Aperture Making Patents (Class 205/665)
  • Patent number: 6762134
    Abstract: A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a Group III-V material surface. The surface is then etched in a solution including HF and an oxidant for a preferably brief period, as little as a couple seconds to one hour. A preferred oxidant is H2O2. Morphology and light emitting properties of porous Group III-V material can be selectively controlled as a function of the type of metal deposited, doping type, doping level, metal thickness, whether emission is collected on or off the metal coated areas and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: July 13, 2004
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul W. Bohn, Xiuling Li, Jonathan V. Sweedler, Ilesanmi Adesida
  • Patent number: 6680454
    Abstract: A perforated electrode has strategically distributed flushing holes through which a flushing medium is discharged. The electrode can be used for either electrochemical machining (ECM) or electrodischarge machining (EDM). The flushing medium is either electrolyte in ECM or a dielectric fluid in EDM. It is discharged from the tool electrode directly against the workpiece surface or surfaces which are undergoing material removal. This removes heat and sludge or debris.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: January 20, 2004
    Assignee: General Electric Company
    Inventors: Thomas James Batzinger, Bin Wei
  • Patent number: 6644920
    Abstract: A method of forming a curved cooling channel into a gas turbine component such as a turbine blade uses an electrode in the form of a helix. The electrode is driven to rotate around the central rotational axis of the helix and axially along the central rotational axis. A turbine blade for a gas turbine component is provided with at least one helical cooling channel.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 11, 2003
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Alexander Beeck, Bernhard Weigand
  • Patent number: 6609297
    Abstract: A board 20 is provided with a Cu film 30 as a conformal mask, in which are formed a register mark 30b and an opening 3a through which a via hole is formed. A camera senses this register mark 30b so that the position of the board 30 is determined. A laser beam is directed to the approximate position of the opening 30a, so that the opening 26a through which the via hole is drilled is formed. The accuracy of the position of the opening of the via hole depends on the accuracy of the position of the opening 30a in the Cu film 30 as the conformal mask. Therefore, the via hole can be formed at an adequate position despite the low accuracy of the position for laser irradiation.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: August 26, 2003
    Assignee: Ibiden Co., Ltd.
    Inventors: Yasuji Hiramatsu, Motoo Asai, Naohiro Hirose, Takashi Kariya
  • Patent number: 6558770
    Abstract: A substrate made from silicon has a first region and a second region. Through pores are formed in the first region. Pores that do not traverse the substrate are provided in the second region. The production of the work piece is performed with the aid of electrochemical etching of the pores. The entire surface of the substrate is covered with a mask layer that is structured photolithographically on the rear of the substrate. The bottoms of the pores in the second region are etched clear, preferably using KOH.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: May 6, 2003
    Assignee: Infineon Technologies AG
    Inventors: Volker Lehmann, Hans Reisinger, Hermann Wendt, Reinhard Stengel, Gerrit Lange, Stefan Ottow
  • Patent number: 6532647
    Abstract: A manufacturing method of a composite type thin-film magnetic head with a reading head element and an inductive writing head element, includes a step of forming the reading head element and its lead conductor layers on a first insulation layer, a step of forming a second insulation layer to cover the reading head element and the lead conductor layers, a step of forming a second shield layer on the second insulation layer, a step of forming a third insulation layer, and a step of forming via holes and a back gap hole. The via holes and back gap hole forming step is executed by reactive ion etching (RIE) for simultaneously removing the second insulation layer and the third insulation layer located at the via holes and the third insulation layer located at the back gap hole.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: March 18, 2003
    Assignee: TDK Corporation
    Inventors: Kazuya Maekawa, Akio Iijima, Tetsuya Mino
  • Publication number: 20020108868
    Abstract: A system and process for cleaning a hollow interior or a passageway of a metal member including an external container having counter electrode material with a higher potential than the metal member with the counter electrode material being dc coupled to the metal member, and electrolyte passing through the container to contact the counter electrode material and fluidicly coupled into the hollow interior or the passageway of the metal member to clean same.
    Type: Application
    Filed: April 22, 2002
    Publication date: August 15, 2002
    Applicant: Aeromet Technologies, Inc.
    Inventors: David C. Fairbourn, Max E. Sorenson
  • Patent number: 6423241
    Abstract: Disclosed is an ink jet print head and a method of producing the same, the ink jet print head including a plurality of ink ejecting orifices which are formed with a desired shape and a uniform size by only once using metal plating technique, having an excellent productivity and a low manufacturing cost. According to a first embodiment of the present invention, in the steps for forming an improved metal barrier layer, which is comprised of the conventional barrier layer and the conventional nozzle plate combined together, the metal barrier layer can be formed on a wetting layer by using electrolytic plating or electroless plating of Ni. As a result, an upper surface of a first photoresist mold is completely covered with the overflowing Ni. Further, an upper portion of a second photoresist mold is partially covered with the overplating Ni and is partially opened at a proper size and a desired shape. Thereby, an ink ejecting orifice is created at the upper portion of the second photoresist mold.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: July 23, 2002
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jun Bo Yoon, Jae Duk Lee, Chul Hi Han, Choong Ki Kim, Doo Won Seo
  • Patent number: 6398940
    Abstract: A novel method to fabricate nanoscale pits on Au(111) surfaces in contact with aqueous solution is claimed. The method uses in situ electrochemical scanning tunnelling microscopy with independent electrochemical substrate and tip potential control and very small bias voltages. This is significantly different from other documented methods, which mostly apply high and short voltage pulses. The most important advantages of the present method are that the dimensions and positions of the pits can be controlled with high precision in aqueous environment so that nanopatterns of the pits can be designed, and that the operations are simple and require no instrumental accessories. Parameters, which control the pit formation and size, have been systematically characterized and show that the primary controlling parameter is the bias voltage. A mechanism based on local surface reconstruction induced by electronic contact between tip and substrate is in keeping with the overall patterns for pit formation.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: June 4, 2002
    Assignee: Danmarks Tekniske Universitet
    Inventors: Quijin Chi, Jingdong Zhang, Jens Enevold Thaulov Andersen, Jens Ulstrup, Esben Peter Friis
  • Patent number: 6387242
    Abstract: A machining process for forming a raised area in a wall of a predrilled hole includes distributing electrolyte via a workpiece internal cavity to a number of predrilled holes. Next, position a template including at least one electrode coated with an insulating material in a pattern defining the raised area to be formed in the wall of the predrilled hole below the workpiece such that the electrode is positioned within a predrilled hole and machining by passing electric current between the electrode and the workpiece wall and circulating electrolyte through the hole.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: May 14, 2002
    Assignee: General Electric Company
    Inventors: Bin Wei, Hsin-Pang Wang
  • Publication number: 20010045366
    Abstract: An improved method of machining slots and material feed holes in a molding die such as an extrusion die designed to form a honeycomb structure of ceramics employed as a catalyst carrier of a catalytic converter for automotive vehicles. In one of the preferred embodiments, shallow holes are drilled in a die material and subjected to electrochemical machining to remove material from the bottoms of the shallow holes so that they communicate with the material feed holes without any burrs. In the other embodiment, the slots are cut using a rotary cutter in a given order which will balance reaction forces exerted on the cutter from both side walls of each slot to minimize deformation of the cutter during cutting of the slots, thereby preventing the slots from being curved undesirably.
    Type: Application
    Filed: July 13, 2001
    Publication date: November 29, 2001
    Inventors: Naoto Iwata, Masayoshi Fujita, Masahiko Natume, Yoshiaki Mizuno, Mitsutoshi Miyazaki, Toshiji Kondou
  • Patent number: 6290837
    Abstract: An improved method of machining slots and material feed holes in a molding die such as an extrusion die designed to form a honeycomb structure of ceramics employed as a catalyst carrier of a catalytic converter for automotive vehicles. In one of the preferred embodiments, shallow holes are drilled in a die material and subjected to electrochemical machining to remove material from the bottoms of the shallow holes so that they communicate with the material feed holes without any burrs. In the other embodiment, the slots are cut using a rotary cutter in a given order which will balance reaction forces exerted on the cutter from both side walls of each slot to minimize deformation of the cutter during cutting of the slots, thereby preventing the slots from being curved undesirably.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: September 18, 2001
    Assignee: Denso Corporation
    Inventors: Naoto Iwata, Nobuhiko Nagai, Mitsutoshi Miyazaki, Kunihiro Kodama
  • Patent number: 6290461
    Abstract: An electrochemical machine is disclosed for use in an electrochemical machining process to simultaneously generate different levels of metal removal. The electrochemical machine comprises at least two electrodes, each including an electrically conductive cylinder having an external surface partially coated with an insulated coating. The insulating coating is in a pattern defining raised areas to be formed on an internal surface of a predrilled hole in a workpiece wherein at least one of the electrodes has a varied pattern of insulating coating.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: September 18, 2001
    Assignee: General Electric Company
    Inventors: Bin Wei, Hsin-Pang Wang
  • Patent number: 6267868
    Abstract: An electrode for use in an electrochemical machining process comprising an outer metal skin of corrosion resistant material, an inner core of conductive material, and an insulating coating disposed on an external surface of the outer metal skin. The external surface is partially coated with the insulating coating so as to define a pattern of raised areas to be formed on an internal surface of a predrilled hole in a workpiece.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: July 31, 2001
    Assignee: General Electric Company
    Inventors: Bin Wei, Bruce Alan Knudsen, William Thomas Carter, Jr., Hsin-Pang Wang
  • Patent number: 6258240
    Abstract: It is an object of the present invention to provide an anodizing apparatus capable of efficiently performing anodizing. In order to achieve this object, an anodizing apparatus for anodizing a substrate to be processed in an electrolytic solution includes a process tank for storing the electrolytic solution, the process tank having an opening in a wall, a negative electrode arranged in the process tank to oppose the opening, and a positive electrode contacting a surface of the substrate to be processed which is arranged to close the opening from an inside of the process tank, the surface being open outside the process tank through the opening.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: July 10, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Matsumura, Kenji Yamagata
  • Patent number: 6234752
    Abstract: An electrochemical machining process is disclosed for forming multiple raised areas having multiple heights in a wall of predrilled holes within a workpiece. Positioned within each hole is an electrode coated with an insulating material in a pattern defining the raised areas to be formed in the wall of each respective hole. An electric current is applied from a power supply to each of the electrodes. A resistor is positioned between the power supply and at least one of the electrodes to vary the voltage passing through the electrode to vary the amount of material removed within that respective hole.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: May 22, 2001
    Assignee: General Electric Company
    Inventors: Bin Wei, Hsin-Ping Wang
  • Patent number: 6228246
    Abstract: A method of removing a metal skin from a through-hole surface of a copper-Invar-copper (CIC) laminate without causing differential etchback of the laminate. The metal skin includes debris deposited on the through-hole surface as the through hole is being formed by laser or mechanical drilling of a substrate that includes the laminate as an inner plane. Removing the metal skin combines electrochemical polishing (ECP) with ultrasonics. ECP dissolves the metal skin in an acid solution, while ultrasonics agitates and circulates the acid solution to sweep the metal skin out of the through hole. ECP is activated when a pulse power supply is turned on and generates a periodic voltage pulse from a pulse power supply whose positive terminal is coupled to the laminate and whose negative terminal is coupled to a conductive cathode. After the metal skin is removed, the laminate is differentially etched such that the copper is etched at a faster rate than the Invar.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: May 8, 2001
    Assignee: International Business Machines Corporation
    Inventors: Madhav Datta, Raymond T. Galasco, Lawrence P. Lehman, Roy H. Magnuson, Robin A. Susko, Robert D. Topa
  • Patent number: 6156188
    Abstract: A method for making a probe device makes use of the main shaft of an electrodischarge machining machine to mount thereon a probe for effecting the drilling operation of a PCB board. Upon completion of the drilling operation, the probe is severed and then fastened with the PCB board.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: December 5, 2000
    Assignee: Industrial Technology Research Institute
    Inventors: Ching-Tang Yang, Yun-Hui Chang, Shih-Che Lo
  • Patent number: 6139716
    Abstract: A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: October 31, 2000
    Assignee: The Regents of the University of California
    Inventors: Anthony M. McCarthy, Robert J. Contolini, Vladimir Liberman, Jeffrey Morse
  • Patent number: 6110332
    Abstract: A three-dimensional (3-D) T-load for planar microchannel arrays for electrophoresis, for example, which enables sample injection directly onto a plane perpendicular to the microchannels' axis, at their ends. This is accomplished by forming input wells that extend beyond the ends of the microchannel thereby eliminating the right angle connection from the input well into the end of the microchannel. In addition, the T-load input well eases the placement of electrode in or adjacent the well and thus enables very efficient reproducible electrokinetic (ek) injection. The T-load input well eliminates the prior input well/microchannel alignment concerns, since the input well can be drilled after the top and bottom microchannel plates are bonded together. The T-load input well may extend partially or entirely through the bottom microchannel plate which enables more efficient gel and solution flushing, and also enables placement of multiple electrodes to assist in the ek sample injection.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: August 29, 2000
    Assignee: The Regents of the University of California
    Inventor: Stefan P. Swierkowski
  • Patent number: 6110350
    Abstract: Method and apparatus for electrochemically deburring a diesel injector nozzle workpiece having a gallery cavity and having a first fuel hole and an air hole intersecting the gallery cavity at a first location. A first electrode is inserted into the first fuel hole such that the electrode tip is near the first location. A post is inserted in the air hole into the gallery cavity. An electrolyte flow is directed through a first channel of the post to the gallery cavity and through a second channel of the post from the gallery cavity. A voltage potential is applied between the first electrode and the workpiece to remove burrs previously formed at the first location.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: August 29, 2000
    Assignee: General Electric Company
    Inventors: Bin Wei, John Peter Fura
  • Patent number: 6103094
    Abstract: In the electrochemical drilling of a hole completely through a workpiece, the present invention proposes operating the power supply in a current regulating mode. Initially, a hollow cathode is positioned adjacent to a workpiece in which one or more holes are to be drilled. An electrolyte is flowed through the cathode and against the workpiece. A constant electrical current is applied between the cathode and the workpiece across the electrolyte. Then the cathode is advanced at a constant rate toward the workpiece for the drilling of the hole(s), while maintaining the electrolyte flow and current substantially constant.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: August 15, 2000
    Assignee: General Electric Company
    Inventors: Mark J. Gleason, Barry T. Malone, Terri K. Brown, Darrin L. Smith, Brian K. Howell, Jason S. Mogle, Edwin D. Tyler, Michael D. Simcox
  • Patent number: 6004450
    Abstract: Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: December 21, 1999
    Assignee: The Regents of the University of California
    Inventors: M. Allen Northrup, Conrad M. Yu, Norman F. Raley
  • Patent number: 5997720
    Abstract: In a metal honeycomb extrusion die which incorporates apertures for the conveyance of extrudable material through the die body toward a discharge opening in the face of the die, the aperture sidewalls are shaped by electrochemical machining or the like to develop a periodically varying aperture size, surface shape or surface finish, superimposed on the conventional randomly varying machined aperture sidewall surface, in order to reduce the adverse effects of random surface variations on extrusion process stability and extruded product quality.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: December 7, 1999
    Assignee: Corning Incorporated
    Inventors: Thomas W. Brew, W. Neil Peters
  • Patent number: 5997713
    Abstract: An element with elongated, high aspect ratio channels such as microchannel plate is fabricated by electrochemical etching of a p-type silicon element in a electrolyte to form channels extending through the element. The electrolyte may be an aqueous electrolyte. For use as a microchannel plate, the; the silicon surfaces of the channels can be converted to insulating silicon dioxide, and a dynode material with a high electron emissivity can be deposited onto the insulating surfaces of the channels. New dynode materials are also disclosed.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: December 7, 1999
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler, John Steinbeck, David R. Winn
  • Patent number: 5965005
    Abstract: The present invention provides a method for forming porous silicon, which includes the steps of: a) providing a silicon substrate; b) growing a GaAs layer on the silicon substrate; c) defining a pattern for the GaAs layer by a photolithography process and etching the patterned GaAs layer to obtain a GaAs mask; and d) forming a porous silicon layer by anodic-oxidation-etching the silicon substrate uncovered by the GaAs mask. By this method, etching under the GaAs layer on the silicon substrate can be executed very well to form the porous silicon. And the patterned GaAs layer is etched by a process in step c), which is selected from a wet etching and a dry etching process with a photoresist as a mask. In addition, the anodic-oxidation-etching process in step d) is an electrolytic process executed in HF acidic solution which is a mixture of 30 vol. % HF and 70 vol. % H.sub.2 O, in which the HF concentration is 49 wt. %.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: October 12, 1999
    Assignee: National Science Council
    Inventors: Ming-Kwei Lee, Yu-Hsiung Wang
  • Patent number: 5935410
    Abstract: A process for producing a structured area of porous silicon on a substrate, in which silicon is etched and structured by means of illumination, includes selectively aiming the illumination during or after the formation of the porous silicon directly at a selected area of a p-doped substrate in order to effect etching and structuring of the porous silicon in another area. A device for carrying out the process includes an illuminating system for supporting the etching process and for structuring the porous silicon, in which the illuminating system is selectively aimed during or after the formation of the porous silicon directly at a selected area of p-doped substrate in order to effect etching and structuring of the porous silicon in another area.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: August 10, 1999
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Markus Thonissen, Michael Kruger, Hans Luth, Michael Gotz Berger, Wolfgang Theiss, Gilles Lerondel, Robert Romestain
  • Patent number: 5904831
    Abstract: The invention relates to a method of forming one or more through-holes in a metal workpiece, such as shaving foils or shaving combs, by means of an electrochemical machining apparatus (ECM apparatus). To this end, the method is characterized in that, during machining, the workpiece is provided on a substrate of an electroconductive, electrochemically inert material, such as a noble metal (alloy), in particular a noble metal (alloy) which is predominantly composed of Pt. Preferably, the workpiece is clamped onto the substrate. By virtue of said measures, rounding of the edges between the holes formed and the surface of the workpiece, which is clamped down on the substrate during machining, is reduced substantially. This has a favorable effect on the formation of sharp cutting faces.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: May 18, 1999
    Assignee: U.S. Philips Corporation
    Inventors: Hermanus S. J. Altena, Maarten Brussee, Foppe Kramer
  • Patent number: 5865983
    Abstract: Honeycomb extrusion dies for the extrusion of honeycomb ceramics of high cell density and reduced cell wall thickness are machined from fully consolidated powder-formed (P/M) stainless steels, providing dies with reduced feed hole roughness, improved feed hole straightness, and superior discharge slot finish, with the result that significantly enhanced extrusion performance and higher quality honeycomb extrusions are realized.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: February 2, 1999
    Assignee: Corning Incorporated
    Inventor: Richard L. Seely
  • Patent number: 5853561
    Abstract: The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium, alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: December 29, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Bruce A. Banks
  • Patent number: 5820744
    Abstract: Electrochemical machining (ECM) techniques utilizing real-time parameter monitoring, alarms and feedback control for improved machining of a workpiece are disclosed. The ECM device utilizes one or more cathodes, an electrolyte and a positively charged workpiece to achieve electrolytic action. A number of controlling variables, such as cathode feed rate, electrolyte flow rate and voltage, are balanced in response to measured system parameters. The following parameters are preferably monitored in order to adjust the controlling variables: the drive parameters of feed rate and cathode depth; the pump parameters of flow rate and pressure; and the power components of voltage and current. The flow rate in each of the cathodes, or a corresponding Reynolds number, is preferably utilized to provide an alarm to the operator if a statistically significant change in flow is detected.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: October 13, 1998
    Assignee: Doncasters, Turbo Products Division
    Inventors: Clifton Vedantus Edwards, Frank P. Simkowski
  • Patent number: 5800858
    Abstract: A halogenated polymeric material is exposed to a reducing agent and/or an electrolyte and applied voltage to render exposed portions capable of being metallized and of being etched. The exposed portions can also be doped to thereby induce electrical conductivity therein. Also, new structures containing a free standing halogenated polymeric-containing layer and electrical conductive pattern thereon are provided.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: September 1, 1998
    Assignee: International Business Machines Corporation
    Inventors: Harry Randall Bickford, Peter J. Duke, Elizabeth Foster, Martin Goldberg, Voya Rista Markovich, Linda Matthew, Donald G. McBride, Terrence Robert O'Toole, Stephen Leo Tisdale, Alfred Viehbeck
  • Patent number: 5738777
    Abstract: The invention relates to a method of providing one or more through-holes in a metal workpiece by means of an electrochemical machining apparatus (ECM apparatus). Said method is characterized in that the surface of the workpiece from which the electrode of the ECM apparatus emerges is provided with an auxiliary layer, which comprises a polymeric network composed of organic and inorganic fragments. In this manner, rounding at the boundary between the holes formed and the exit surface of the ECM electrode is precluded. A polymeric network comprising silicon oxide and zirconium oxide as well as carbon-containing fragments, which are incorporated in the polymeric network via SiC bonds, are preferred.The invention can very advantageously be used to manufacture shaving foils and shaving combs.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: April 14, 1998
    Assignee: U.S. Philips Corporation
    Inventors: Marinus Bliek, Maarten Brussee
  • Patent number: 5733433
    Abstract: A heat generating type ink-jet print head including an ink supply passage for receiving an ink from an ink container, a micro chamber for storing the ink and nozzles, all being directly formed on a substrate, and a method for fabricating the ink-jet print head using an electrolytic polishing process, and a method for fabricating the ink-jet print head. The ink-jet print head is fabricated using an electrolytic polishing process, thereby achieving an accurate and inexpensive fabrication.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 31, 1998
    Inventors: Ho Jun Lee, Hi Deok Lee, Jae Duk Lee, Jun Bo Yoon, Ki Ho Han, Jae Kwan Kim, Chul Hi Han, Choong Ki Kim, Doo Won Seo
  • Patent number: 5728286
    Abstract: A method of manufacturing an extrusion die for extruding a honeycomb structural body is disclosed. The extrusion die has a plurality of forming channels which have a shape in a traverse cross section corresponding to that of the honeycomb structural body and have a predetermined depth from a front side of the extrusion die toward a back side, and a plurality of opening holes for feeding raw materials which have a cylindrical shape extending independently from the back side toward the front side and are arranged at a cross portion and/or a straight portion of the forming channels in such a manner that each opening hole is opened and connected to the cross portion and/or straight portion of the forming channels.
    Type: Grant
    Filed: August 8, 1996
    Date of Patent: March 17, 1998
    Assignees: NGK Insulators, Ltd., Institute of Technology Precision Electrical Discharge Works
    Inventors: Kazuo Suzuki, Shoji Futamura
  • Patent number: 5685971
    Abstract: A method and apparatus for forming a passage with a variable diameter along its length in a conductive workpiece are disclosed. The workpiece is mounted in a fixture and an externally insulated hollow electrode is positioned proximate to a surface location of the workpiece into which the passage is to be formed. A first selected voltage is connected between the electrode and the workplace with the voltage being connected to cause the electrode to act as a cathode and the workpiece to act as an anode. A pump causes an acidic electrolyte to flow through the electrode at a chosen pressure and onto the workpiece surface. The electrode is moved toward the workpiece at a first selected feed rate by a CNC controller to cause a portion of the passage to be formed at a first predetermined diameter.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: November 11, 1997
    Assignee: General Electric Company
    Inventors: Lawrence Joseph Schroder, Lathan Merriman Wayman, Oleg Edelman
  • Patent number: 5685969
    Abstract: A sensor arrangement having a substrate of doped silicon with channels in a principal face, a selective means for detecting a material, the selective means covering the principal face without filling the channels, and a measuring instrument for registering a physical quantity dependent on the influence of a material is provided. A catalytic layer is particularly used as selective means and a temperature sensor is particularly used as measuring instrument. Alternatively, the sensor arrangement is fashioned as a capacitor having a porous cooperating electrode. The channels are preferably produced by electrochemical etching.
    Type: Grant
    Filed: September 28, 1994
    Date of Patent: November 11, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventors: Eckhardt Hoenig, Volker Lehmann, Ulf Buerker
  • Patent number: 5637239
    Abstract: An electrode for use in a rotary electrical discharge machining (EDM) device for producing at least one curved hole in an article includes at least one curved tooth. The curved tooth lies in a plane. A perpendicular line to that plane is parallel to the axis of rotation on the rotary EDM device. At least one curved cooling hole is machined in the article.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: June 10, 1997
    Assignee: United Technologies Corporation
    Inventors: Edward G. Adamski, David A. Niezelski, Richard H. Shaw
  • Patent number: 5624626
    Abstract: The present invention provides a method for treating a ceramic body to provide a wettable surface on the ceramic body. According to the present invention, a ceramic body is immersed in an alkaline hydroxide solution. The ceramic body is connected to form the anode and a suitable metal is connected to form the cathode of an electrolytic cell. A difference in electrical potential is imposed across the electrolytic cell which is sufficient to remove portions of the ceramic body to provide a pitted surface on the ceramic body which is wettable.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 29, 1997
    Inventors: Thomas J. Walz, Issak S. Rossovsky
  • Patent number: 5565084
    Abstract: Disclosed are electropolishing methods for etching a substrate in self alignment. A hole is formed in a substrate in self alignment by using an electropolishing system, wherein a reaction tube, an etchant solution, an electrode, a constant current source and the silicon substrate, said etchant solution being contained in a space confined by the reaction tube and the substrate, which is attached to one end of the reaction tube in such a way that the bottom of the substrate may be toward the interior of the space, said constant current source being connected with a metal layer formed on the substrate and the electrode. The substrate is made to be porous by flowing a constant current and etched by the action of the etchant solution while breaking the current. In addition to being economical, the methods can determine the position and size of the hole accurately and precisely. Further, neither chemical damage nor mechanical impact is generated on the substrate.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 15, 1996
    Assignee: Qnix Computer Co., Ltd.
    Inventors: Ho J. Lee, Hi D. Lee, Jae D. Lee, Jun B. Yoon, Chul H. Han, Choong K. Kim, Doo W. Seo
  • Patent number: 5529950
    Abstract: A method used in manufacturing a cubically integrated circuit arrangement. A silicon wafer, wherein through pores are produced by electrochemical etching are insulated from the silicon wafer, and are provided with conductive fills, is secured as a carrier plate (24) to a substrate (21) that has components and that is integrated in a cubically integrated circuit arrangement. Terminal pads (25) that are electrically connected to conductive fills and that are arranged on the surface of the carrier plate (24) thereby meet contacts (23) to the components that are arranged at the surface of the substrate (21) adjoining the carrier plate (24) and that are firmly connected thereto.
    Type: Grant
    Filed: January 23, 1995
    Date of Patent: June 25, 1996
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wolfgang Hoenlein, Siegfried Schwarzl
  • Patent number: 5507925
    Abstract: A process is set forth for electrochemically machining holes in a workpiece, such as a die, in such a manner so as to virtually eliminate surface finish patterns normally introduced by the electrochemical machining process, by randomly forming sequences of patterns of holes extending in rows across the workpiece along its extent, and then rotating the workpiece 180.degree. and randomly forming additional sequences of patterns of holes across the workpiece adjacent those sequences of holes which were formed prior to rotating the workpiece 180.degree..
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: April 16, 1996
    Assignee: Corning Incorporated
    Inventor: Thomas W. Brew