Utilizing Halogen Containing Material Patents (Class 205/591)
  • Patent number: 8986634
    Abstract: The present invention refers to a method being easy to recover metals including nickel and aluminum from waste aluminum catalysts, thereby entirely promoting the recovering rate. Said method comprises: preparing and roasting a waste aluminum catalyst with sodium salts, and then obtaining a first solution comprising vanadium and molybdenum, and a dreg comprising nickel and aluminum through leaching and filtrating; collecting and mixing the dreg with alkali powders to obtain a mixture of the dreg and alkali powders, roasting the mixture at 300 to 1000° C. with aluminum in the dreg reacting with hydroxyl generated from the roasting of mixture and further generating aluminum hydroxide, and then obtaining a second solution comprising aluminum and a concentrate having nickel through another leaching and filtrating; and recovering aluminum from the second solution and recovering nickel from the concentrate.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 24, 2015
    Inventor: Ping-Tao Wu
  • Patent number: 8617377
    Abstract: An electrowinning method of metals through electrolysis of a metal chloride solution uses an anode comprising a substrate comprising titanium or titanium alloy, and a coating layer comprising a plurality of a unit layer, provided on the surface of the substrate. The unit layer comprises the first coating layer comprising a mixture of iridium oxide, ruthenium oxide and titanium oxide and the second coating layer comprising a mixture of platinum and iridium oxide. The first coating layer contacts with the surface of said substrate and an outer coating layer of the unit layer formed on the outermost layer of said coating layer is the second coating layer. The coating layer is formed by thermal decomposition baking, which followed by post-baking at a higher baking temperature.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 31, 2013
    Assignee: Permelec Electrode Ltd.
    Inventor: Toshikazu Hayashida
  • Patent number: 8062614
    Abstract: Processes for metal leaching/solvent extraction are described which comprise: (a) providing a first aqueous leach pulp which comprises a mixture of leached solids and an aqueous leach solution comprising a metal, a leaching agent and water; (b) subjecting the first aqueous leach pulp to a first solid-liquid separation to provide a first clarified aqueous leach solution and a second aqueous leach pulp, wherein the second aqueous leach pulp comprises the leached solids at a % solids level greater than the first pulp; (c) subjecting the first clarified aqueous leach solution to a first solvent extraction prior to any significant dilution, whereby a first aqueous raffinate is obtained; (d) subjecting the second aqueous leach pulp to a second solid-liquid separation with dilution via an aqueous stream to obtain a second clarified aqueous leach solution; and (e) subjecting the second clarified aqueous leach solution to a second solvent extraction whereby a second is aqueous raffinate is obtained.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: November 22, 2011
    Assignee: Cognis IP Management GmbH
    Inventors: Gary A. Kordosky, Andrew Nisbett
  • Patent number: 6485542
    Abstract: An Ni—Fe alloy material suitable for forming a ferromagnetic Ni—Fe alloy thin film is provided. The magnetic thin film produces a small number of particles during sputtering, and excels in corrosion resistance and magnetic properties. A method of manufacturing an Ni—Fe alloy sputtering target used to make the thin film is also provided. In addition, an Ni—Fe alloy sputtering target for forming magnetic thin films is provided. The sputtering target is characterized in that it has: an oxygen content of 50 ppm or less; an S content of 10 ppm or less; a carbon content of 50 ppm or less, and a total content of metal impurities other than the alloy components of 50 ppm or less. Such an Ni—Fe alloy target can be produced by melting and alloying high-purity materials obtained by dissolving the raw materials in hydrochloric acid, and performing ion exchange, activated-charcoal treatment, and electrolytic refining.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: November 26, 2002
    Assignee: Japan Energy Corporation
    Inventors: Yuichiro Shindo, Tsuneo Suzuki
  • Patent number: 6428604
    Abstract: A hydrometallurgical process for the recovery of nickel and cobalt values from a sulfidic flotation concentrate. The process involves forming a slurry of the sulfidic flotation concentrate in an acid solution, and subjecting the slurried flotation concentrate to a chlorine leach at atmospheric pressure followed by an oxidative pressure leach. After liquid-solids separation and purification of the concentrate resulting in the removal of copper and cobalt, the nickel-containing solution is directly treated by electrowinning to recover nickel cathode therefrom.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: August 6, 2002
    Assignee: Inco Limited
    Inventors: Derek George Eagland Kerfoot, Eberhard Krause, Bruce John Love, Avinash Singhal
  • Patent number: 5595642
    Abstract: A method of pressure leaching nickel and cobalt from sulphidic precipitates is provided, wherein such precipitates are leached with chlorine at a controlled redox potential of between 400 and 550 mV (Ag/AgCl), catalysed by copper, and at a temperature of between 120.degree. and 160.degree. C., to dissolve at least 80% of cobalt and to oxidize less than 10% of sulphur to sulphate.
    Type: Grant
    Filed: November 16, 1995
    Date of Patent: January 21, 1997
    Inventors: Tao Xue, Ronald R. Dunn
  • Patent number: 5571308
    Abstract: A method is provided for recovering nickel from high magnesium-containing lateritic ores which also contain iron. The ores which are referred to as saprolitic ores are subjected to leaching with a mineral acid from the group consisting of HCl, H.sub.2 SO.sub.4 and HNO.sub.3, HCl being preferred.Following leaching with HCl, for example, the pregnant solution obtained is separated from undissolved solids and the nickel preferably recovered by contacting the solution with a resin selective to nickel absorption. The raffinate remaining which contains iron and magnesium chlorides may be subjected to pyro-hydrolysis to produce their respective oxides and free HCl for recycle into the leaching system. The nickel is extracted from the resin using a stripping solution of said acid, and the nickel thereafter extracted from the nickel-loaded stripping solution.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: November 5, 1996
    Assignee: BHP Minerals International Inc.
    Inventors: Willem P. C. Duyvesteyn, Manuel R. Lastra, Houyuan Liu
  • Patent number: 5487819
    Abstract: A process for producing one or more metals from a mineral feedstock (12) is defined. The mineral is fed to a leaching apparatus (10) wherein it is contacted with electrolyte (14). The leaching apparatus has zones of decreasing oxidation potential (17, 18, 19, 20) respectively. A stream of electrolyte (14A) is removed from zone (20) and is treated to remove impurities and unwanted metals in treatment unit (25A), prior to metal recovery by electrolysis. The electrolyte after electrolysis is then returned to the leaching unit (10). A second electrolyte stream (14B) may be removed from zone (19) for recovery of additional metals. The electrolyte (14B) is treated to remove impurities and any unwanted metals in treatment unit (25B), prior to metal recovery by electrolysis. The electrolyte after electrolysis is returned to leaching unit (10). The process enables the leaching of difficult to leach minerals, including gold, and can produce one or more metals of high purity.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: January 30, 1996
    Inventor: Peter K. Everett