Antimony Patents (Class 205/315)
-
Patent number: 9435046Abstract: A high speed method of depositing palladium and palladium alloys is disclosed. The high speed method uses an aqueous, ammonia-based bath which has reduced free ammonia in the bath. The high speed method may be used to deposit palladium and palladium alloy coatings on various substrates such as electrical devices and jewelry.Type: GrantFiled: June 22, 2013Date of Patent: September 6, 2016Inventors: Wan Zhang-Beglinger, Margit Clauss, Jonas Guebey, Felix J. Schwager
-
Patent number: 8900716Abstract: An anodized aluminum product in continuous web or sheet form, which is heat sealed and coated with an antimicrobial composition. The antimicrobial coating can be bound to surface of the anodic layer and can comprise a network of cross-linked organo-silane molecules that are also covalently bound to the surface of the anodic layer. A process also is provided including: forming an anodic layer on the surface of an aluminum substrate; heat sealing the anodic layer; preheating the web or sheet to a range from about 140° F. to about 200° F.; applying an antimicrobial composition at an application rate sufficient for the composition to at least begin binding to the surface of and form an antimicrobial coating over the anodic layer; and post heating the coated anodized antimicrobial web or sheet to a range from about 140° F. to about 200° F. to further bind the composition to the cure the antimicrobial coating.Type: GrantFiled: February 10, 2009Date of Patent: December 2, 2014Assignee: Lorin Industries, Inc.Inventors: Lance W. Hodges, Thomas R. Achterhoff, Kevin H. Darcy, James A. Nalewick
-
Publication number: 20130264215Abstract: The present invention relates to an anode system for conventional electrolysis cells, a process for the production thereof and its use for the deposition of electrolytic coatings. The anode system is characterized in that the anode (2) is in direct contact with a membrane (3) which completely separates the anode space from the cathode space. This anode system is therefore a direct-contact membrane anode.Type: ApplicationFiled: December 8, 2011Publication date: October 10, 2013Applicant: UMICORE GALVANOTECHNIK GMBHInventors: Bernd Weyhmueller, Franz Kohl, Uwe Manz, Klaus Bronder, Frank Oberst, Mario Tomazzoni
-
Publication number: 20120298519Abstract: An electrolytic composition for the deposition of a matt metal layer onto a substrate and deposition process where the composition comprises a source of metal from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, In, Sn, Sb, Re, Pt, Au, Bi, and combinations thereof; a substituted or unsubstituted polyalkylene oxide or its derivative as an emulsion and/or dispersion former; and a compound comprising fluorated or perfluorated hydrophobic chains or which is a polyalkylene oxide substituted quaternary ammonium compound as wetting agent; wherein the electrolytic composition forms a microemulsion and/or dispersion.Type: ApplicationFiled: June 4, 2012Publication date: November 29, 2012Applicant: ENTHONE INC.Inventors: Andreas Königshofen, Danica Elbick, Christoph Werner, Wolfgang Clauberg, Peter Pies, Andreas Möbius
-
Publication number: 20090224422Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.Type: ApplicationFiled: January 9, 2009Publication date: September 10, 2009Inventor: Valery M. Dubin
-
Publication number: 20090223830Abstract: A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.Type: ApplicationFiled: October 2, 2006Publication date: September 10, 2009Applicants: C. UYEMURA & CO., LTD., OSAKA UNIVERSITYInventors: Masanobu Tsujimoto, Isamu Yanada, Katsuaki Suganuma, Keunsoo Kim
-
Publication number: 20090123789Abstract: There is disclosed articles for and methods of confining volatile materials in the void volume defined by crystalline void materials. In one embodiment, the hydrogen isotopes are confined inside carbon nanotubes for storage and the production of energy. There is also disclosed a method of generating various reactions by confining the volatile materials inside the crystalline void structure and releasing the confined volatile material. In this embodiment, the released volatile material may be combined with a different material to initiate or sustain a chemical, thermal, nuclear, electrical, mechanical, or biological reaction.Type: ApplicationFiled: May 9, 2008Publication date: May 14, 2009Inventors: William K. Cooper, James F. Loan, Christopher H. Cooper
-
Patent number: 7087315Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.Type: GrantFiled: September 21, 2004Date of Patent: August 8, 2006Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
-
Patent number: 6852210Abstract: To provide a plating method, which enables wide industrial use of the redox system electroless plating method having excellent characteristics, and a plating bath precursor which is preferable for the plating method. The plating method comprises a process oxidizing first metal ions of a redox system of a plating bath from a lower oxidation state to a high oxidation state, and second metal ions of said redox system are reduced and deposited onto the surface of an object to be plated, wherein a process is provided in which by supplying the electrical current to the plating bath, the first metal ions are reduced from said lower oxidation state to thereby activate the plating bath. The plating bath precursor is formed stabilizing the plating bath so that reduction and deposition of the second metal ions substantially do not occur in order to improve its storing performance.Type: GrantFiled: January 7, 2002Date of Patent: February 8, 2005Assignees: Daiwa Fine Chemicals Co., Ltd., Sumitomo Electric Industries, Ltd.Inventors: Keigo Obata, Dong-Hyun Kim, Takao Takeuchi, Seiichiro Nakao, Shinji Inazawa, Ayao Kariya, Masatoshi Majima, Shigeyoshi Nakayama
-
Patent number: 6773568Abstract: The present invention provides inter alia electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;,&bgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.Type: GrantFiled: July 16, 2003Date of Patent: August 10, 2004Assignee: Shipley Company, L.L.C.Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
-
Patent number: 6409906Abstract: A method and an aqueous electroplating solution for plating tarnish-resistant bluish-white antimony or antimony alloys containing at least one other metal from an aqueous acidic solution having a pH below about 6.0 at a temperature from about 65 to about 140° F.Type: GrantFiled: October 25, 2000Date of Patent: June 25, 2002Inventor: Chalo Matta Aoun
-
Patent number: 6183545Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1) in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.Type: GrantFiled: June 28, 1999Date of Patent: February 6, 2001Assignee: Daiwa Fine Chemicals Co., Ltd.Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune
-
Patent number: 5763507Abstract: An aqueous paint which exhibits improved dispersion property in the water and dispersion stability, has a low viscosity enabling the painting operation to be efficiently carried out, and cures at low temperatures within short periods of time to form a coating which after cured exhibits high degree of workability, high corrosion resistance, and elutes out little into the content. The aqueous paint comprises an epoxy acrylate resin prepared by modifying, with a (meth)acrylic monomer, a copolymerized epoxy resin having a number average molecular weight of 8,000 to 15,000 and containing, as phenolic components, a bisphenol-A component and a bisphenol-F component at a molar ratio of from 5:5 to 8:2, and a curing agent of a thermosetting resin having a methylol group.Type: GrantFiled: December 19, 1996Date of Patent: June 9, 1998Assignee: Toyo Seikan Kaisha, Ltd.Inventors: Toshinori Moriga, Shunji Kojima, Seishichi Kobayashi