Aperture Making Patents (Class 205/665)
  • Patent number: 10864586
    Abstract: An electrochemical machining device includes a plurality of electrodes, a guiding member and a plate member. The electrodes are disposed around a workpiece. The guiding member is configured to limit and guide each of the electrodes to move. The plate member is configured to exert a force to each of the electrodes. The driving member is configured to rotate the workpiece. The plate member is connected to each of the electrodes. A force-exerting direction of the force from the plate member to each of the electrodes is parallel to a central axis of each of the electrodes or deflects off the central axis. Each of the electrodes is passed through the guiding member and configured to perform a machining on the workpiece which is rotated by the driving member, and each of the electrodes has an electrochemical machining direction which is perpendicular, oblique or parallel to the workpiece.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: December 15, 2020
    Assignee: INTAI TECHNOLOGY CORP.
    Inventors: Yung-Fang Tsai, Chia-Wei Cheng
  • Patent number: 10661369
    Abstract: Provided is an electrode capable of increasing a degree of freedom in machining shape with a simple structure, an electrochemical machining apparatus using the electrode, an electrochemical machining method, and a product machined by the method. An electrode 4 has a core tube 41 formed of a material by which a second hole 101b having a direction or a curvature different from that of a first hole 101a having a predetermined curvature can be formed continuously from the first hole 101a and a coating 42 fixed to an outer periphery of the core tube 41.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 26, 2020
    Assignee: HODEN SEIMITSU KAKO KENKYUSHO CO., LTD.
    Inventors: Takayuki Mori, Hiroyuki Sunada, Hirotaro Hosoe
  • Patent number: 10596523
    Abstract: Methods and apparatus for forming apertures in a solid state membrane using dielectric breakdown are provided. In one disclosed arrangement a plurality of apertures are formed. The membrane comprises a first surface area portion on one side of the membrane and a second surface area portion on the other side of the membrane. Each of a plurality of target regions comprises a recess or a fluidic passage opening out into the first or second surface area portion. The method comprises contacting all of the first surface area portion of the membrane with a first bath comprising ionic solution and all of the second surface area portion with a second bath comprising ionic solution. A voltage is applied across the membrane via first and second electrodes in respective contact with the first and second baths comprising ionic solutions to form an aperture at each of a plurality of the target regions in the membrane.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 24, 2020
    Inventors: Ping Xie, Ken Healy, Justin Millis
  • Patent number: 10449762
    Abstract: According to an example, a fluid ejection device may include a substrate, a resistor positioned on the substrate, an overcoat layer positioned over the resistor, a fluidics layer having surfaces that form a firing chamber about the resistor, in which the overcoat layer is positioned between the resistor and the firing chamber, and a thin film membrane covering the surfaces of the fluidics layer that form the firing chamber and a portion of the overcoat layer that is in the firing chamber.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 22, 2019
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: James R. Przybyla, Zhizhang Chen
  • Patent number: 10373839
    Abstract: A wafer contacting device may include: a receiving region configured to receive a wafer; and an elastically deformable carrier disposed in the receiving region and including an electrically conductive surface region.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Kroener, Ingo Muri
  • Patent number: 10338057
    Abstract: The membrane of a conventional solid-state nanopore device, which is believed to be promising for understanding the structural characteristics of DNA and determining a nucleotide sequence, has been thick, and the accuracy in determining a nucleotide sequence in the DNA chain has been insufficient. A method characterized by forming a membrane by forming a first film on a first substrate having a surface of Si, then forming a hole in the first film in such a manner that the surface of the first substrate is exposed, then forming a second film on the first film and on the surface of the first substrate and then etching the first substrate with a solution which does not remove the second film.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: July 2, 2019
    Assignee: HITACHI, LTD.
    Inventors: Itaru Yanagi, Kenichi Takeda
  • Publication number: 20150090606
    Abstract: Forming a porous layer on a silicon substrate. Forming the porous layer can include placing a first silicon substrate in a solution, where a first electrode is within a threshold distance to an edge of the silicon substrate. It can further include conducting a first current through the silicon substrate, where the first electrode can be positioned relative to the edge allowing for substantially uniform porosification along the edge of the first silicon substrate.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventors: Joseph Behnke, Seung Bum Rim
  • Publication number: 20150090605
    Abstract: Forming a porous layer on a silicon substrate is disclosed. Forming the porous layer can include placing a silicon substrate in a first solution and conducting a first current through the silicon substrate. It can further include conducting a second current through the silicon substrate resulting in a porous layer on the silicon substrate.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventor: Seung Bum Rim
  • Publication number: 20150061487
    Abstract: A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/?m is demonstrated in a macroscopic emitter array. The emitter is comprised of a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
    Type: Application
    Filed: October 20, 2014
    Publication date: March 5, 2015
    Inventors: Fred Sharifi, MYUNG-GYU KANG, HENRI LEZEC
  • Publication number: 20140296965
    Abstract: The monolithic device comprises a plurality of scaffolding members and a mesh patterned members webbed between the scaffolding members; the mesh patterned member webbed between the scaffolding members surround a lumen and generally expands from a contracted state to an expanded state; and mesh patterned members including a plurality of openings traversing the thickness of the mesh patterned member, and the mesh patterned members including a surface on which a pattern of openings is formed.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 2, 2014
    Applicant: PALMAZ SCIENTIFIC, INC.
    Inventors: Michael Poor, Armando GARZA, Scott CARPENTER, Julio C. PALMAZ
  • Publication number: 20140262820
    Abstract: In a method for forming nanopores, two opposing surfaces of a membrane are exposed to an electrically conducting liquid environment. A nanopore nucleation voltage pulse, having a first nucleation pulse amplitude and duration, is applied between the two membrane surfaces, through the liquid environment. After applying the nanopore nucleation voltage pulse, the electrical conductance of the membrane is measured and compared to a first prespecified electrical conductance. Then at least one additional nanopore nucleation voltage pulse is applied between the two membrane surfaces, through the liquid environment, if the measured electrical conductance is no greater than the first prespecified electrical conductance.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Aaron T. Kuan, Jene A. Golovchenko
  • Publication number: 20140233152
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods may include forming an electrochemical capacitor device by forming pores in low-purity silicon materials. Various embodiments described herein enable the fabrication of high capacitive devices using low cost techniques.
    Type: Application
    Filed: December 27, 2011
    Publication date: August 21, 2014
    Inventors: Donald S. Gardner, Cary L. Pint, Charles W. Holzwarth, Wei Jin, Zhaohui Chen, Yang Liu, Eric C. Hannah, John L. Gustafson
  • Publication number: 20140093782
    Abstract: Embodiments of the invention describe energy storage devices, porous electrodes, and methods of formation. In an embodiment, an energy storage device includes a porous structure containing multiple main channels that extend into an electrically conductive structure at an acute angle. In an embodiment, an energy storage device includes a porous structure containing an array of V-groove or pyramid recesses.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Donald S. Gardner, Charles W. Holzwarth, Win Jei
  • Publication number: 20140008241
    Abstract: The invention refers to a method for the electrochemical machining of work pieces, such as, for example, nozzles, in particular nozzles with a blind hole. The invention also refers to a device for the electrochemical machining of work pieces. The invention is characterized by a relative movement, in particular a rotary movement during the machining between work piece and cathode. The device is characterized in that cathode and/or work piece are supported rotatably on bearings for a relative movement.
    Type: Application
    Filed: March 12, 2012
    Publication date: January 9, 2014
    Applicant: STOBA SONDERMASCHINEN GMBH
    Inventors: Oliver Gunther, Thomas Hog, Hans-Joachim Konietzni
  • Patent number: 8580102
    Abstract: Method for the electrochemical etching of macropores in n-type silicon wafers, using illumination of the wafer reverse sides and using an aqueous electrolyte, characterized in that the electrolyte is an aqueous acetic acid solution with the composition of H2O:CH3COOH in the range between 2:1 and 7:3, with an addition of at least 9 percent by weight hydrofluoric acid.
    Type: Grant
    Filed: February 28, 2009
    Date of Patent: November 12, 2013
    Assignee: Christian-Albrechts-Universitaet zu Kiel
    Inventors: Emmanuel Ossei-Wusu, Ala Cojocaru, Juergen Carstensen, Helmut Foell
  • Patent number: 8535491
    Abstract: An electrode for an electrochemical machining process is provided. The electrode comprises a curved, electrically conductive member, and an insulating coating covering at least a portion of a side surface of the curved, electrically conductive member. An electrochemical machining assembly is also provided for machining curved holes in a workpiece. The assembly includes at least one curved electrode and a power supply operatively connected to provide a pulsed voltage to the at least one curved electrode and to the workpiece. The assembly further includes a rotational driver operatively connected to move the at least one curved electrode along a curved path within the workpiece. The assembly is configured to remove material from the workpiece upon application of the pulsed voltage to the at least one curved electrode and to the workpiece. An electrochemical machining method is also provided for forming one or more curved holes in an electrically conductive workpiece.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Bin Wei, Gary Charles Liotta
  • Publication number: 20130228700
    Abstract: An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 5, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Paulo C. Lozano, Natalya Anna Brikner, Chase Spencer Coffman
  • Publication number: 20130217786
    Abstract: A method for simultaneously detecting and separating a target analyte such as a protein or other macromolecule that includes providing a porous silicon matrix on the silicon substrate, exposing the porous silicon matrix to an environment suspect of containing the target analyte, observing optical reflectivity of the porous silicon matrix; and correlating the changes in the silicon substrate to the target analyte.
    Type: Application
    Filed: August 21, 2012
    Publication date: August 22, 2013
    Applicant: The Regents of the University of California
    Inventors: Michael J. Sailor, Gaurav Abbi, Boycee Collins, Keiki-Pua S. Dancil
  • Publication number: 20130098774
    Abstract: An ionic liquid ion source can include a microfabricated body including a base and a tip. The microfabricated body can be formed of a porous metal compatible (e.g., does not react or result in electrochemical decaying or corrosion) with an ionic liquid or a room-temperature molten salt. The microfabricated body can have a pore size gradient that decreases from the base of the body to the tip of the body, so that the ionic liquid can be transported through capillarity from the base to the tip.
    Type: Application
    Filed: November 19, 2012
    Publication date: April 25, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: Massachusetts Institute of Technology
  • Publication number: 20130078549
    Abstract: According to one embodiment, a catalyst-supporting substrate comprises a substrate and a catalyst layer including a plurality of pores, the catalyst layer being supported on the substrate. The average diameter of the section of the pore when the catalyst is cut in the thickness direction of the thickness is 5 nm to 400 nm, and the long-side to short-side ratio of the pore on the section is 1:1 to 10:1 in average.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 28, 2013
    Inventors: Taishi FUKAZAWA, Wu MEl, Yoshihiro AKASAKA, Norihiro YOSHINAGA
  • Publication number: 20130062218
    Abstract: A method for processing a constructed, liquid-cooled piston of an internal combustion engine, the piston including an upper piston part and a lower piston part, which are supported by a joining plane and are connected to each other in a bonded manner. An electrochemical method, such as electrochemical machining, is used to produce a passage opening or a hole in the piston. By means of the method, material is selectively removed after the completion of the upper part piston, the lower piston part, or the piston after the two piston parts have been joined. The electrochemical machining allows an arbitrarily geometrically designed topography having at least one passage opening, a hollow, or an oil pocket in cooling areas or non-cooling areas to be created on the piston.
    Type: Application
    Filed: February 12, 2011
    Publication date: March 14, 2013
    Applicant: KS KOLBENSCHMIDT GMBH
    Inventors: Janssen Albert Michael, Gniesmer Volker, Karl Diffenbach, Gerhard Luz
  • Publication number: 20130045420
    Abstract: In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 21, 2013
    Applicant: William Marsh Rice University
    Inventors: Sibani Lisa Biswal, Madhuri Thakur, Michael S. Wong, Steven L. Sinsabaugh, Mark Isaacson
  • Publication number: 20120244377
    Abstract: A porous metal article includes a substrate, a metal layer formed on the substrate, and a porous metal layer formed on the metal layer. The metal layer is a noble metal layer doped with M, M comprising an element selected from a group consisting of aluminum, magnesium and calcium, the content of M in the metal layer is between about 30 wt % and about 70 wt %. The metal layer has a thickness between about 1 micrometer and about 8 micrometers. The porous metal layer has a thickness between about 2 micrometers and about 4 micrometers.
    Type: Application
    Filed: August 25, 2011
    Publication date: September 27, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, LONE-WEN TAI, SHUN-MAO LIN
  • Publication number: 20120244010
    Abstract: An electrode for an electrochemical machining process is provided. The electrode includes an electrically conductive member defining at least one passage and an insulating coating partially covering a side surface of the electrically conductive member. The insulating coating does not cover at least one of first and second exposed sections of the electrically conductive member, where the first and second exposed sections are separated by approximately 180 degrees and extend substantially along a longitudinal axis of the electrically conductive member. The insulating coating also does not cover an exposed front end of the electrically conductive member. An electrochemical machining method is also provided, for forming a non-circular hole in a workpiece using the electrode.
    Type: Application
    Filed: June 8, 2012
    Publication date: September 27, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bin Wei, Kevin Leon Bruce
  • Publication number: 20120231326
    Abstract: Methods of fabricating porous silicon by electrochemical etching and subsequent coating with a passivating agent process are provided. The coated porous silicon can be used to make anodes and batteries. It is capable of alloying with large amounts of lithium ions, has a capacity of at least 1000 mAh/g and retains this ability through at least 60 charge/discharge cycles. A particular pSi formulation provides very high capacity (3000 mAh/g) for at least 60 cycles, which is 80% of theoretical value of silicon. The Coulombic efficiency after the third cycle is between 95-99%. The very best capacity exceeds 3400 mAh/g and the very best cycle life exceeds 240 cycles, and the capacity and cycle life can be varied as needed for the application.
    Type: Application
    Filed: October 28, 2010
    Publication date: September 13, 2012
    Applicants: LOCKHEED MARTIN CORPORATION, WILLIAM MARSH RICE UNIVERSITY
    Inventors: Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsbaugh, Mark J. Isaacson
  • Publication number: 20120174808
    Abstract: Silicon-based explosive devices and methods of manufacture are provided. In this regard, a representative method involves: providing a doped silicon substrate; depositing undoped silicon on a first side of the substrate; and infusing an oxidizer into an area bounded at least in part by the undoped silicon; wherein the undoped silicon limits an exothermic reaction of the doped silicon to the bounded area. Another representative method involves: providing a doped silicon substrate; depositing a masking layer of low-pressure chemical vapor deposited (LPCVD) Silicon nitride to the first side of the substrate; patterning the nitride mask and etching the porous silicon, and infusing oxidizer into an area bounded by the LPCVD nitride; wherein the silicon nitride limits an exothermic reaction of the doped silicon to the bounded area.
    Type: Application
    Filed: August 4, 2009
    Publication date: July 12, 2012
    Inventors: Luke J. Currano, Ronald G. Polcawich, Wayne Churaman, Mark Gelak
  • Publication number: 20120148769
    Abstract: A method of fabricating a component is provided. The fabrication method includes depositing a first layer of a structural coating on an outer surface of a substrate. The substrate has at least one hollow interior space. The fabrication method further includes machining the substrate through the first layer of the structural coating, to define one or more openings in the first layer of the structural coating and to form respective one or more grooves in the outer surface of the substrate. Each groove has a respective base and extends at least partially along the surface of the substrate. The fabrication method further includes depositing a second layer of the structural coating over the first layer of the structural coating and over the groove(s), such that the groove(s) and the second layer of the structural coating together define one or more channels for cooling the component. A component is also disclosed.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 14, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Don Mark Lipkin
  • Publication number: 20120141820
    Abstract: A porous metal article includes a substrate; a metal layer formed on the substrate; and a porous metal layer formed on the metal layer. The metal layer is a noble metal layer doped with M that is at least one element selected from a group consisting of aluminum, magnesium and calcium, the content of M in the metal layer is between about 30 wt % and about 70 wt %.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 7, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, SHUN-MAO LIN
  • Publication number: 20120106974
    Abstract: Technologies are generally described for an optical waveguide, methods and systems effective to form an optical waveguide, and an optical system including an optical waveguide. In some examples, the optical waveguide may include a silicon oxynitride region in a wall of the silicon substrate. The silicon oxynitride region may define an inner region of the optical waveguide. The wall may define a via. The optical waveguide may include a silicon oxide region in the substrate. The silicon oxide region may define an outer region of the optical waveguide adjacent to the inner region.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Keith Goossen
  • Publication number: 20110210265
    Abstract: An ionic liquid ion source can include a microfabricated body including a base and a tip. The microfabricated body can be formed of a porous metal compatible (e.g., does not react or result in electrochemical decaying or corrosion) with an ionic liquid or a room-temperature molten salt. The microfabricated body can have a pore size gradient that decreases from the base of the body to the tip of the body, so that the ionic liquid can be transported through capillarity from the base to the tip.
    Type: Application
    Filed: May 6, 2009
    Publication date: September 1, 2011
    Inventors: Paulo Lozano, Robert Scott Legge
  • Patent number: 7964087
    Abstract: A method for forming a hole in an object is provided. The method includes forming a starter hole in the object, providing an electrochemical machining electrode that includes insulation that extends only partially around the electrode, and inserting the electrode into the starter hole to form a hole in the object that has an inlet defined by a first cross-sectional area and an outlet defined by a second cross-sectional area.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: June 21, 2011
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Bin Wei, Chen-Yu Jack Chou
  • Patent number: 7947077
    Abstract: The invention relates to a method for producing a composite material, to a composite material produced according to said method and to the use of said material.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: May 24, 2011
    Assignee: Dritte Patentportfolio Beteiligungsgesellschaft mbH & Co. KG
    Inventors: Rolf-Dieter Zehbe, Helmut Schubert
  • Patent number: 7938951
    Abstract: A method for forming holes in an object is provided. The method includes providing an electrochemical machining (ECM) electrode including a first section having insulation that circumscribes the first section, and a second section having insulation that extends only partially around the second section. The method also includes inserting the electrode into the object, such that in a single pass the electrode forms a hole that includes a first portion having a first cross-sectional area and a second portion having a second cross-sectional area.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: May 10, 2011
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Bin Wei, Chen-Yu Jack Chou
  • Publication number: 20110083793
    Abstract: An object of the present invention is to provide a method for stably forming an artificial lipid membrane while suppressing the leakage and evaporation of an electrolytic solution. The present invention is an artificial lipid membrane forming method for forming an artificial lipid membrane using an artificial lipid membrane forming apparatus. The artificial lipid membrane forming apparatus comprises a first chamber, a second chamber, a dividing wall, and an artificial lipid membrane forming portion. Each of the first chamber and the second chamber has a capacity of not smaller than 10 pl and not larger than 200 ?l. The artificial lipid membrane forming method of the present invention comprises the steps of: preparing the artificial lipid membrane forming apparatus; adding to the first chamber a first electrolytic solution having a viscosity of not lower than 1.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Akio OKI, Norihito Tsukahara, Masato Suzuki, Hiroaki Oka
  • Patent number: 7919025
    Abstract: A membrane structure is provided. The membrane structure includes a first layer having a plurality of pores; and a second layer disposed on the first layer. The second layer has a plurality of unconnected pores. At least a portion of the plurality of unconnected pores of the second layer is at least partially filled with a filler such that the first layer is substantially free of the filler. At least a portion of the plurality of unconnected pores of the second layer is in fluid communication with at least one of the pores of the first layer. A method of making a membrane structure is provided. The method includes the steps of providing a first layer having a plurality of interconnected pores; disposing a second layer on the first layer, and filling at least a portion of the unconnected pores of the second layer with a filler such that the first layer is substantially free of the filler.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 5, 2011
    Assignee: General Electric Company
    Inventors: Vidya Ramaswamy, Seth Thomas Taylor, James Anthony Ruud, Melissa Suzanne Sander, Anthony Yu-Chung Ku, Mohan Manoharan
  • Publication number: 20110070096
    Abstract: An electrode for an electrochemical machining process is provided. The electrode comprises a curved, electrically conductive member, and an insulating coating covering at least a portion of a side surface of the curved, electrically conductive member. An electrochemical machining assembly is also provided for machining curved holes in a workpiece. The assembly includes at least one curved electrode and a power supply operatively connected to provide a pulsed voltage to the at least one curved electrode and to the workpiece. The assembly further includes a rotational driver operatively connected to move the at least one curved electrode along a curved path within the workpiece. The assembly is configured to remove material from the workpiece upon application of the pulsed voltage to the at least one curved electrode and to the workpiece. An electrochemical machining method is also provided for forming one or more curved holes in an electrically conductive workpiece.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bin Wei, Gary Charles Liotta
  • Publication number: 20100236934
    Abstract: The invention relates to a method (3) of fabricating a mould (39, 39?, 39?) that includes the following steps: a) providing (10) a substrate (9, 9?) that has a top layer (21, 21?) and a bottom layer (23, 23?) made of electrically conductive, micromachinable material, and secured to each other by an electrically insulating, intermediate layer (22, 22?); b) etching (11, 12, 14, 2, 4) at least one pattern (26, 26?, 27) in the top layer (21, 21?) as far as the intermediate layer (22, 22?) to form at least one cavity (25, 25?) in said mould; c) coating (6, 16) the top part of said substrate with an electrically insulating coating (30, 30?); d) directionally etching (8, 18) said coating and said intermediate layer to limit the presence thereof exclusively at each vertical wall (31, 31?, 33) formed in said top layer. The invention concerns the field of micromechanical parts, in particular, for timepiece movements.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 23, 2010
    Applicant: NIVAROX-FAR S.A.
    Inventors: Pierre Cusin, Clare Golfier, Jean-Philippe Thiebaud
  • Publication number: 20100198336
    Abstract: Medical devices, such as stents, and methods of the devices are described. In some embodiments, the invention features a method of making a medical device including providing a body having an electrically insulating first member defining an elongated lumen, and an electrically conducting second member on a first surface of the first member, removing a portion of the second member, and forming the body into the medical device, e.g., a stent.
    Type: Application
    Filed: April 16, 2010
    Publication date: August 5, 2010
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: JAN WEBER, Brian Brown
  • Publication number: 20090277803
    Abstract: An electrochemical machining process for forming a non-circular hole from a substantially circular hole within a workpiece using an electrode. The electrode is made of an electrically conductive material and has insulated areas in which the electrically conductive material is coated with an insulating material, and exposed areas of metal or conductive material. The insulated areas and exposed areas extending in rows substantially along a longitudinal axis of the electrode. The electrode is first positioned in a substantially circular hole. An electric current is then applied to the electrode to electrochemically remove a predetermined amount of material from the substantially circular hole to form a non-circular hole. A variety of different non-circular shapes are achievable using the process.
    Type: Application
    Filed: May 12, 2008
    Publication date: November 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bin Wei, Ronald Scott Bunker
  • Patent number: 7572997
    Abstract: A electrical discharge machining apparatus is disclosed. The apparatus may have an electrode, an actuator configured to advance the electrode, and a power supply. The apparatus may also have a controller in communication with the actuator and the power supply. The controller may be configured to negatively charge the electrode, and regulate the actuator to advance the negatively charged electrode toward a positively charged workpiece, thereby initiating erosion of the positively charged workpiece. The controller may also be configured to positively charge the electrode and negatively charge the workpiece to erode the electrode to a desired condition after workpiece erosion has been initiated. The controller may also be configured to continue advancing the electrode toward the workpiece after the electrode has been eroded to the desired condition.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 11, 2009
    Assignee: Caterpillar Inc.
    Inventors: Chen Chun Kao, Marion Billingsley Grant
  • Publication number: 20080230378
    Abstract: A method for forming holes in an object is provided. The method includes providing an electrochemical machining (ECM) electrode including a first section having insulation that circumscribes the first section, and a second section having insulation that extends only partially around the second section. The method also includes inserting the electrode into the object, such that in a single pass the electrode forms a hole that includes a first portion having a first cross-sectional area and a second portion having a second cross-sectional area.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Inventors: Ching-Pang Lee, Bin Wei, Chen-Yu Jack Chou
  • Patent number: 7411150
    Abstract: A composite component (1), such as a turbine airfoil, includes a conductive portion (2), and a non-conductive portion (5), such as a thermal barrier coating or a wear protection coating, or both. In machining the component, a laser machining step is applied for machining the non-conductive portion, and an electro-machining step is applied for machining the conductive portion. The laser machining step is performed by applying preferably a high-frequency pulsed laser. The focussed laser beam working diameter (DL) is essentially smaller than the size of the contour (16) to be machined. The contour is scanned by the laser beam (9) along a pre-defined trace (17) thus literally inscribing the desired contour into the workpiece.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: August 12, 2008
    Assignee: ALSTOM Technology Ltd.
    Inventors: Fergus Lavers, Uri Sela
  • Patent number: 7126075
    Abstract: A method and apparatus for electro discharge machining a passage through a work piece using a hollow electro discharge machining electrode and a corresponding flushing agent supplied via the hollow electrode. A backing member is positioned abutting the exit face of the work piece so that at break through the path of the flushing agent is not disrupted. The backing member positioned such that it forms a fluid tight seal with the work piece.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: October 24, 2006
    Assignee: Rolls-Royce PLC
    Inventors: Stephen Bailey, Stephen T. Pook
  • Patent number: 7045052
    Abstract: A method of manufacture for optical spectral filters with omnidirectional properties in the visible, near IR, mid IR and/or far IR (infrared) spectral ranges is based on the formation of large arrays of coherently modulated waveguides by electrochemical etching of a semiconductor wafer to form a pore array. Further processing of said porous semiconductor wafer optimizes the filtering properties of such a material. The method of filter manufacturing is large scale compatible and economically favorable. The resulting exemplary non-limiting illustrative filters are stable, do not degrade over time, do not exhibit material delamination problems and offer superior transmittance for use as bandpass, band blocking and narrow-bandpass filters. Such filters are useful for a wide variety of applications including but not limited to spectroscopy, optical communications, astronomy and sensing.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: May 16, 2006
    Assignee: Lake Shore Cryotronics, Inc.
    Inventors: Vladimir Kochergin, Philip Swinehart
  • Patent number: 7001501
    Abstract: In an electrolytic cell a membrane consisting of dielectric material such as an organic polymer, which separates two chambers of the electrolytic cell from each other is produced using an etching solution which is provided in one of the chambers, contains active etching ions, while the other chamber contains a solution, which does not have an etching action. An electrical field is generated through the membrane. The etching progresses along ion tracks in the membrane and first produces one funnel-shaped pore per ion track. Immediately prior to the breakthrough, the ions, which do not have an etching action, begin to penetrate the still existent thin layer with fine pores—the active layer—and displace the ions with an etching action. An intensified electric current, driven by the adjacent field, is established and the etching process at the bottom of the pore shifts sideways according to the concentration of etching ions still present. The process is stopped by deactivating the field and flushing the membrane.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: February 21, 2006
    Assignee: Gesellschaft für Schwerionenforschung mbH
    Inventors: Reimar Spohr, Yu Pavel Apel, Yuri Korchev, Zuzanna Siwy, Masaru Yoshida
  • Patent number: 6805972
    Abstract: The present invention is directed to nanoporous metal membranes and methods of making nanoporous metal membranes from metal leaf. At least a portion of the metal leaf is freely supported by a de-alloying medium for a time effective to de-alloy the metal leaf. After the porous membrane is formed, the membrane may be re-adhered to a substrate and removed from the de-alloying medium. The de-alloying process may be thermally and electrically influenced.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: October 19, 2004
    Assignee: Johns Hopkins University
    Inventors: Jonah Erlebacher, Yi Ding
  • Patent number: 6770188
    Abstract: A structural body material layer is formed directly on a base substrate or via a sacrificing layer or a peeling layer, a groove is fabricated electrochemically along an outer configuration shape of a part constituting an object at the structural body material layer and thereafter, only the sacrificing layer or the base substrate is selectively removed or the part is mechanically separated from the peeling layer to thereby separate the part and the base substrate and provide the part constituting the object or fabricate a part having a movable portion by partially restricting a portion to be separated.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: August 3, 2004
    Assignee: Seiko Instruments Inc.
    Inventors: Masayuki Suda, Naoya Watanabe, Kazuyoshi Furuta
  • Patent number: 6762134
    Abstract: A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a Group III-V material surface. The surface is then etched in a solution including HF and an oxidant for a preferably brief period, as little as a couple seconds to one hour. A preferred oxidant is H2O2. Morphology and light emitting properties of porous Group III-V material can be selectively controlled as a function of the type of metal deposited, doping type, doping level, metal thickness, whether emission is collected on or off the metal coated areas and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: July 13, 2004
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul W. Bohn, Xiuling Li, Jonathan V. Sweedler, Ilesanmi Adesida
  • Patent number: 6680454
    Abstract: A perforated electrode has strategically distributed flushing holes through which a flushing medium is discharged. The electrode can be used for either electrochemical machining (ECM) or electrodischarge machining (EDM). The flushing medium is either electrolyte in ECM or a dielectric fluid in EDM. It is discharged from the tool electrode directly against the workpiece surface or surfaces which are undergoing material removal. This removes heat and sludge or debris.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: January 20, 2004
    Assignee: General Electric Company
    Inventors: Thomas James Batzinger, Bin Wei
  • Patent number: 6644920
    Abstract: A method of forming a curved cooling channel into a gas turbine component such as a turbine blade uses an electrode in the form of a helix. The electrode is driven to rotate around the central rotational axis of the helix and axially along the central rotational axis. A turbine blade for a gas turbine component is provided with at least one helical cooling channel.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 11, 2003
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Alexander Beeck, Bernhard Weigand