Ion, Cobalt, Or Nickel Produced Patents (Class 205/587)
  • Patent number: 11781228
    Abstract: A method for manufacturing a sulfuric acid solution includes supplying a chloride ion-containing sulfuric acid solution as an initial electrolyte in an electrolyzer inside of which is divided into an anode chamber and a cathode chamber by a diaphragm; and subsequently taking out a metal dissolved electrolyte in which a metal constituting the anode is dissolved from the anode chamber while supplying a current to an anode and a cathode disposed in the electrolyzer.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: October 10, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroto Watanabe, Itsumi Matsuoka, Yusuke Senba, Hiroshi Kobayashi
  • Patent number: 10106903
    Abstract: An anode assembly is provided having a pair of channels; anodes in slidable communication with the channels; conduit to direct carrier gas to the anode; and conduit to remove reaction gas from the anode. Also provided is a method for continuously feeding anodes into a electrolytic bath, the method having the steps of stacking the anodes such that all of the anodes reside in the same plane and wherein the stack includes a bottom anode; contacting the bottom anode with the electrolytic bath for a time and at a current sufficient to cause the bottom anode to be consumed during an electrolytic process; using gravity to replace the bottom anode with other anodes defining the stack.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: October 23, 2018
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Perry N. Motsegood, James L. Willit, Mark A. Williamson, Stanley G. Wiedmeyer, Eugene R. Koehl
  • Patent number: 9017625
    Abstract: A method of upgrading a titaniferous material includes nitriding and reducing a titaniferous material which includes TiO2 and Fe oxides in the presence of nitrogen and carbon to convert the TiO2 to TiN and to reduce most of the Fe oxides to Fe. The Fe is oxidized in preference to the TiN to form Fe2+ ions, whereafter the Fe2+ ions are removed to produce an upgraded low-Fe TiN bearing material.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: April 28, 2015
    Assignee: CSIR
    Inventors: David Steyn Van Vuuren, Jaco Johannes Swanepoel
  • Publication number: 20150021195
    Abstract: An electrochemical cell and method for electrowinning a variety of multivalent metals including titanium is described. In one aspect, the invention provides an electrochemical cell comprising an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a cathode and configured for containing a catholyte comprising a metal to be electrolytically produced, and a diaphragm separating the anolyte chamber and the catholyte chamber, the diaphragm configured to control the potential drop across the diaphragm so that it is below the potential difference required for inducing bipolarity at the diaphragm.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Rohan Akolkar, Uziel Landau
  • Patent number: 8906220
    Abstract: Method for production of metallic cobalt from the raffinate from solvent extraction of nickel’.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: December 9, 2014
    Inventors: Vanessa Torres, Marcelo Augusto Castro Lopes da Costa, Omar Antunes Do Carmo, Salomão Solino Evelin
  • Publication number: 20140286857
    Abstract: A method of preparing a metal containing inorganic ion exchanger in an electrochemical cell is disclosed. In one embodiment, the method comprises: (a) adding the inorganic ion exchanger to the electrochemical cell, wherein the electrochemical cell comprises a conductive electrolyte solution having a liquid phase and a solid phase; (b) depositing metal ions electrochemically into the liquid phase; (c) allowing the metal ions to deposit onto the inorganic ion exchanger during an electrochemical reaction to obtain a metal containing inorganic ion exchanger; (d) collecting the solid phase comprising the metal containing inorganic ion exchanger obtained in step (c); (e) removing remaining metal ions from the liquid phase; and (f) obtaining a substantially metal free liquid phase.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 25, 2014
    Applicant: BASF CORPORATION
    Inventors: Ahmad Dehestani, Gerald Koermer, Mukta Rai
  • Patent number: 8784639
    Abstract: An electrochemical process for the concurrent recovery of iron metal and chlorine gas from an iron-rich metal chloride solution, comprising electrolysing the iron-rich metal chloride solution in an electrolyser comprising a cathodic compartment equipped with a cathode having a hydrogen overpotential higher than that of iron and containing a catholyte having a pH below about 2, an anodic compartment equipped with an anode and containing an anolyte, and a separator allowing for anion passage, the electrolysing step comprising circulating the iron-rich metal chloride solution in a non-anodic compartment of the electrolyser, thereby causing iron to be electrodeposited at the cathode and chlorine gas to evolve at the anode, and leaving an iron-depleted solution, which is recirculated, at least in part, to the iron-rich metal chloride solution. The iron-rich metal chloride solution may originate from carbo-chlorination wastes, spent acid leaching liquors or pickling liquors.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: July 22, 2014
    Assignee: Rio Tinto fer et Titane Inc.
    Inventors: François Cardarelli, Sylvain Lefebvre, Claude Tousignant, Guillaume Hudon
  • Publication number: 20130153434
    Abstract: An electrolytic extraction method wins a target element from an oxide feedstock compound thereof. The feedstock compound is dissolved in an oxide melt in contact with a cathode and an anode in an electrolytic cell. During electrolysis the target element is deposited at a liquid cathode and coalesces therewith. Oxygen is evolved on an anode bearing a solid oxide layer, in contact with the oxide melt, over a metallic anode substrate.
    Type: Application
    Filed: February 20, 2013
    Publication date: June 20, 2013
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Publication number: 20120298523
    Abstract: In a method for producing metal powder, the first part of an acid-containing starting solution is fed on the anode side of an electrolytic cell as anolyte, to contact the anode and supply material containing yield metal, and a second part of the acid-containing starting solution, which also contains intermediary metal, is fed on the cathode side of the electrolytic cell, to contact the cathode as catholyte. Yield metal is oxidized and dissolved in the anolyte by leading electric current in the anode. The yield metal contained in the second part of the starting solution is reduced on the cathode side. Anolyte solution and catholyte solution are fed to a precipitating chamber for mixing the dissolved, oxidized yield metal and the second part of the starting solution containing reduced intermediary metal.
    Type: Application
    Filed: January 25, 2011
    Publication date: November 29, 2012
    Applicant: OUTOTEC OYJ
    Inventors: Ville Nieminen, Henri Virtanen
  • Patent number: 8226910
    Abstract: A process for the extraction of uranium compounds from wet-process phosphoric acid includes lowering the iron concentration of the wet-process phosphoric acid and reducing the valency of any remaining ferric iron in the wet-process phosphoric acid to ferrous iron, and then extracting uranium compounds from the wet-process phosphoric acid. The process can include separating a side stream from a feed stream of wet-process phosphoric acid, wherein the side stream has a greater concentration of the uranium compounds than the feed stream by filtration. Extracting uranium compounds from the wet-process phosphoric acid can be by ion exchange process or by solvent extraction.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 24, 2012
    Assignee: Urtek, LLC
    Inventors: Nicholas Warwick Bristow, Mark S. Chalmers, James Andrew Davidson, Bryn Llywelyn Jones, Paul Robert Kucera, Nick Lynn, Peter Douglas Macintosh, Jessica Mary Page, Thomas Charles Pool, Marcus Worsley Richardson, Karin Helene Soldenhoff, Kelvin John Taylor, Colin Weyrauch
  • Patent number: 8202411
    Abstract: Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 19, 2012
    Assignee: Eltron Research & Development, Inc.
    Inventor: Wayne E. Buschmann
  • Patent number: 8133366
    Abstract: There is provided a substantially permanent stainless steel cathode plate suitable for use in electrorefining of metal cathodes, the cathode being composed of a low-nickel duplex steel or a lower grade “304” steel, wherein operational adherence of an electrodeposition thereon is enabled by altering various qualities of the cathode surface. There is also provided a method of producing the above duplex or Grade 304 cathode plates, such that the desired operational adherence of the deposit upon the plate is not so strong as to prevent the deposit being removed during subsequent handling.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 13, 2012
    Assignee: Xstrata Queensland Limited
    Inventor: Wayne Keith Webb
  • Publication number: 20120043220
    Abstract: An electrolytic extraction method wins a target element from an oxide feedstock compound thereof. The feedstock compound is dissolved in an oxide melt in contact with a cathode and an anode in an electrolytic cell. During electrolysis the target element is deposited at a liquid cathode and coalesces therewith. Oxygen is evolved on an anode bearing a solid oxide layer, in contact with the oxide melt, over a metallic anode substrate.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 23, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Antoine Allanore, Donald R. Sadoway
  • Publication number: 20110253552
    Abstract: A method of electrochemical dissolution of ruthenium-cobalt (Ru—Co)-based alloy is disclosed, in which a Ru—Co-based alloy bulk is subjected into an electrolyte solution comprising about 50 wt. % to 75 wt. % of sulfuric acid, thereby electrolyzing the Ru—Co-based alloy bulk and forming a product solution comprising Ru and Co ions in the electrolyte solution.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 20, 2011
    Applicant: SOLAR APPLIED MATERIALS TECHNOLOGY CORP.
    Inventors: Mei-Hui HSU, York WEN
  • Patent number: 7901484
    Abstract: A hydrometallurgical resin-in-leach (RIL) process for directly recovering nickel and/or cobalt. Simultaneous pulp leaching by adding an acid or base, dissolves the metals of interest with adsorption of the metals rendered soluble in on ionic exchange resin. Following elution of the changed resin, purification of nickel and cobalt present in the eluate can be recovered by conventional methods, such as precipitation, extraction by solvents and membranes. The regenerated resin is recirculated for further use.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 8, 2011
    Assignee: Vale Inco Limited
    Inventor: Flavia Dutra Mendes
  • Patent number: 7794580
    Abstract: A method of winning a metal from its oxide ore by heating the ore in a partial vacuum or under an inert atmosphere in the presence of a reductant. The resulting product may be further reduced electrochemically to produce a purer metal.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: September 14, 2010
    Assignee: Materials & Electrochemical Research Corp.
    Inventors: James C. Withers, Raouf O. Loutfy
  • Publication number: 20100059388
    Abstract: Carbonaceous feedstock is at least partially oxidized using a concentrated metal ion solution that is regenerated in an electrochemical hydrogen gas producing process. The at least partially oxidized feedstock and/or hydrogen are then advantageously used as an energy carrier in a downstream process.
    Type: Application
    Filed: May 4, 2007
    Publication date: March 11, 2010
    Applicant: AIC NEVADA, INC.
    Inventors: Robert Lewis Clarke, John Kerr, Vinoid Nair
  • Publication number: 20100044243
    Abstract: An electrochemical process for the concurrent recovery of iron metal and chlorine gas from an iron-rich metal chloride solution, comprising electrolysing the iron-rich metal chloride solution in an electrolyser comprising a cathodic compartment equipped with a cathode having a hydrogen overpotential higher than that of iron and containing a catholyte having a pH below about 2, an anodic compartment equipped with an anode and containing an anolyte, and a separator allowing for anion passage, the electrolysing step comprising circulating the iron-rich metal chloride solution in a non-anodic compartment of the electrolyser, thereby causing iron to be electrodeposited at the cathode and chlorine gas to evolve at the anode, and leaving an iron-depleted solution. The iron-rich metal chloride solution may originate from carbo-chlorination wastes, spent acid leaching liquors or pickling liquors.
    Type: Application
    Filed: January 9, 2007
    Publication date: February 25, 2010
    Inventor: Francois Cardarelli
  • Patent number: 7601247
    Abstract: A cell (100) for metal electrowinning from metal ion solutions is described, wherein the cathode (1) consists of a falling bed of growing beads; the beads, withdrawn from the lower part of the bed, are recycled to the top section of the cathodic compartment by means of an external vertical duct (3).
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 13, 2009
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Douglas J. Robinson, Stacey A. MacDonald, Davide Scotti, Francesco Todaro
  • Patent number: 7494579
    Abstract: It is herein described an electrowinning cell with a spouted bed electrode of growing metallic beads, separated by a semi-permeable diaphragm and suitable for being assembled in a stack in a modular arrangement.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: February 24, 2009
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Douglas J. Robinson, Stacey A. MacDonald, Vladimir Jiricny, Dario Oldani, Francesco Todaro, Leonello Carrettin, Gian Nicola Martelli, Davide Scotti
  • Patent number: 7435325
    Abstract: Upon performing electrolysis with a solution containing nickel as the electrolytic solution, anolyte is adjusted to pH 2 to 5; impurities such as iron, cobalt and copper contained in the anolyte are eliminated by combining any one or two or more of the methods among adding an oxidizing agent and precipitating and eliminating the impurities as hydroxide, eliminating the impurities through preliminary electrolysis, or adding Ni foil and eliminating the impurities through displacement reaction; impurities are thereafter further eliminated with a filter; and the impurity-free solution is employed as catholyte to perform the electrolysis. The present invention relates to a simple method of performing electrolytic refining employing a solution containing nickel from nickel raw material containing a substantial amount of impurities, and provides technology on efficiently manufacturing high purity nickel having a purity of 5N (99.999 wt %) or more.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: October 14, 2008
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 7144489
    Abstract: A method of photochemically reducing iron(III) species in an iron or iron alloy plating solution by adding an additive to the electroplating solution; contacting the additive with iron(III) species to form an iron(III)-additive species; and irradiating the electroplating solution, wherein the radiation is of sufficient energy to reduce the iron(III) in the iron(III)-additive species to iron(II). The additive comprises hydroxycarboxylic acids and their lactones.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: December 5, 2006
    Assignee: Enpirion, Inc.
    Inventor: Robert W. Filas
  • Patent number: 7122105
    Abstract: A method of electroplating iron or an iron alloy with a solution containing an iron-chelating agent to catalytically cycle the undesirable Fe(III) species back to Fe(II) for electroplating. The iron-chelating agents may be siderophores, specifically, for example, desferrioxamine E, desferrioxamine B, alcaligin, bisucaberin, putrebactin, rhodotorulic acid, enterobactin, vibriobactin, azotochelin, myxochelin, fluvibactin, and serratiochelin.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: October 17, 2006
    Assignee: Enpirion, Inc.
    Inventor: Robert W. Filas
  • Patent number: 6835228
    Abstract: A process of recovering metals from waste lithium ion/Ni—H/Ni—Cd batteries, wherein the waste batteries are calcined and sieved to generate an ash containing metals and metal oxides. The process includes subjecting the ash to a first dissolution etching treatment, a first filtration treatment to obtain a filtrate containing Cd ions which are crystallized as cadmium sulfate, a second dissolution etching treatment for the filtered solid, and a second filtration treatment to obtain a second filtrate. Fe+3, Al+3 and rare earth metal ions in the second filtrate are precipitated as hydroxides by adding a base to the second filtrate. The remaining solution was extracted and counter-extracted to obtain aqueous solutions of Co and Ni ions, which were subjected separately to a electrolysis to deposit Co and Ni metals. Li ions in the residue solution from the electrolysis of Ni was precipitated as carbonate by adding a soluble carbonate salt.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: December 28, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Jiunn-Ren Lin, I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu
  • Patent number: 6818119
    Abstract: The invention encompasses a method and apparatus for producing high-purity metals (such as, for example, high-purity cobalt), and also encompasses the high-purity metals so produced. The method can comprise a combination of electrolysis and ion exchange followed by melting to produce cobalt of a desired purity. The method can result in the production of high-purity cobalt comprising total metallic impurities of less than 50 ppm. Individual elemental impurities of the produced cobalt can be follows: Na and K less than 0.5 ppm each, Fe less than 10 ppm, Ni less than 5 ppm, Cr less than 1 ppm, Ti less than 3 ppm and 0 less than 450 ppm.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: November 16, 2004
    Assignee: Honeywell International Inc.
    Inventors: Guangxin Wang, Daniel M. Hydock, John Lehman
  • Patent number: 6685819
    Abstract: A galvanic cell system (50) in fluid communication with a dewatering system (40) of an inhibited oxidation scrubber (20) removes an oxidation catalyst, i.e., solution phase iron (98), from the process liquor (42) produced by the dewatering system (40) and replaces the iron (98) with magnesium (104) in an oxidation-reduction reaction. An electrolytic cell system (154) in fluid communication with a dewatering system (144) of a forced oxidation scrubber (128) removes an oxidation inhibitor, i.e., solution phase aluminum (174), from the process liquor (146) produced by the dewatering system (144) and replaces the aluminum (174) with iron (170) in an oxidation-reduction reaction. The process liquor (42, 146) is subsequently returned to the scrubber (20, 128) with the solution phase metal (98, 174) selectively removed, thereby enhancing the scrubbing efficiency of the scrubber (20, 128).
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: February 3, 2004
    Assignee: Pinnacle West Capital Corporation
    Inventors: Bruce A. Salisbury, Kelly L. Baird, Calvin C. Webb
  • Patent number: 6547949
    Abstract: The electrolyte is supplied from a reservoir through at least one supply line to an electrolysis area including anodes and cathodes and at least one electric d.c. voltage source, and used electrolyte is at least partly recirculated from the electrolysis area back to the reservoir through at least one discharge line. Between a first contact point in the electrolyte of the supply line and a second contact point in the electrolyte of the discharge line there is a bridge line containing electrolyte, where the ohmic resistance R1 of the electrolyte in the bridge line between the first and the second contact point is not more than 10% of the ohmic resistance R2 which exists between the first and the second contact point in the electrolyte flowing through the reservoir. The amount of electrolyte flowing through the bridge line per unit time is not more than 5% of the amount of electrolyte flowing in the supply line in the vicinity of the first contact point.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: April 15, 2003
    Assignee: MG Technologies AG
    Inventors: Nikola Anastasijevic, Stefan Laibach, Friedhelm Münker, Markus Schweitzer, Walter Kühn
  • Publication number: 20030066759
    Abstract: Various systems and methods for protecting electrowinning anodes having electrocatalytically active coatings in a bank of electrolytic cells from being damaged by reverse currents. In the first embodiment, one or more auxiliary power sources are provided that, when triggered by one or more predetermined conditions being met, keep the bank of electrolytic cells in an electrical state that is relatively harmless to the anodes having electrocatalytically active coatings. In a second embodiment, the invention is directed to a method of maintaining the polarization of anodes in an electrowinning cell positive of the cathodes (i.e. in a potential region where the anode coating is not susceptible to significant damage). In a final embodiment, the invention is directed to various methods for the installation of replacement anodes and maintenance of electrowinning cells.
    Type: Application
    Filed: August 14, 2002
    Publication date: April 10, 2003
    Inventors: Kenneth L. Hardee, Michael S. Moats, Carl W. Brown, Robert L. Wilhelm, Edward M. Halko, Zane A. Wade
  • Patent number: 6514311
    Abstract: A process of recovering metals from waste lithium ion batteries, wherein the waste batteries are calcined and sieved to generate an ash containing metals and metal oxides. The invented process includes subjecting the ash to a dissolution etching treatment, and a filtration treatment, and separately using a membrane electrolysis method to separate out metal copper and cobalt, wherein the acid generated on the cathode side in the electrolysis process can be recovered through a diffusion dialysis treatment. After electrolysis, the solution rich in lithium ion, after precipitating the metal impurities by adjusting the pH value, can be added with a carbonate ion to form a lithium carbonate.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: February 4, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Jiunn-Ren Lin, Chang Fan, I-Long Chang, Jer-Yuan Shiu
  • Publication number: 20030010647
    Abstract: A galvanic cell system (50) in fluid communication with a dewatering system (40) of an inhibited oxidation scrubber (20) removes an oxidation catalyst, i.e., solution phase iron (98), from the process liquor (42) produced by the dewatering system (40) and replaces the iron (98) with magnesium (104) in an oxidation-reduction reaction. An electrolytic cell system (154) in fluid communication with a dewatering system (144) of a forced oxidation scrubber (128) removes an oxidation inhibitor, i.e., solution phase aluminum (174), from the process liquor (146) produced by the dewatering system (144) and replaces the aluminum (174) with iron (170) in an oxidation-reduction reaction. The process liquor (42, 146) is subsequently returned to the scrubber (20, 128) with the solution phase metal (98, 174) selectively removed, thereby enhancing the scrubbing efficiency of the scrubber (20, 128).
    Type: Application
    Filed: July 10, 2001
    Publication date: January 16, 2003
    Inventors: Bruce A. Salisbury, Kelly L. Baird, Calvin C. Webb
  • Patent number: 6387239
    Abstract: A bio-leaching method is provided for recovering metal from a metal containing ore. The ore is subjected to contact with a microorganism selective to the oxidation of sulfur. A sulfur containing compound is mixed with the microorganism before, during or after contact with the ore to systemically form sulfuric acid to leach the metal from the ore. The ore is in the form of a slurry, a heap, a charge in a vat and is bioleached for a time sufficient to dissolve the metal in the ore and form a metal-rich leachate and an ore residue. The metal can then be extracted from the metal-rich leachate. The metal containing ore may contain base metals, precious metals, or platinum group metals. Upon formation of the metal-rich leachate, the ore residue may be further processed to recover any precious metals or platinum group metals that may be present.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: May 14, 2002
    Assignee: BHP Minerals International, Inc.
    Inventors: Willem P. C. Duyvesteyn, Julia R. Budden, Manuel R. Lastra
  • Publication number: 20020009638
    Abstract: A coated composite electrode for supporting an anodic electrochemical reaction includes a substrate composed of an electrically conductive metal and a mixture composed of lead and manganese oxides of between about 70 and 90 weight percent and of binders and extenders together being of between about 10 and 30 weight percent. The mixture is in the form of a coating on the substrate which constitutes a site of electrochemical oxidation. The coating is pressed above about 1500 psi pressure and at a temperature within the range of about 25 to 230 degrees C. The composite electrode provides corrosion inhibition for the lead alloy and improved current efficiency in systems with iron, such as copper electrowinning.
    Type: Application
    Filed: June 22, 2001
    Publication date: January 24, 2002
    Inventors: Marion Dattilo, Leonard J. Lutz
  • Patent number: 6187169
    Abstract: A procedure for the generation of organosulfonic acids from solutions of corresponding metal organosulfonate compounds by electrowinning, electrolytically driven hydrolysis or chemically driven hydrolysis is described. Appropriate organosulfonate compounds include the water soluble salts of alkanesulfonic and aromatic sulfonic acids which incorporate metals from Group VIB, VIIB, VIIIB, IB, IIB or VA of the periodic table. The electrowinning and electrolytic techniques described can be applied in divided or undivided cells and can be operated in continuous fashion to provide the greatest efficiency. Hydrolysis based methods can employ either anodic oxidation or oxidation both of which function to oxidize the metal cation(s) present to hydrolytically unstable higher oxidation states.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: February 13, 2001
    Assignee: ATOFINA Chemicals, Inc.
    Inventors: Michael D. Gernon, Nicholas M. Martyak, Martin Nosowitz, Gary S. Smith
  • Patent number: 6183621
    Abstract: The present invention relates to processes for the production of cobalt(II) carbonates corresponding to the general formula Co[(OH)2]a[CO3]1−a, cobalt(II) carbonates and cobalt(II) oxalate carbonates obtainable by the process and the use thereof.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: February 6, 2001
    Assignee: H. C. Stack GmbH & Co. KG
    Inventors: Astrid Görge, Juliane Messe-Marktscheffel, Dirk Naumann, Armin Olbrich, Frank Schrumpf
  • Patent number: 6176997
    Abstract: Copper is extracted from a heap of low-grade ore by transforming the heap into an electrolytic cell, and imposing a voltage thereon. Anodic conditions of redox and pH cause the sulphide to break down, and the copper to pass into solution. The copper can be recovered elsewhere if the electrolyte is drawn off, or in-situ if allowed to plate onto the cathode. Electrodes are formed as grids of conductors, or as layers of e.g. graphite.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: January 23, 2001
    Assignee: Enpar Technologies Inc.
    Inventors: Gene Sidney Shelp, Ward Chesworth
  • Patent number: 6149797
    Abstract: A high performance method for recovery of metal from aqueous solutions is carried out using an electrochemical cell having a cathode assembly that includes a nonporous support member, a primary cathode, and a nonconductive or conductive porous material covering the primary cathode. An anode is spaced apart from the cathode assembly. Fluid is caused to flow through the porous material to the primary cathode, through openings or fluid collection channels in the nonporous support member, and uniformly out of the cell. Uniform and efficient deposition of metal is accomplished over the entire cathode assembly because of modulation of fluid flow and increased mass transfer.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: November 21, 2000
    Assignee: Eastman Kodak Company
    Inventors: James J. Carey, Gary P. Wainwright, Stephen N. Lowery, Robert B. Call, Peter J. Kelch
  • Patent number: 5720867
    Abstract: An electrolytic cell comprising bipolar electrodes is employed for electrochemical deposition of copper, zinc, lead, nickel or cobalt. An interior space is provided between the cathode side and the anode side of a bipolar electrode. The electrolyte can flow substantially without an obstruction through the interelectrode space between adjacent electrodes. The current densities in the interelectrode space amount to 800 to 8000 A/m.sup.2. Gas is evolved on the anode side of the bipolar electrodes and causes liquid to flow along the anode side. In the middle of the height of the anode side that liquid flow has a vertical component having a velocity of 5 to 100 cm/second. Electrolyte solution flows from the upper edge portion of the anode side to a return flow space, in which the solution flows downwardly. From the return flow space the solution is returned to the lower portion of the interelectrode space.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: February 24, 1998
    Assignee: Metallgesellschaft AG
    Inventors: Nikola Anastasijevic, Gerhard Jedlicka, Karl Lohrberg
  • Patent number: 5690806
    Abstract: An electrochemical cell is provided for removal of metals such as copper, lead, silver, tellurium, platinum, palladium or nickel from dilute solutions of the metal. The cell comprises a porous tubular support (18) which is provided with a cathode comprising a porous carbon fiber material (19), a current feeder (15) for the cathode, a tubular anode (12) spaced from said cathode, a current feeder (16) for the anode, the anode and the cathode being enclosed by a non-porous outer casing (11). In use the dilute solution from which the metal is to be removed is introduced into the cell through an inlet (13) and flows through the porous carbon fiber cathode to an outlet (14). The cell is useful for removing harmful metals from wastes so that they are environmentally acceptable for disposal and for recovery of valuable metals.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: November 25, 1997
    Assignee: EA Technology Ltd.
    Inventors: John Garry Sunderland, Ian McCrady Dalrymple
  • Patent number: 5667665
    Abstract: A process for producing a high purity cobalt is provided comprising the following steps. An aqueous solution of cobalt chloride having a hydrochloric acid concentration of 7 to 12N is provided. The solution includes either or both of Fe and Ni as impurities. The solution is contacted with an anion exchange resin so that cobalt is adsorbed on the resin. Cobalt is eluted from the resin with hydrochloric acid at a concentration of 1 to 6N. The solution containing the eluted cobalt is dried or otherwise concentrated to produce a purified aqueous solution of cobalt chloride having a pH of 0 to 6. Organic materials are preferably removed from the purified solution by active carbon treatment. Electrolytic refining is conducted with the purified aqueous solution as an electrolyte to obtain electrodeposited cobalt. A high purity cobalt sputtering target can be obtained wherein Na content is 0.05 ppm or less; K content is 0.
    Type: Grant
    Filed: March 12, 1996
    Date of Patent: September 16, 1997
    Assignee: Japan Energy Corporation
    Inventors: Yuichiro Shindo, Tsuneo Suzuki
  • Patent number: 5620584
    Abstract: The object of the invention is a method for the electrochemical preparation of metal colloids with particle sizes of less than 30 nm, characterized in that one or more salts of one or more metals of groups Ib, IIb, III, IV, V, VI, VIIb, VIII, lanthanoides, and/or actinoides of the periodic table are cathodically reduced in the presence of a stabilizer, optionally with a supporting electrolyte being added, in organic solvents or in solvent mixtures of organic solvents and/or water within a temperature range of between -78.degree. C. and +120.degree. C. to form metal colloidal solutions or redispersible metal colloid powders, optionally in the presence of inert substrates and/or soluble metal salts of the respective metals. The invention further relates to soluble or redispersible colloids as well as application on substrates and immobilization thereof, in particular for the preparation of catalysts.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: April 15, 1997
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Manfred T. Reetz, Wolfgang Helbig, Stefan A. Quaiser
  • Patent number: 5534131
    Abstract: The conditions for electrowinning Zn, Ni, Co and Cd metals from baths based on chlorinated ammino complexes of Me(NH.sub.3).sub.n Cl.sub.m type are substantially improved by the addition of small levels of dissolved Br, which considerably reduce the cell voltage without exerting any negative effects on cathodic current yields.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: July 9, 1996
    Assignee: Ecochem Aktiengesellschaft
    Inventor: Gianni Zoppi