Of Iron Patents (Class 205/592)
  • Patent number: 11767604
    Abstract: Methods and systems for producing are disclosed. A method for producing iron, for example, comprises: providing an iron-containing ore to a dissolution subsystem comprising a first electrochemical cell; wherein the first anolyte has a different composition than the first catholyte; dissolving at least a portion of the iron-containing ore using an acid to form an acidic iron-salt solution having dissolved first Fe3+ ions; providing at least a portion of the acidic iron-salt solution to the first cathodic chamber; first electrochemically reducing said first Fe3+ ions in the first catholyte to form Fe2+ ions; transferring the formed Fe2+ ions from the dissolution subsystem to an iron-plating subsystem having a second electrochemical cell; second electrochemically reducing a first portion of the transferred formed Fe2+ ions to Fe metal at a second cathode of the second electrochemical cell; and removing the Fe metal.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: September 26, 2023
    Assignee: ELECTRASTEEL, INC.
    Inventors: Ai Quoc Pham, Sandeep Nijhawan, Adolfredo Alvarez, Colleen Wallace, Steven Fatur
  • Patent number: 11753732
    Abstract: Methods and systems for dissolving an iron-containing ore are disclosed. For example, a method of processing and dissolving an iron-containing ore comprises: thermally reducing one or more non-magnetite iron oxide materials in the iron-containing ore to form magnetite in the presence of a reductant, thereby forming thermally-reduced ore; and dissolving at least a portion of the thermally-reduced ore using an acid to form an acidic iron-salt solution; wherein the acidic iron-salt solution comprises protons electrochemically generated in an electrochemical cell.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: September 12, 2023
    Assignee: ELECTRASTEEL, INC.
    Inventors: Ai Quoc Pham, Sandeep Nijhawan, Adolfredo Alvarez, Steven Fatur
  • Publication number: 20100044243
    Abstract: An electrochemical process for the concurrent recovery of iron metal and chlorine gas from an iron-rich metal chloride solution, comprising electrolysing the iron-rich metal chloride solution in an electrolyser comprising a cathodic compartment equipped with a cathode having a hydrogen overpotential higher than that of iron and containing a catholyte having a pH below about 2, an anodic compartment equipped with an anode and containing an anolyte, and a separator allowing for anion passage, the electrolysing step comprising circulating the iron-rich metal chloride solution in a non-anodic compartment of the electrolyser, thereby causing iron to be electrodeposited at the cathode and chlorine gas to evolve at the anode, and leaving an iron-depleted solution. The iron-rich metal chloride solution may originate from carbo-chlorination wastes, spent acid leaching liquors or pickling liquors.
    Type: Application
    Filed: January 9, 2007
    Publication date: February 25, 2010
    Inventor: Francois Cardarelli
  • Patent number: 6390275
    Abstract: A conveyor system particularly configured for discrete parcels, which combines tilting tray concepts with “cross-belt” or powered conveyor concepts, which allows for the acceleration of parcels above one gravity force “G”. In one configuration, two levels can be used, the upper for larger packages, and the lower for lower packages.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: May 21, 2002
    Assignee: United Parcel Service of America, Inc.
    Inventor: Henri Bonnet
  • Patent number: 5487819
    Abstract: A process for producing one or more metals from a mineral feedstock (12) is defined. The mineral is fed to a leaching apparatus (10) wherein it is contacted with electrolyte (14). The leaching apparatus has zones of decreasing oxidation potential (17, 18, 19, 20) respectively. A stream of electrolyte (14A) is removed from zone (20) and is treated to remove impurities and unwanted metals in treatment unit (25A), prior to metal recovery by electrolysis. The electrolyte after electrolysis is then returned to the leaching unit (10). A second electrolyte stream (14B) may be removed from zone (19) for recovery of additional metals. The electrolyte (14B) is treated to remove impurities and any unwanted metals in treatment unit (25B), prior to metal recovery by electrolysis. The electrolyte after electrolysis is returned to leaching unit (10). The process enables the leaching of difficult to leach minerals, including gold, and can produce one or more metals of high purity.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: January 30, 1996
    Inventor: Peter K. Everett