Oxygen Containing Compound Produced Patents (Class 205/455)
  • Publication number: 20030183534
    Abstract: A process is provided for the preparation of trialkyl orthocarboxylates by the electrochemical oxidation of alpha, beta-diketones or alpha, beta-hydroxyketones, the keto group being present in the form of a ketal group derived from C1- to C4-alkylalcohols and the hydroxyl group optionally being present in the form of an ether group derived from C1- to C4-alkylalcohols (ketals K), in the presence of C1- to C4-alcohols (alcohols A), the molar ratio of the ketals K to the alcohols A in the electrolyte being 0.2:1 to 10:1.
    Type: Application
    Filed: March 3, 2003
    Publication date: October 2, 2003
    Inventors: Andreas Fischer, Hermann Ptter
  • Patent number: 6569309
    Abstract: Disclosed is a fuel cell type reactor for performing an oxidation reaction of a system comprising a substrate, a reductant and an oxidant, comprising: a casing; an anode which comprises an anode active material and which is ion-conductive or active species-conductive; and a cathode which comprises a cathode active material and which is ion-conductive or active species-conductive, wherein the anode and the cathode are disposed in spaced relationship in the casing to partition the inside of the casing into an intermediate compartment between the anode and the cathode, an anode compartment on the outside of the anode and a cathode compartment on the outside of the cathode, and wherein the intermediate compartment has an inlet for an electrolyte solution and a substrate, the anode compartment has an inlet for a reductant, and the cathode compartment has an inlet for an oxidant.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: May 27, 2003
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Kiyoshi Otsuka, Ichiro Yamanaka, Ken Suzuki
  • Publication number: 20020185380
    Abstract: This invention discloses a device for producing electrolytic water (100) comprising an electrode unit (2) comprising a closed-type anode chamber (16), at least part of whose wall is a septum (18) and within which an anode (20) is disposed, and a cathode (24) disposed outside of the anode chamber (16); and a power source unit (4) for supplying DC power to the electrode unit (2). Electrolysis is conducted by filling the anode chamber (16) of the device for producing electrolyte water with a 0.01 to 2 M aqueous electrolyte solution while immersing the device for producing electrolyte water in a 0.001 to 0.01 M aqueous electrolyte solution and then supplying electric power between the anode and the cathode. For example, tap water may be directly used as the 0.001 to 0.01 M aqueous electrolyte solution.
    Type: Application
    Filed: April 17, 2002
    Publication date: December 12, 2002
    Applicant: Mikuni Corporation
    Inventor: Kokichi Hanaoka
  • Patent number: 6395165
    Abstract: A novel process for the continuous preparation of perfluorinated organic compounds by electrochemical fluorination of the parent non-fluorinated or partially fluorinated organic compounds using hydrogen fluoride having an arsenic content of less than about 10 ppm can be operated over a prolonged period of time without the electrode area-time yield decreasing over time.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: May 28, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Andreas Bulan, Joachim Herzig, Günter Lailach
  • Patent number: 6342149
    Abstract: A method for carboxylating terminal alkynes that have at least one additional aliphatic carbon atom in an &agr; position and that do not have a proton which has a higher acidity than that of the proton of the terminal triple bond. In an undivided electrolysis cell equipped with a cathode and an anode, a solution of the terminal alkyne in an aprotic solvent is acted upon by carbon dioxide at a pressure higher than atmospheric pressure. The invention provides a method in which carbon dioxide is selectively inserted between the terminal C—H bond, without disturbing the triple bond, and can be carried out without a catalyst or catalyst precursor.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: January 29, 2002
    Assignee: Forschungszentrum Karlsruhe
    Inventors: Frank Köster, Eckhard Dinjus
  • Publication number: 20020008038
    Abstract: An array of selectively addressible microelectrodes for combinatorial synthesis of complex polymers or alloys.
    Type: Application
    Filed: December 22, 2000
    Publication date: January 24, 2002
    Applicant: TheraSense, Inc.
    Inventors: Adam Heller , Daren J. Caruana
  • Patent number: 6294069
    Abstract: A process for the preparation of chiral 2-aryl or 2-heterocyclyl-propionic acids of the formula wherein the substituents are as defined in the specification.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 25, 2001
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Muriel Durandetti, Isabelle Lachaise, Jean-Yves Nedelec, Jacques Perichon
  • Publication number: 20010019020
    Abstract: One embodiment of the present invention provides a process, which includes:
    Type: Application
    Filed: December 22, 2000
    Publication date: September 6, 2001
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Claudia Merk, Gunther Huber
  • Patent number: 6251256
    Abstract: A process for electrochemical oxidation of aldehydes to esters is provided. The invention includes electrooxidation at a pH where an intermediate hemiacetal is favored, thereby providing for maximum selectivity to the desired ester and for maximum reaction efficiency. In particular, the invention provides for the electrooxidation of acetaldehyde to methyl acetate. The invention is illustrated with reference reactants native to the carbonylation process for the manufacture of acetic acid. Processes described herein are readily adapted to an industrial scale, particularly for the removal of acetaldehyde from process streams.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: June 26, 2001
    Assignee: Celanese International Corporation
    Inventors: George A. Blay, Ricardo E. Borjas
  • Patent number: 6214196
    Abstract: A method of producing a bisphosphine oxide by performing a koble electrolysis coupling reaction to a phosphine oxide carboxylic acid represented by the general formula (1): wherein the bisphosphine oxide is represented by the following general formula (2):
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: April 10, 2001
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Masashi Sugiya, Hiroyuki Nohira
  • Patent number: 6197186
    Abstract: The invention relates to a process for preparing silver compounds. The process relates to the preparation of silver compounds of the general formula (I) RSO3Ag  (I) where R is an unsubstituted or substituted, linear or branched, saturated, monounsaturated or polyunsaturated alkyl or alkenyl radical having 1 to 9 carbon atoms or an unsubstituted or substituted aryl radical having 6 to 12 carbon atoms, which comprises subjecting acid of the general formula (II) RSO3H  (II)  where R has the above mentioned meaning, to an electrolytic dissolution of the anode in a membraneless electrolysis cell having metallic silver as anode.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: March 6, 2001
    Assignee: Th. Goldschmidt Ag
    Inventors: Dieter Guhl, Frank Houselmann
  • Patent number: 6004445
    Abstract: The present invention relates to electrochemical methods for the recovery of ascorbic acid from an ascorbate salt without the co-generation of a waste salt stream and while maintaining high conductivity of the electrochemical cell thereby providing for quantitative conversion of the salts to ascorbic in both batch and continuous mode processes. In one embodiment the feed stream comprising an ascorbate salt is dissociated under the influence of an electric field and subjected to water splitting electrodialysis. The ascorbate ion combines with a proton and the salt cation combines with a hydroxyl ion to form ascorbic acid and base, respectively. The feed stream further comprises an inorganic salt which maintains high conductivity in the cell, facilitates quantitative conversion of ascorbate salts to ascorbic acid in both batch and continuous mode processes, and promotes precipitation and crystallization of ascorbic acid as a fine powder.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: December 21, 1999
    Assignee: Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Dan M. Hartsough
  • Patent number: 5916430
    Abstract: The preparation of epoxides of the general formula I ##STR1## in which the substituents R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5 are independently hydrogen, C.sub.1 -C.sub.20 -alkyl, C.sub.3 -C.sub.12 -cycloalkyl, C.sub.4 -C.sub.20 -cycloalkylalkyl, C.sub.1 -C.sub.20 -hydroxyalkyl, a heterocyclic ring, or an aryl or C.sub.7 -C.sub.20 -arylalkyl group optionally substituted by C.sub.1 -C.sub.8 -alkyl, C.sub.1 -C.sub.8 -alkoxy, halogen, C.sub.1 -C.sub.4 -haloalkyl, C.sub.1 -C.sub.4 -haloalkoxy, phenyl, phenoxy, halophenyl, halophenoxy, carboxy, C.sub.2 -C.sub.8 -alkoxycarbonyl, or cyano, or R.sup.1 and R.sup.2 or R.sup.1 and R.sup.3 or R.sup.1 and R.sup.4 or R.sup.3 and R.sup.4 or R.sup.4 and R.sup.5 together form a (CH.sub.2).sub.n group in which n is an integer from 1 to 10 and which may be optionally substituted by C.sub.1 -C.sub.8 -alkyl, C.sub.1 -C.sub.8 -alkoxy, and/or halogen, andR.sup.6 is hydrogen, C.sub.1 -C.sub.
    Type: Grant
    Filed: September 7, 1993
    Date of Patent: June 29, 1999
    Assignee: BASF Aktiengesellschaft
    Inventor: Dieter Haermeling
  • Patent number: 5679237
    Abstract: Catalyst compounds comprising at least one transition metal having an oxidation number of 0 or 1 and at least one sulfonated phosphine are electrochemically synthesized, by electrolyzing an aqueous solution catholyte (contained in the cathode compartment of any suitable electrolytic cell) comprising at least one transition metal compound and at least one sulfonated phosphine.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: October 21, 1997
    Assignee: R. P. Fiber & Resin Intermediates
    Inventors: Alex Chamard, Dominique Horbez, Marc Huser, Robert Perron
  • Patent number: 5660711
    Abstract: A process is described for preparing 3-exomethylene cephalosporanic acid derivatives for use in the synthesis of cephalosporin antibiotics such as ceftibuten. The process comprises electrochemical reduction of a compound of the formula (IV) ##STR1## wherein: R.sup.3 is CH.sub.3 C(O)--; ##STR2## is an optional sulfoxide group; n is 2 or 3; R.sup.1 is H and R is H or NHR.sup.2, where R.sup.2 is H or a protecting group selected from C.sub.6 H.sub.5 CH.sub.2 OC(O)--, C.sub.6 H.sub.5 C(O)-- or C.sub.1 -C.sub.6 alkoxy-C(O)--; or wherein R and R.sup.1 together with the carbon atom to which they are attached comprise --C(O)--, and produces the desired 3-exomethylene compounds with low levels of the corresponding 3-methyl tautomers.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: August 26, 1997
    Assignee: Schering Corporation
    Inventors: Derek Walker, Junning Lee, Charles R. Martin, Haiyan Zhang, Loris Sogli, Ermanno Bernasconi, Vinod Parakkal Menon
  • Patent number: 5571400
    Abstract: The invention relates to a process for the electrosynthesis of an aldehyde of the formula (I)R.sup.1 --CHO (I)in which R.sup.1 is an aryl or alkyl radical, by electrolysis of an organic halide of the formula (II)R.sup.1 --Hal (II)in which Hal is chlorine or bromineand of an N,N-disubstituted formamide of the formula (III) ##STR1## in which R.sup.2 and R.sup.3 are alkyl or aryl in a cell which is equipped with electrodes and has a chamber, the anode being self-consuming and being composed of a reducing metal, wherein the cathode is composed of lead.
    Type: Grant
    Filed: August 16, 1995
    Date of Patent: November 5, 1996
    Assignee: Hoechst Aktiengesellschaft
    Inventor: Thomas Karcher