Titanium Patents (Class 205/398)
  • Patent number: 11280013
    Abstract: A method to extract and refine metal products from metal-bearing ores, including a method to extract and refine titanium products. Titanium products can be extracted from titanium-bearing ores with TiO2 and impurity levels unsuitable for conventional methods.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: March 22, 2022
    Assignee: UNIVERSAL ACHEMETAL TITANIUM, LLC
    Inventors: James R. Cox, Chanaka L. De Alwis, Benjamin A. Kohler, Michael G. Lewis
  • Patent number: 10066307
    Abstract: In a method for removing a substance from a feedstock comprising a solid metal or a solid metal compound, the feedstock is contacted with a fused-salt melt. The fused-salt melt contains a fused salt, a reactive-metal compound, and a reactive metal. The fused salt comprises an anion species which is different from the substance, the reactive-metal compound comprises the reactive metal and the substance, and the reactive metal is capable of reaction to remove at least some of the substance from the feedstock. A cathode and an anode contact the melt, and the feedstock contacts the cathode. An electrical current is applied between the cathode and the anode such that at least a portion of the substance is removed from the feedstock. During the application of the current, a quantity of the reactive metal in the melt is maintained sufficient to prevent oxidation of the anion species of the fused salt at the anode.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: September 4, 2018
    Assignee: METALYSIS LIMITED
    Inventors: Allen Richard Wright, Stephen Holloway
  • Publication number: 20140231262
    Abstract: A method of producing metallic powder comprises steps of arranging a volume of feedstock comprising a plurality of non-metallic particles within an electrolysis cell, causing a molten salt to flow through the volume of feedstock, and applying a potential between a cathode and an anode such that the feedstock is reduced to metal. In preferred embodiments the feedstock is a plurality of discrete powder particles and these particles are reduced to a corresponding plurality of discrete metallic particles. In advantageous embodiments, the feedstock may be sand.
    Type: Application
    Filed: October 4, 2012
    Publication date: August 21, 2014
    Applicant: METALYSIS LIMITED
    Inventors: Kartik Rao, James Deane, Lucy Grainger, John Clifford, Melchiorre Conti, James Collins
  • Publication number: 20140116888
    Abstract: A method of producing titanium metal with titanium-containing material which includes mixing, pressing and drying the titanium-containing material with a carbonaceous reducing agent to obtain a resultant as a first anode. Using a metal or an alloy as a first cathode, and using an alkali metal chloride molten salt and/or an alkaline earth metal chloride molten salt as a first electrolyte to constitute a first electrolysis system, to perform pre-electrolysis in an inert atmosphere to obtain a residual anode. After the residual anode is washed, molded and dried, using the residual anode as a second anode, using a metal or an alloy as a second cathode, using an alkali metal chloride molten salt and/or an alkaline earth metal chloride molten salt as a second electrolyte to constitute a second electrolysis system, to perform electrolysis in an inert atmosphere to obtain titanium metal powder.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Inventors: HONGBO MU, TIANZHU MU, SANCHAO ZHAO, FUXING ZHU, BIN DENG, WEIXING PENG, BEILEI YAN
  • Publication number: 20130213819
    Abstract: A process for preparation of lower chlorides of titanium is provided, in which titanium tetrachloride (TiCl4) is reduced using a reducing agent in at least one molten alkali metal salt at a temperature of about 300 to about 1400° C. to obtain a reduced mass containing lower chlorides of titanium. A process for preparation of titanium metal from the lower chlorides of titanium is also provided.
    Type: Application
    Filed: October 24, 2011
    Publication date: August 22, 2013
    Inventor: Keki Hormusji Gharda
  • Patent number: 8313624
    Abstract: An inert anode material for use in electrolytic processes comprises calcium ruthenate. [Note that the nominal formula for this compound is CaRuO3, although different stoichiometries may apply in practice].
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 20, 2012
    Assignee: Green Metals Limited
    Inventors: Derek John Fray, Gregory Russlan Doughty
  • Publication number: 20120152756
    Abstract: A method of producing titanium, comprising providing an oxide of titanium having a level of impurities of at least 1.0 wt %, reacting the oxide of titanium to form a titanium oxycarbide; and electrolysing the titanium oxycarbide in an electrolyte, with the titanium oxycarbide configured as an anode; and recovering a refined titanium metal from a cathode in the electrolyte.
    Type: Application
    Filed: July 28, 2010
    Publication date: June 21, 2012
    Applicant: CHINUKA LIMITED
    Inventors: Derek J. Fray, Shuqiang Jiao
  • Patent number: 7985326
    Abstract: A system for purification of high value metals comprises an electrolytic cell in which an anode formed of a composite of a metal oxide of the metal of interest with carbon is electrochemically reduced in a molten salt electrolyte.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 26, 2011
    Assignee: Materials and Electrochemical Research Corp.
    Inventors: James C. Withers, Raouf O. Loutfy
  • Publication number: 20110158843
    Abstract: A method of removing oxygen from a solid metal, metal compound or semi-metal M1O by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface and that oxygen dissolves in the electrolyte M2Y and wherein, M1O is in the form of (sintered) granules or is in the form of a powder which is continuously fed into the fused salt. Also disclosed is a method of producing a metal foam comprising the steps of fabricating a foam-like metal oxide perform, removing oxygen from said foam structured metal oxide preform by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface. The method is advantageously applied for the production of titanium from Ti-dioxide.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 30, 2011
    Applicant: METALYSIS LIMITED
    Inventors: Charles M. Ward-Close, Alastair B. Godfrey
  • Patent number: 7918985
    Abstract: A method of reducing a titanium oxide in a solid state in an electrolytic cell which includes an anode, a cathode formed at least in part from the titanium oxide, and a molten electrolyte which includes cations of a metal that is capable of chemically reducing the cathode titanium oxide, which method includes operating the cell at a potential that is above a potential at which cations of the metal that is capable of chemically reducing the cathode titanium oxide deposit as the metal on the cathode, whereby the metal chemically reduces the cathode titanium oxide, and which method is characterized by refreshing the electrolyte and/or changing the cell potential in later stages of the operation of the cell as required having regard to the reactions occurring in the cell and the concentration of oxygen in the titanium oxide in the cell in order to produce high purity titanium.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: April 5, 2011
    Assignee: Metalysis Limited
    Inventors: Les Strezov, Ivan Ratchev, Steve Osborn
  • Patent number: 7901561
    Abstract: The present invention relates to a method for electrolytic production and refining of metals having a melting point above about 1000° C., particularly silicon, where there is provided a first electrolytic cell having an upper molten electrolyte layer of a first electrolyte, a lower molten alloy layer of an alloy of the metal to be refined and at least one metal more noble than the metal to be refined. The lower alloy layer is the cathode in the first cell and an anode is positioned in the upper molten electrolyte layer. A second electrolytic cell is also provided with an upper molten metal layer of the same metal as the metal to be refined, said layer constituting a cathode, a lower molten alloy layer, said lower layer constituting an anode, said alloy having a higher density than the metal to be refined, and an intermediate molten electrolyte layer having a density between the density of the upper and lower molten layers.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: March 8, 2011
    Assignee: Elkem AS
    Inventors: Kai Johansen, Donald R. Sadoway, Bjorn Myhre, Marianne Engvoll, Krister Engvoll
  • Patent number: 7790014
    Abstract: The present invention pertains to a method for removing a substance (X) from a solid metal or semi-metal compound (M1X) by electrolysis in a melt of M2Y, which comprises conducting the electrolysis under conditions such that reaction of X rather than M2 deposition occurs at a electrode surface, and that X dissolves in the electrolyte M2Y. The substance X is either removed from the surface (i.e., M1X) or by means of diffusion extracted from the case material. The temperature of the fused salt is chosen below the melting temperature of the metal M1. The potential is chosen below the decomposition potential of the electrolyte.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: September 7, 2010
    Assignee: Metalysis Limited
    Inventors: Derek John Fray, Thomas William Farthing, Zheng Chen
  • Publication number: 20090152122
    Abstract: The present invention provides a method for electrolyzing molten salt that can enhance the concentration of metal-fog forming metal in the molten salt by carrying out the electrolysis under conditions that the molten salt containing the chloride of metal-fog forming metal is supplied from one end of an electrolytic cell to a space between an anode and a cathode in a continuous or intermittent manner to provide a flow rate in one direction to the molten salt in the vicinity of the surface of the cathode and thus to allow the molten salt to flow in one direction in the vicinity of the surface of the cathode. According to the present invention, while high current efficiency is maintained, only the molten salt enriched with metal-fog forming metal such as Ca can be effectively taken out. Further, this method can easily be carried out by using the electrolytic cell according to the present invention.
    Type: Application
    Filed: August 22, 2006
    Publication date: June 18, 2009
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Toru Uenishi, Masahiko Hori, Kazuo Takemura, Katsunori Dakeshita
  • Publication number: 20090152104
    Abstract: A molten salt electrolyzer for reducing metal comprises an electrolytic cell filled with a molten salt composed of a reducing metal chloride, an anode immersed in the molten salt of the electrolytic cell and surrounded by a first wall at the periphery thereof, and a cathode immersed in the molten salt of the electrolytic cell and surrounded by a second wall at the periphery thereof.
    Type: Application
    Filed: June 21, 2006
    Publication date: June 18, 2009
    Inventors: Yuichi Ono, Masanori Yamaguchi
  • Publication number: 20090114546
    Abstract: The present invention provides a method by which a metal-fog-forming metal dissolved in one portion of “a molten salt mixture consisted of one or more of metal-fog-forming metal containing molten salts” (generally, a molten salt) can be removed and transferred to another portion of the molten salt to increase the concentration thereof. The method can hence be utilized as one of means for treating molten salts in various industrial fields in which metal-fog-forming metal-containing molten salts such as Ca or Na are handled. In particular, when the method is utilized in producing Ti by Ca reduction, the Ca dissolved in the molten salt to be fed to an electrolytic cell can be rapidly removed (recovered) and the Ca formation efficiency during the electrolysis of the molten salt can be enhanced. Consequently, Ca formation and TiCl4 reduction in the electrolysis of the molten salt can be efficiently carried out and a stable operation on a commercial scale is possible.
    Type: Application
    Filed: March 9, 2007
    Publication date: May 7, 2009
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi
  • Patent number: 7504017
    Abstract: This invention relates to a method for electrowinning of titanium metal or titanium alloys from electrically conductive titanium mixed oxide compounds in the liquid state such as molten titania slag, molten ilmenite, molten leucoxene, molten perowskite, molten titanite, molten natural or synthetic rutile or molten titanium dioxide. The method involves providing the conductive titanium oxide compound at temperatures corresponding to the liquid state, pouring the molten material into an electrochemical reactor to form a pool of electrically conductive liquid acting as cathode material, covering the cathode material with a layer of electrolyte, such as molten salts or a solid state ionic conductor, deoxidizing electrochemically the molten cathode by direct current electrolysis. Preferably, the deoxidizing step is performed at high temperature using either a consumable carbon anode or an inert dimensionally stable anode or a gas diffusion anode.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: March 17, 2009
    Assignee: QIT-Fer et Titane Inc.
    Inventor: Francois Cardarelli
  • Patent number: 7470355
    Abstract: A process for electrochemically reducing a metal oxide, such as titania, in a solid state in an electrochemical cell that includes a bath of molten electrolyte, a cathode, and an anode, which process includes the steps of: a) applying a cell potential across the anode and the cathode that is capable of electrochemically reducing the metal oxide supplied to the molten electrolyte bath, b) continuously or semi-continuously feeding the metal oxide in powder and/or pellet form into the molten electrolyte bath, c) transporting the powders and/or pellets along a path within the molten electrolyte bath and reducing the metal oxide as the metal oxide powders and/or pellets move along the path, and d) continuously or semi-continuously removing metal from the molten electrolyte bath. Also disclosed and claims is an electrochemical cell for carrying out this process.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 30, 2008
    Assignee: BHP Billiton Innovation Pty Ltd
    Inventors: Steve Osborn, Ivan Ratchev, Les Strezov, Greg Rigby
  • Publication number: 20080217184
    Abstract: An apparatus for producing Ti by Ca reduction by the invention includes a reaction tank retaining a molten salt in which a molten salt CaCl2 is contained and Ca is dissolved, an electrolytic cell retaining a molten salt containing CaCl2, and a continuum body which is movably constructed while part of the continuum body is immersed in the molten salt either within the reaction tank or electrolytic cell. In the inventive method for producing Ti by Ca reduction, the molten salt in the electrolytic cell is electrolyzed to generate Ca on the cathode side which is transported to the reaction tank while deposited on and adheres to the continuum body, and TiCl4 is supplied to the reaction tank to generate Ti.
    Type: Application
    Filed: October 26, 2005
    Publication date: September 11, 2008
    Applicants: SUMITOMO TITANIUM CORPORATION, TOHOTITANIUM CO., LTD.
    Inventors: Masahiko Hori, Tadashi Ogasawara, Makoto Yamaguchi, Toru Uenishi, Masanori Yamaguchi, Yuichi Ono, Susumu Kosemura, Eiji Nishimura
  • Publication number: 20080087139
    Abstract: A process for producing titanium metal sponge from an exothermic reaction between titanium tetrachloride vapor and molten magnesium vapor, and reclaiming reactive metals from by-products of the exothermic reaction.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 17, 2008
    Inventor: Sheldon A. Spachner
  • Patent number: 7169285
    Abstract: A low temperature method for reducing and purifying refractory metals, metal compounds, and semi-metals using a catalyst. Using this invention, TiO2 can be reduced directly to Ti metal at room temperature. The catalyst is an ion in an electrolyte that catalyzes the rate of the reduction of a compound MX to M, wherein M is a metal or a semi-metal; MX is a metal compound, a semi-metal compound, or a metal or semi-metal dissolved as an impurity in M; and X is an element chemically combined with or dissolved in M.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: January 30, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William E. O'Grady, Graham T. Cheek
  • Patent number: 7156974
    Abstract: A method of manufacturing titanium or titanium alloy semi-finished or ready-to-use products is disclosed. The method includes forming shaped bodies of titanium oxide particles and positioning the shaped bodies is an electrolytic cell which includes: an anode, a cathode, and a molten electrolyte. The shaped bodies are positioned to form at least a part of the cathode. The electrolyte includes cations of a metal that is capable of chemically reducing titanium oxide. The method further includes reducing the titanium oxide to titanium in a solid state in the electrolytic cell so that the shaped bodies become shaped bodies of titanium sponge. Finally, the method includes processing the shaped bodies of titanium sponge to reduce the volume or at least one of the dimensions of the bodies thereby to form the semi-finished or ready-to-use products.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: January 2, 2007
    Assignee: BHP Billiton Innovation Pty. Ltd.
    Inventors: Les Strezov, Ivan Ratchev, Steve Osborn, Kannappar Mukunthan
  • Patent number: 6958115
    Abstract: This invention discloses and claims the low temperature reduction and purification of refractory metals, metal compounds, and semi-metals. The reduction is accomplished using non-aqueous ionic solvents in an electrochemical cell with the metal entity to be reduced. Using this invention, TiO2 is reduced directly to Ti metal at room temperature.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: October 25, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William E. O'Gardy, Graham T. Cheeck
  • Patent number: 6921473
    Abstract: A method of removing oxygen from a solid metal, metal compound or semi-metal M1O by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface and that oxygen dissolves in the electrolyte M2Y and wherein, M1O is in the form of (sintered) granules or is in the form of a powder which is continuously fed into the fused salt. Also disclosed is a method of producing a metal foam comprising the steps of fabricating a foam-like metal oxide preform, removing oxygen from said foam structured metal oxide preform by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface. The method is advantageously applied for the production of titanium from Ti-dioxide.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: July 26, 2005
    Assignee: Qinetiq Limited
    Inventors: Charles M Ward-Close, Alistair B Godfrey
  • Publication number: 20040194574
    Abstract: This invention relates to a method for electrowinning of titanium metal or titanium alloys from electrically conductive titanium mixed oxide compounds in the liquid state such as molten titania slag, molten ilmenite, molten leucoxene, molten perowskite, molten titanite, molten natural or synthetic rutile or molten titanium dioxide. The method involves providing the conductive titanium oxide compound at temperatures corresponding to the liquid state, pouring the molten material into an electrochemical reactor to form a pool of electrically conductive liquid acting as cathode material, covering the cathode material with a layer of electrolyte, such as molten salts or a solid state ionic conductor, deoxidizing electrochemically the molten cathode by direct current electrolysis.
    Type: Application
    Filed: August 6, 2003
    Publication date: October 7, 2004
    Inventor: Francois Cardarelli
  • Patent number: 6299742
    Abstract: An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10−5 cm2/sec; a cathode and an anode, the cathode in electrical contact with the molten metal electrolyte, the cathode and molten electrolyte separated from the anode by an ionic membrane capable of transporting the anionic species of the electrolyte into the membrane; and a power source for generating a potential between the cathode and the anode.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 9, 2001
    Assignee: Trustees of Boston University
    Inventors: Uday Pal, Stephen C. Britten
  • Patent number: 6074545
    Abstract: A Process for the electrolytic production of metals particularly titanium and alloys starting from the corresponding compounds is disclosed, by means of an apparatus for the electrochemical extraction including: (1) a cathode-crucible containing a mass of solidified metal, a liquid electrolyte with a density which is lower than that of the metal and a pool of liquid metal produced; (2) one or more non-consumable anodes particularly immersed in the electrolyte with means for regulating their distance from the cathodic surface; (3) a feeding system to the electrolyte of the compounds of the metals, of the electrolyte constituents and of alloying materials; (4) a power supply which feeds direct current to the liquid metal, and through the electrolyte, to the anodes, and causes the cathodic reduction of the metal in liquid form and the evolution of anodic gas, with the heat generation which maintains the electrolyte in the molten state; and (5) an air-tight containment structure in which the anodic gases generate
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: June 13, 2000
    Assignee: Cathingots limited
    Inventor: Marco Vincenzo Ginatta
  • Patent number: 6063254
    Abstract: Described is a method and apparatus for producing high purity titanium and high purity titanium so produced. The process contemplates producing titanium sponge in a container and performing titanium fused salt electrolysis in situ in the same container to produce high purity titanium crystal, and where especially low oxygen content is desired, to treat the high purity titanium crystal as produced with iodine.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: May 16, 2000
    Assignee: The Alta Group, Inc.
    Inventors: Harry Rosenberg, Nigel Winters, Yun Xu
  • Patent number: 5976345
    Abstract: An amperometric in situ apparatus and technique for measuring the concentrations and transport properties of easily dissociable oxides in slags is described. The technique consists of a combination of different measurements utilizing an electrolyte to separate a reference-gas compartment from the slag of interest. A potentiometric measurement (type I) provides information on the thermodynamic properties of the slag; an amperometric measurement (type II) yields information concerning the type and transport properties of dissociable oxides; an electrolysis measurement (type III) determines the concentration of dissociable oxides. A method and apparatus for metals extraction is also described which includes a vessel for holding a molten electrolyte, the electrolyte comprising a mobile metallic species and an anionic species having a diffusivity greater than about 10.sup.-5 cm.sup.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: November 2, 1999
    Assignee: Boston University
    Inventors: Uday Pal, Stephen C. Britten
  • Patent number: 5584906
    Abstract: The crude Ti particles prepared by molten salt electrolysis or Iodide method are classified into each particle diameter according to contents of impurities, and the crude Ti particles having a desired particle diameter are selected from the crude Ti particles classified depending on each particle diameter. Otherwise, the crude Ti particles are acid-treated. Then they are electron-beam-melted. Through the above production process, there is prepared a highly purified Ti material having an oxygen content of not more than 350 ppm, Fe, Ni and Cr contents of not more than 15 ppm each, Na and K contents of not more than 0.5 ppm each, a reduction of area as a material characteristic of not less than 70%, and a thermal conductivity of not less than 16 W/m K. In short, the highly purified Ti material satisfying high purity, good processability and good thermal conductivity can be obtained.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: December 17, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ishigami, Mituo Kawai, Noriaki Yagi