Utilizing Specified Electrode Structure Or Anode Alloy Composition Patents (Class 205/399)
  • Publication number: 20140291161
    Abstract: Provided is a method for obtaining a particular metal at high purity, with safety, and at low cost, from a treatment object containing two or more metal elements. The present invention provides a method for producing a metal by molten salt electrolysis, the method including a step of dissolving, in a molten salt, a metal element contained in a treatment object containing two or more metal elements; and a step of depositing or alloying a particular metal present in the molten salt, on one of a pair of electrode members disposed in the molten salt containing the dissolved metal element, by controlling a potential of the electrode members to a predetermined value.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 2, 2014
    Inventors: Tomoyuki Awazu, Masatoshi Majima
  • Patent number: 8658007
    Abstract: An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: February 25, 2014
    Assignee: The Trustees of Boston University
    Inventor: Uday B. Pal
  • Publication number: 20130084206
    Abstract: A method for production of metallic titanium and metallic titanium obtained with the method are provided. The method for production of metallic titanium comprises: taking a titaniferous material as the anode, a metal material as the cathode, and a molten salt material as the electrolyte, and carrying out electrolysis under electrolytic conditions to obtain metallic titanium; wherein, the titaniferous material is in a porous structure, with 1 mm˜10 mm average pore diameter and 20%˜60% porosity, and at least a part of the titanium element in the titaniferous material exists in the form of TiOx, wherein, 2>x>0. With the method provided in the present invention, the process is simplified, and the yield ratio and purity of the obtained metallic titanium are higher.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 4, 2013
    Applicant: PanGang Group Panzhihua Iron & Steel Research Institute Co., Ltd.
    Inventors: Yuchang Zhou, Tianzhu Mu, Beilei Yan, Sanchao Zhao, Yangjun Yang
  • Patent number: 7985326
    Abstract: A system for purification of high value metals comprises an electrolytic cell in which an anode formed of a composite of a metal oxide of the metal of interest with carbon is electrochemically reduced in a molten salt electrolyte.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 26, 2011
    Assignee: Materials and Electrochemical Research Corp.
    Inventors: James C. Withers, Raouf O. Loutfy
  • Patent number: 7901561
    Abstract: The present invention relates to a method for electrolytic production and refining of metals having a melting point above about 1000° C., particularly silicon, where there is provided a first electrolytic cell having an upper molten electrolyte layer of a first electrolyte, a lower molten alloy layer of an alloy of the metal to be refined and at least one metal more noble than the metal to be refined. The lower alloy layer is the cathode in the first cell and an anode is positioned in the upper molten electrolyte layer. A second electrolytic cell is also provided with an upper molten metal layer of the same metal as the metal to be refined, said layer constituting a cathode, a lower molten alloy layer, said lower layer constituting an anode, said alloy having a higher density than the metal to be refined, and an intermediate molten electrolyte layer having a density between the density of the upper and lower molten layers.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: March 8, 2011
    Assignee: Elkem AS
    Inventors: Kai Johansen, Donald R. Sadoway, Bjorn Myhre, Marianne Engvoll, Krister Engvoll
  • Patent number: 7504017
    Abstract: This invention relates to a method for electrowinning of titanium metal or titanium alloys from electrically conductive titanium mixed oxide compounds in the liquid state such as molten titania slag, molten ilmenite, molten leucoxene, molten perowskite, molten titanite, molten natural or synthetic rutile or molten titanium dioxide. The method involves providing the conductive titanium oxide compound at temperatures corresponding to the liquid state, pouring the molten material into an electrochemical reactor to form a pool of electrically conductive liquid acting as cathode material, covering the cathode material with a layer of electrolyte, such as molten salts or a solid state ionic conductor, deoxidizing electrochemically the molten cathode by direct current electrolysis. Preferably, the deoxidizing step is performed at high temperature using either a consumable carbon anode or an inert dimensionally stable anode or a gas diffusion anode.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: March 17, 2009
    Assignee: QIT-Fer et Titane Inc.
    Inventor: Francois Cardarelli
  • Patent number: 7470355
    Abstract: A process for electrochemically reducing a metal oxide, such as titania, in a solid state in an electrochemical cell that includes a bath of molten electrolyte, a cathode, and an anode, which process includes the steps of: a) applying a cell potential across the anode and the cathode that is capable of electrochemically reducing the metal oxide supplied to the molten electrolyte bath, b) continuously or semi-continuously feeding the metal oxide in powder and/or pellet form into the molten electrolyte bath, c) transporting the powders and/or pellets along a path within the molten electrolyte bath and reducing the metal oxide as the metal oxide powders and/or pellets move along the path, and d) continuously or semi-continuously removing metal from the molten electrolyte bath. Also disclosed and claims is an electrochemical cell for carrying out this process.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 30, 2008
    Assignee: BHP Billiton Innovation Pty Ltd
    Inventors: Steve Osborn, Ivan Ratchev, Les Strezov, Greg Rigby
  • Publication number: 20080078679
    Abstract: A method for production of metal by molten-salt electrolysis of the present invention is a method for production of metal by molten-salt electrolysis which is performed by filling a molten salt of calcium chloride in an electrolysis vessel having a anode and a cathode, one of the anode or cathode is arranged surrounding the other electrode, the cathode has at least one hole communicating the inner area surrounded by the cathode with the outer area, and the molten salt flows through the communicating holes from one area including the anode (the inner area or outer area) to the other area.
    Type: Application
    Filed: October 5, 2005
    Publication date: April 3, 2008
    Applicants: TOHO TITANIUM CO., LTD., SUMITOMO TITANIUM CORPORATION
    Inventors: Masanori Yamaguchi, Yuichi Ono, Susumu Kosemura, Eiji Nishimura, Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi
  • Patent number: 6663763
    Abstract: A method of reducing a metal oxide in a solid state, in an electrolytic cell, is provided, as is an electrolytic cell suitable for performing the method. The cathode of the electrolytic cell is formed at least in part from the metal oxide to be reduced, and the electrolyte includes cations of a metal that is capable of chemically reducing the cathode metal oxide. The method includes operating the cell at a potential that is above the potential at which cations of the reducing metal will deposit as metal on the cathode.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: December 16, 2003
    Assignee: BHP Billiton Innovation Pty Ltd.
    Inventors: Lazar Strezov, Ivan Ratchev, Steve Osborn
  • Patent number: 6447667
    Abstract: A cermet anode of an electrolytic cell is protected from thermal shock during cell start-up by coating an outer surface portion of the anode with a coating composition comprising carbon or aluminum or a mixture thereof. A particularly preferred coating composition includes an aluminum underlayer adjacent the outer surface portion of the anode, and a carbon overlayer overlying the underlayer. A support structure assembly supporting the cermet anode includes a high alumina ceramic material. In a preferred embodiment, the high alumina ceramic material is protected from thermal shock and corrosion by the coating composition of the invention.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: September 10, 2002
    Assignee: Alcoa Inc.
    Inventors: Calvin Bates, Patricia A. Stewart, Larry F. Wieserman
  • Publication number: 20020092774
    Abstract: A cermet anode of an electrolytic cell is protected from thermal shock during cell start-up by coating an outer surface portion of the anode with a coating composition comprising carbon or aluminum or a mixture thereof. A particularly preferred coating composition includes an aluminum underlayer adjacent the outer surface portion of the anode, and a carbon overlayer overlying the underlayer. A support structure assembly supporting the cermet anode includes a high alumina ceramic material. In a preferred embodiment, the high alumina ceramic material is protected from thermal shock and corrosion by the coating composition of the invention.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventors: Calvin Bates, Patricia A. Stewart, Larry F. Wieserman
  • Patent number: 6162334
    Abstract: An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: December 19, 2000
    Assignee: Alcoa Inc.
    Inventors: Siba P. Ray, Xinghua Liu
  • Patent number: 6146513
    Abstract: The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: November 14, 2000
    Assignee: The Ohio State University
    Inventors: Kenneth H. Sandhage, Robert L. Snyder