Oxygen Containing Hetero Ring Patents (Class 205/427)
  • Publication number: 20140034506
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 6, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
  • Patent number: 8617376
    Abstract: ?-Hydroxycarboxylic esters and ?-lactones which are suitable as flavors can be prepared by electrochemical reductive cross-coupling of ?,?-unsaturated esters with carbonyl compounds in an undivided electrolysis cell having a cathode composed of lead, lead alloys, cadmium, cadmium alloys, mercury, steel, glassy carbon or boron-doped diamonds and a basic aqueous electrolyte comprising an electrolyte salt which suppresses the cathodic formation of hydrogen.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Itamar Michael Malkowsky, Florian Stecker, Simone Lutter, Olivier Abillard, Ralf Pelzer
  • Publication number: 20130334058
    Abstract: This invention refers to a process of anodic substitution comprising the electrolyzing the liquid reaction medium in an electrochemical cell comprising a cathode and an anode, whereas the liquid reaction medium comprises an organic compound with at least one carbon bound hydrogen atom, a nucleophilic agent, and an ionic liquid in a proportion of at least 10% by weight, and whereas the said hydrogen atoms are replaced at least partially with the nucleophilic group of said nucleophilic agent. Preferably, a gas diffusion layer electrode is used as anode.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Nicola Christiane AUST, Itamar Michael MALKOWSKY
  • Publication number: 20130118910
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: LIQUID LIGHT, INC.
    Inventor: LIQUID LIGHT, INC.
  • Publication number: 20130053582
    Abstract: ?-Hydroxycarboxylic esters and ?-lactones which are suitable as flavors can be prepared by electrochemical reductive cross-coupling of ?,?-unsaturated esters with carbonyl compounds in an undivided electrolysis cell having a cathode composed of lead, lead alloys, cadmium, cadmium alloys, mercury, steel, glassy carbon or boron-doped diamonds and a basic aqueous electrolyte comprising an electrolyte salt which suppresses the cathodic formation of hydrogen.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Applicant: BASF SE
    Inventors: Itamar Michael Malkowsky, Florian Stecker, Simone Lutter, Olivier Abillard, Ralf Pelzer
  • Publication number: 20120209010
    Abstract: Difluoroethylene carbonate, trifluoroethylene carbonate and tetrafluoroethylene carbonate are synthesized from dichloroethylene carbonate, trichloroethylene carbonate and tetrachloroethylene carbonate with fluorinating agents, e.g. alkali metal fluorides, antimony fluorides and especially the HF adducts of amines The fluorinated carbonates are suitable as additives in lithium ion batteries.
    Type: Application
    Filed: October 18, 2010
    Publication date: August 16, 2012
    Applicant: SOLVAY FLUOR GMBH
    Inventors: Martin Bomkamp, Jens Olschimke, Johannes Eicher
  • Patent number: 8147672
    Abstract: A process for preparing sucrose-6-ester is provided, which comprises electrolyzing an electrolyte solution containing sucrose, an acylating reagent and a halide catalyst. Also disclosed is a process for preparing sucralose, which involves the preparation and chlorination of sucrose-6-ester followed by deacylation of the molecule. The process of the invention can be more readily performed with a higher yield than those in the art.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 3, 2012
    Assignee: Techno Food Ingredients Co., Ltd.
    Inventors: Shaoxiong Li, Ziang Chen, Patrick Deng
  • Patent number: 7910727
    Abstract: A process for preparing sucrose-6-ester is provided, which comprises electrolyzing an electrolyte solution containing sucrose, an acylating reagent and a halide catalyst. Also disclosed is a process for preparing sucralose, which involves the preparation and chlorination of sucrose-6-ester followed by deacylation of the molecule. The process of the invention can be more readily performed with a higher yield than those in the art.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: March 22, 2011
    Assignee: Techno (Guangzhou) Food Ingredients Co., Ltd.
    Inventors: Shaoxiong Li, Ziang Chen, Patrick Deng
  • Patent number: 7910732
    Abstract: The present invention relates to processes for preparing a porous metal-organic framework comprising at least two organic compounds coordinated to at least one metal ion, the porous metal-organic frameworks prepared by the process and their use, in particular for gas storage and gas separation.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: March 22, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Schubert, Michael Hesse, Ulrich Mueller, Hermann Puetter, Markus Tonigold
  • Publication number: 20080214806
    Abstract: The present invention relates to processes for preparing a porous metal-organic framework comprising at least two organic compounds coordinated to at least one metal ion, the porous metal-organic frameworks prepared by the process and their use, in particular for gas storage and gas separation.
    Type: Application
    Filed: May 22, 2006
    Publication date: September 4, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Markus Schubert, Michael Hesse, Ulrich Muller, Hermann Putter, Markus Tonigold
  • Patent number: 7419580
    Abstract: A catalyst comprising Pt—Co alloy, or Pt—Co—Sn alloy or Pt—ComOn mixed metal oxides is disclosed to be used as a catalyst for the direct electrochemical oxidation of glucose or other simple sugars and carbohydrates at room temperature. The catalyst can be supported on metal electrodes, graphite electrodes, porous carbon electrodes, or gas diffusion electrodes. An electrode containing this catalyst will be used as the key component in a direct glucose-air fuel cell operating in alkaline media with a good room temperature performance. This catalyst can also be applied as a key electrode material in a glucose sensor to detect glucose concentration in neutral or alkaline medium. The preparation method of the catalyst, optimum composition, and results of glucose sensor and glucose fuel cell applications are disclosed.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: September 2, 2008
    Assignee: The University of Hong Kong
    Inventors: Kwong-Yu Chan, Xin Zhang, Chung Man Lam, Alfred C. C. Tseung, Pei Kang Shen, Jin Kua You
  • Patent number: 7201835
    Abstract: A process for the preparation of orthoesters of the general formula I, where the radicals have the following meaning R1: hydrogen, C1- to C20-alkyl, C2- to C20-alkenyl, C2- to C20-alkynyl, C3- to C12-cycloalkyl, C4- to C20-cycloalkylalkyl or C4- to C10-aryl R2, R3: C1- to C20-alkyl, C3- to C12-cycloalkyl, and C4- to C20-cycloalkylalkyl or R2 and R3 together form C2- to C10-alkylene R4: C1- to C4-alkyl, by electrochemically oxidizing a compound of the general formula II in which the radicals R1 to R3 have the same meaning as in the general formula I and R5 is a saturated or unsaturated 5- or 6-membered heterocycloalkyl radical or heterocycloaryl radical having up to 2 heteroatoms selected from the group consisting of N, O and S, where this radical is bonded to the remaining part of the molecule via a carbon atom which is situated in the adjacent position to a heteroatom, in the presence of C1- to C4-alcohols (alcohols A).
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: April 10, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Hermann Puetter, Andreas Fischer
  • Patent number: 7052593
    Abstract: The present invention provides an electrochemical method for producing diaryl iodonium compounds wherein application of an electric current to an electrochemical cell containing a reaction mixture composed of a solvent, an iodoaryl compound and an electrolyte forms an oxidizing agent in situ. In this first step, the oxidizing agent is subsequently converted into a stable oxidized iodoaryl intermediate, typically an iodosyl compound. The electric potential is removed and in a second step a target aryl compound is introduced to the reaction mixture to react with the oxidized iodoaryl intermediate to form a diaryl iodonium compound.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: May 30, 2006
    Assignee: Cornell Development Corporation LLC
    Inventors: Leonard H. Wojcik, Jr., David D. Cornell
  • Patent number: 6969451
    Abstract: A fluid-type multiple electrochemical system. The system includes a substrate for an electric circuit having a plurality of electrode parts formed at regular intervals. The electrode parts each include a reference electrode and an auxiliary electrode. Also provided is a fluid-type substrate having a fluid injection part, a fluid ejection part and a plurality of fluid storages. The fluid storages are formed at the same regular intervals as the electrode parts of the substrate and are connected with each other through fluid passages. The system also includes a sensor substrate having a plurality of unit sensors formed at the same regular intervals as the electrode parts of the substrate. Each unit sensor has an electrode part, an electrode pad for supplying power voltage simultaneously, and an electrode wiring.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: November 29, 2005
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dong-Ho Shin, Sun Kil Kang, Hyokyum Kim, Haesik Yang, Youn Tae Kim
  • Patent number: 6733652
    Abstract: In a process for the electrolytic transformation of at least one organic compound in an electrolysis cell, the organic compound is both oxidized and reduced at one electrode.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: May 11, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hermann Pütter, Guido Gutenberger
  • Publication number: 20020043470
    Abstract: In a water-continuous system and a polymerization method, the water-continuous system comprises a polymerizable aromatic compound as an oil, water and a non-ionic surfactant, wherein the polymerizable aromatic compound is a component from the group consisting of: thiophene, furan and alkyl, alkoxy or alkylenedioxy derivatives of thiophene and furan. The non-ionic surfactant is an alkyl polyethoxylate and/or an alkyl polyglucoside.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 18, 2002
    Inventors: Franz-Hubert Haegel, Julia Schlupen, Joachim Walter Schultze, Stephan Winkels
  • Patent number: 6294069
    Abstract: A process for the preparation of chiral 2-aryl or 2-heterocyclyl-propionic acids of the formula wherein the substituents are as defined in the specification.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 25, 2001
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Muriel Durandetti, Isabelle Lachaise, Jean-Yves Nedelec, Jacques Perichon
  • Patent number: 6187914
    Abstract: The invention relates to nucleoside derivatives bearing electrolabile protector groupings and their use in an oligonucleotide synthesis method comprising at least one step of electronic deprotection.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: February 13, 2001
    Assignee: Cis Bio International
    Inventors: Robert Teoule, André Roget, Thierry Livache
  • Patent number: 6063256
    Abstract: A process is disclosed for preparing phthalides by cathodic reduction of phthalic acid or phthalic acid derivatives, in which the carboxylic acid units may be substituted by units which can be derived by a condensation reaction from carboxylic acid units and in which one or several hydrogen atoms of the o-phenylene unit of the phthalic acid may be substituted by inert radicals. This process is characterised in that the reduction is carried out in an organic solvent which contains less than 50 wt % water and in a non-divided electrolytic cell.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: May 16, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Hermann Putter, Heinz Hannebaum
  • Patent number: 6004445
    Abstract: The present invention relates to electrochemical methods for the recovery of ascorbic acid from an ascorbate salt without the co-generation of a waste salt stream and while maintaining high conductivity of the electrochemical cell thereby providing for quantitative conversion of the salts to ascorbic in both batch and continuous mode processes. In one embodiment the feed stream comprising an ascorbate salt is dissociated under the influence of an electric field and subjected to water splitting electrodialysis. The ascorbate ion combines with a proton and the salt cation combines with a hydroxyl ion to form ascorbic acid and base, respectively. The feed stream further comprises an inorganic salt which maintains high conductivity in the cell, facilitates quantitative conversion of ascorbate salts to ascorbic acid in both batch and continuous mode processes, and promotes precipitation and crystallization of ascorbic acid as a fine powder.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: December 21, 1999
    Assignee: Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Dan M. Hartsough