method for electroplating a metal sheet adapted for being used in electronic packaging material, such as printed circuit boards. Bismaleimide and its derivative are added into the plated solution so as to form insoluble particles of bismaleimide and its derivatives on the surface of the metal sheet. The resulting metal sheet is particularly adapted for being bonded to a polyimide film for the preparation of, for example, a printed circuit board. Also disclosed is a method of bonding the metal sheet of the present invention to a polyimide substrate. Precursor of polyimide are coated on the surface of the plate metal sheet and then thermal imidizing of the precursors takes place. No additional adhesives are needed for this bonding.Type: GrantFiled: November 8, 1991Date of Patent: June 8, 1993Assignee: Industrial Technology Research InstituteInventors: Ker-Ming Chen, Syh-Ming Ho, Tsung-Hsiung Wang, Richard P. Cheng, Aina Hung
-
Patent number: 5185073Abstract: A separable and reconnectable connection for electrical equipment is provided that is suitable for miniaturization in which vertical interdigitating members integrally attached and protruding from a planar portion are accommodated in control of damage in lateral displacement that occurs on mating with an opposite similar contact. Displacement damage is averted through accommodating lateral stresses by providing one or more of a conformal opposing contact, by strengthening through coating and base reinforcement and a deformable coating. The contacts are fabricated by physical and chemical processes including sputtering, normal and pulse electroplating and chemical vapor deposition. Pulse electroplating of palladium provides a dendritic deposit of uniform height, uniform rounded points and less branching. The contacts on completion are provided with a surrounding immobilizing material that enhances rigidity.Type: GrantFiled: April 29, 1991Date of Patent: February 9, 1993Assignee: International Business Machines CorporationInventors: Perminder S. Bindra, Jerome J. Cuomo, Thomas P. Gall, Anthony P. Ingraham, Sung K. Kang, Jungihl Kim, Paul Lauro, David N. Light, Voya R. Markovich, Ekkehard F. Miersch, Jaynal A. Molla, Douglas O. Powell, John J. Ritsko, George J. Saxenmeyer, Jr., Jack A. Varcoe, George F. Walker
-
Patent number: 5180482Abstract: This invention is concerned with production of electrical devices comprising an electrodeposited conductive region free from cracking defects. In the production of a contact portion of the device from a metal strip electroplated with a conductive stripe of an alloy, the stripe exhibited, upon stamping and forming operation, cracked areas. Typically, the stripe coating on the metal strip, such as a copper bronze material, includes a layer of nickel, a layer of palladium alloyed with nickel, cobalt, arsenic or silver, and a flash coating of hard gold. The cracking defects were eliminated by subjecting the plated strip to an annealing treatment prior to the stamping and forming operation. After the heat-treatment, the stripe was free from cracks and separations between the successive layers.Type: GrantFiled: July 22, 1991Date of Patent: January 19, 1993Assignee: AT&T Bell LaboratoriesInventors: Joseph A. Abys, Igor V. Kadija, Joseph J. Maisano, Jr., Shohei Nakahara
-
Patent number: 5178745Abstract: This invention is an acid palladium strike bath which improves adhesion and porosity of subsequent platings of palladium or palladium alloys on metal substrates, especially those susceptible to passivation such as nickel, chromium, bronze and steel. The acid palladium strike bath which is useful for both low-speed and high speed plating operation includes a complexing agent selected from organic diamines and has a pH ranging from 2.0 to 6.0, preferably from 3.7 to 4.1. When used on easily corrodable substrates, such as copper, the palladium strike deposit protects the parts from chemical attack in the subsequent mainplating bath and prevents its contamination.Type: GrantFiled: May 3, 1991Date of Patent: January 12, 1993Assignee: AT&T Bell LaboratoriesInventors: Joseph A. Abys, Heinrich K. Straschil
-
Patent number: 5149420Abstract: A method for plating palladium on Group IV-B and V-B metals, particularly niobium, vanadium, zirconium, titanium and tantalum as pure metals and as alloys is described. The method provides the metal to be plated with a roughened exposed surface to be plated which has been electrolytically hydrided and then the surface is plated using electroless or electrolytic plating. Hydride is removed from the plated surface, usually by heating. This also removes other surface impurities and aids the coat adhesion. The resulting palladium plated metal articles are usful for hydrogen extraction.Type: GrantFiled: July 16, 1990Date of Patent: September 22, 1992Assignee: Board of Trustees, operating Michigan State UniversityInventors: Robert E. Buxbaum, Peter C. Hsu
-
Patent number: RE36985Abstract: A particular anode comprising an electrochemically active material selected from the group .[.comprising.]. .Iadd.consisting of .Iaddend.the oxides of the elements tin, germanium and lead and mixtures comprising at least one of the respective oxides of such elements is useful in an electrochemical cell for the direct production of essentially dry halogen gas from essentially anhydrous halogen halide, or in a process for such production of essentially dry halogen gas. This cell or process may be used to produce halogen gas such as chlorine, bromine, fluorine and iodine from a respective anhydrous hydrogen halide, such as hydrogen chloride, hydrogen bromide, hydrogen fluoride and hydrogen iodide.Type: GrantFiled: June 8, 1998Date of Patent: December 12, 2000Assignee: E. I. du Pont de Nemours and CompanyInventors: James Arthur Trainham, III, Clarence Garland Law, Jr., John S. Newman