Mold, Mask, Or Masterform Patents (Class 205/70)
  • Patent number: 11891688
    Abstract: A mask includes a protruding portion provided with a deposition hole formed therethrough and including an upper surface, a lower surface facing the upper surface, and a side surface disposed between the upper surface and the lower surface and inclined at an angle with respect to the lower surface, a peripheral portion including a first surface extending from the upper surface, a second surface facing the first surface and having a step difference with respect to the lower surface of the protruding portion, and a coating layer disposed on the protruding portion. The protruding portion includes at least one of a protrusion protruded from the side surface of the protruding portion and a groove formed by removing at least a portion of the protruding portion from the side surface of the protruding portion, and the coating layer covers at least one of the protrusion and the groove.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: February 6, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Youngmin Moon, Jeongkuk Kim, Minho Moon, Ji-Hee Son, Seungyong Song, Areum Lee
  • Patent number: 11794375
    Abstract: A mold stack comprises: a split mold insert split into parts, each having a mating face with an inner face region, an offset, and an outer face region, the insert further having a male projecting portion with a shutoff face and an outer surface, at least a part of the inner face region terminating at the shutoff face, the offset terminating at the outer surface; and an adjacent mold stack component having an associated a female receptacle, the insert having a cleaning configuration wherein: the shutoff face acts as a molding surface; the male projecting portion cooperates with the female receptacle to define a melt barrier; the complementary inner face regions are spaced apart to form an extension of the mold cavity terminating, at least in part, at the shutoff face; and the complementary offsets cooperate to prevent melt from passing therebetween and to guide melt towards the melt barrier.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: October 24, 2023
    Assignee: HUSKY INJECTION MOLDING SYSTEMS LTD.
    Inventor: Maxfield Paul Bradshaw
  • Patent number: 11774845
    Abstract: In a photomask blank including a transparent substrate and a first inorganic film containing either or both of a transition metal and silicon, and optional a second inorganic film containing either or both of a transition metal and silicon, when an intensity of secondary ions is measured in the thickness direction of the transparent substrate and the inorganic films by TOF-SIMS with using a primary ion source of Bi and a sputtering ion source of Cs, an intensity of secondary ions containing carbon detected at the interface of the transparent substrate and the inorganic film or the inorganic films is higher than both intensities of the secondary ions containing carbon detected, respectively, at the sides remote from the interface.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: October 3, 2023
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kouhei Sasamoto, Hideo Kaneko
  • Patent number: 11656545
    Abstract: The present invention relates to a roll stamp and a method of manufacturing the same, the roll stamp including a cylindrical metal mold including a debossed pattern formed on an outer side and a hollow portion formed on an inner side, and a dummy roller inserted into the hollow portion. Because a joining portion is not formed on the entire area of the cylindrical metal mold, a problem in which edge regions are separated does not occur. Also, due to the absence of the joining portion, it is possible to perform a patterning process continuously.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: May 23, 2023
    Assignee: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Man Kim, Joo Yul Lee, Sang Yeoul Lee, Ju Yeong Lee
  • Patent number: 11566322
    Abstract: A mask assembly (100) includes a mask frame (102) and a mask screen (104), both of the mask frame (102) and the mask screen (104) made of a metallic material, and a metal coating (125) disposed on exposed surfaces of one or both of the mask frame (102) and the mask screen (104).
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Huang, Fei Peng, Kiran Krishnapur, Ruiping Wang, Jrjyan Jerry Chen, Steven Verhaverbeke, Robert Jan Visser
  • Patent number: 11148942
    Abstract: Examples include a device comprising integrated circuit dies molded into a molded panel. The molded panel has three-dimensional features formed therein, where the three-dimensional features are associated with the integrated circuit dies. To form the three-dimensional features, a feature formation material is deposited, the molded panel is formed, and the feature formation material is removed.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: October 19, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chien-Hua Chen, Devin A. Mourey, Michael G. Groh
  • Patent number: 10926570
    Abstract: A multilayer body (1, 2, 3) and a method for producing a security element are described. The multilayer body has a metal layer (21). An optically active surface relief is molded at least in areas in a first surface of the metal layer (21) facing the upper side of the multilayer body or forming the upper side of the multilayer body and/or in a second surface of the metal layer (21) facing the underside of the multilayer body or forming the underside of the multilayer body. In at least one first area (31 to 39) of the multilayer body the surface relief is formed by a first relief structure (61).
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: February 23, 2021
    Assignee: OVD KINEGRAM
    Inventors: Harald Walter, Wayne Robert Tompkin
  • Patent number: 10836090
    Abstract: A three-dimensional printer is configured to fill interior cavities of a fabricated object with functional or aesthetic materials during fabrication. In general, a number of layers can be fabricated with an infill pattern that leaves void space within an exterior surface of the object. These void spaces can receive a second material such as an epoxy or adhesive that spans multiple layers of the object to increase structural integrity. Similarly, aesthetic materials may be used to add color, opacity, or other desired properties to a fabricated object. The void spaces can also or instead form molds that are filled with a build material to provide a fabricated object.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: November 17, 2020
    Assignee: MakerBot Industries, LLC
    Inventor: Peter Joseph Schmehl
  • Patent number: 10823885
    Abstract: An optical coating structure applied to the surface of an object having scattering structures introduced to the basal, upper or middle layers of a multilayer reflector to cause a particular (calculated) degree of scattering, or to the surface of a black/colour pigmented object. The scattering structures are mainly sub-micron in size, and arranged in a pseudo-random or non-periodic manner. Consequently they serve only to broaden the angular range of the light reflected at the surface normal from a multilayer reflector, or to provide (actual and/or perceived) reduced reflectivity of a surface by deflecting incident light through the surface rather than away from it or by scattering otherwise beam-like (narrow-angle) reflections from a surface into a broad-angle reflection. The scattering structures can include profile elements, which are in the form of elongate bars having convexly curved sides or hemispherical rods, that are introduced to a basal layer of a multilayer reflector.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: November 3, 2020
    Inventor: Andrew Richard Parker
  • Patent number: 10751953
    Abstract: A method of manufacturing an imprint master template including forming a cutting line guide at an edge of a first fine pattern unit having an upper surface on which a fine pattern is formed; cutting a wafer substrate by a cleaving process along the cutting line guide so that a cutting surface is formed, the cutting surface having a preliminary second surface where the cutting line guide was formed and a first surface which is formed by the cleaving process; polishing the preliminary second surface to form a second surface which is inclined at a predetermined angle with respect to the first surface; and bonding the first fine pattern unit and the second fine pattern unit to each other with the first surface of the first fine pattern unit facing the first surface of the second fine pattern unit.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: August 25, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kang Soo Han, Moonjung An, Gugrae Jo, Hyungbin Cho
  • Patent number: 10539106
    Abstract: A method of fabricating a fuel injector nozzle comprising the steps of: (a) forming a first microstructured pattern in a first material; (b) replicating the first microstructured pattern in a second material to make a first mold comprising a second microstructured pattern in the second material; (c) replicating the second microstructured pattern in a third material to make a second mold comprising a third microstructured pattern comprising a plurality of microstructures in the third material; (d) replicating the third microstructured pattern in a metal material to make a replicated structure; and (e) removing the third material resulting in a nozzle having a plurality of through-holes through the metal material and corresponding to the plurality of microstructures in the third microstructured pattern. Each of the plurality of through-holes has a hole wall connecting a hole entry to a hole exit, and the hole wall of at least one through-hole has a side that curves from its hole entry to its hole exit.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 21, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Barry S. Carpenter, Jaime B. Willoughby, Jennifer J. Sahlin
  • Patent number: 10357334
    Abstract: A dental device (such as a dental matrix or teeth tray) for use in in securing to one or more teeth during a dental restoration procedure or another dental procedure. In the case of a dental matrix, the dental matrix can be manufactured (e.g., in a dentist's facility using a three-dimensional printer apparatus or the like) after the targeted tooth of the patient in the dentist's facility is prepared for a filling material. As such, in some circumstances, the dental matrix is not necessarily a prefabricated metal band that is intended to be used with any of a variety of differently sized and shaped teeth of any of a variety of different patients, but instead the dental matrix may optionally be promptly fabricated according to the specific anatomical shape and size of a particular tooth of a particular patient while that patient is waiting in the dental chair.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: July 23, 2019
    Assignee: Hegland LLC
    Inventor: Lindsay Hegland
  • Patent number: 10279357
    Abstract: An aperture plate is manufactured by plating metal around a mask of resist columns having a desired size, pitch, and profile, which yields a wafer about 60 ?m thickness. This is approximately the full desired target aperture plate thickness. The plating is continued so that the metal overlies the top surfaces of the columns until the desired apertures are achieved. This needs only one masking/plating cycle to achieve the desired plate thickness. Also, the plate has passageways formed beneath the apertures, formed as an integral part of the method, by mask material removal. These are suitable for entrainment of aerosolized droplets exiting the apertures.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: May 7, 2019
    Assignee: Stamford Devices Limited
    Inventors: Brendan Hogan, Hong Xu
  • Patent number: 10220584
    Abstract: Various systems and apparatuses for heating molds, including for example tire molds, are disclosed. Heating of molds may be effected via induction heating technology. In one embodiment, a system for heating a tire mold is provided, the system comprising: a tire mold formed from a mold material having a base material relative permeability, wherein the tire mold includes a mold surface for contacting a tire, the mold surface for contacting a tire having a mold surface for contacting a tire relative permeability, wherein the tire mold includes a mold back oriented substantially opposite the mold surface for contacting a tire, and wherein the mold surface for contacting a tire relative permeability is greater than the base material relative permeability.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: March 5, 2019
    Assignee: Bridgestone Americas Tire Operations, LLC
    Inventor: Edward S. Seroka
  • Patent number: 9556532
    Abstract: A method is provided for manufacturing a mold that has a porous alumina layer over its surface, which is capable of preventing formation of pits (recesses). A moth-eye mold manufacturing method of an embodiment of the present invention is a method for manufacturing a mold which has a porous alumina layer over its surface, including the steps of: providing a mold base which includes an aluminum base and an aluminum film deposited on a surface of the aluminum base, the aluminum film having a purity of not less than 99.99 mass %; anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions; and bringing the porous alumina layer into contact with an etching solution to enlarge the plurality of minute recessed portions of the porous alumina layer.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 31, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kiyoshi Minoura, Akinobu Isurugi, Ichirou Ihara, Hidekazu Hayashi, Kenichiro Nakamatsu
  • Patent number: 9234289
    Abstract: A method for manufacturing a molding core includes: providing a cylindrical roller having a circumference surface coated with a first film layer; coating a second film layer on the first film layer; coating a preprocessed molding film on the second film layer; engraving a number of molding patterns on the preprocessed molding film to obtain a molding film; separating the molding film from the roller and spreading out the molding film to be a flat plate; and manufacturing the molding core using the molding film by electroforming method.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: January 12, 2016
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Chia-Ling Hsu
  • Patent number: 9139924
    Abstract: For forming a nickel mold, a metal and a corresponding etchant are selected such that the etchant selectively etches the metal over nickel. The metal is sputtered onto a surface of a template having nano-structures to form a sacrificial layer covering the nano-structures. Nickel is electroplated onto the sacrificial layer to form a nickel mold, but leaving a portion of the sacrificial layer exposed. The sacrificial layer is contacted with the etchant through the exposed portion of the sacrificial layer to etch away the sacrificial layer until the nickel mold is separated from the template. Subsequently, the nickel mold may be replicated or scaled-up to produce a replicate mold by electroplating, where the replicate mold has nano-structures that match the nano-structures on the template. The metal may be copper.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 22, 2015
    Assignee: Agency for Science, Technology and Research
    Inventors: Kambiz Ansari, Christina Yuan Ling Tan, Yee Chong Loke, Jarrett Dumond, Isabel Rodriguez
  • Patent number: 9044879
    Abstract: The aim is to regulate thickness on the optical axis in the production of wafer lenses. Disclosed is a wafer lens production method that is equipped with a dispensing process for dropping resin onto a molding die (64), an imprinting process for pressing either the molding die (64) or a glass substrate (2) toward the other, and a releasing process for releasing the glass substrate (2) from the molding die (64), and that repeats the processing from the dispensing process to the releasing process as a single cycle and successively forms resin lenses (4) on the glass substrate 2); wherein the height (A) of the non-lens area (6) surrounding the lenses (4) and the heights (B and C) of the glass substrate (2) are measured between the releasing process of a first cycle and the dispensing process of a second cycle, and the position of the molding die (64) is corrected for imprinting processes of the second cycle, on the basis of the heights (A-C).
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: June 2, 2015
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Yuiti Fujii, Shigeru Hosoe, Toshiya Takitani, Akihiro Fujimoto
  • Patent number: 9045333
    Abstract: The invention relates to a method of fabricating a composite micromechanical component, particularly for timepiece movements, including steps: a) providing a substrate including a horizontal top layer and a horizontal bottom layer made of electrically conductive, micromachinable material, and secured to each other by an electrically insulating, horizontal, intermediate layer; b) etching a pattern in the top layer through to the intermediate layer, thereby forming at least one cavity in the substrate; c) coating the top part of the substrate with an electrically insulating coating; d) directionally etching the coating and the intermediate layer to limit the presence thereof exclusively at each vertical wall; e) performing an electrodeposition by connecting the electrode to the conductive bottom layer of the substrate to form at least one metal part of the component; g) releasing the composite component from the substrate.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: June 2, 2015
    Assignee: Nivarox-FAR S.A.
    Inventors: Pierre Cusin, Jean-Philippe Thiebaud
  • Publication number: 20150131235
    Abstract: There are provided an electronic component module in which an external terminal is disposed outwardly from a mold part by a plating process and a manufacturing method thereof. The electronic component module includes a substrate, at least one electronic component mounted on the substrate, a mold part sealing the electronic component, and at least one connection conductor having one end bonded to one surface of the substrate and formed in the mold part so as to penetrate through the mold part. The connection conductor is formed to have a form in which horizontal cross-sectional areas of the connection conductor are gradually reduced toward the substrate and includes at least one step.
    Type: Application
    Filed: April 24, 2014
    Publication date: May 14, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Do Jae YOO, Eun Jung JO, Jae Hyun LIM
  • Patent number: 9023269
    Abstract: A method for producing a resin molding die (13) for molding a first substrate (2) having a flow path (2b) and a through-hole (2a), wherein a base die (10) having a concave part (10b) corresponding to the flow path (2b) and a through-hole (10a) corresponding to through-hole (2a) and deeper than the concave part (10b) is prepared, the base die (10) is subjected to electroforming with a first material and is then subjected to electroforming with a second material which is different from the first material, and a protruding part for forming through-hole (10a) by removing the first material that was electrodeposited on through-hole (10a) is formed. The first material has a smaller electroforming stress than the second material, the first material exerts a higher adhesiveness with regard to the base die than the second material, and the second material is harder than the first material.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 5, 2015
    Assignee: Konica Minolta, Inc.
    Inventor: Takehiko Goshima
  • Publication number: 20150108000
    Abstract: A method of duplicating the nano-pattern of the surface of an object is disclosed A method of duplicating the nano-pattern of the surface of an object comprises: selecting the object having the nano-pattern texture to be duplicated; disposing the selected object and pretreating a surface of the object by washing, drying and then forming a nano-thin film thereto to block transfer of impurities so as to facilitate separation of a nano-imprint mold; nano-imprinting the surface of the object, thus duplicating it on a plastic mold; metallizing a surface of the plastic mold and performing first electroforming of the plastic mold, thus manufacturing metal module master molds; preparing a standard pattern by scanning the surface of the object to achieve an two-dimensional image and three-dimensional depth information and determine a part of a scanned image of the surface of the object as the standard pattern; connecting the metal module master molds to each other through welding thus producing a large-area metal m
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: Kyung Wook LEE, Kyung Yul LEE, Jun Sang JEONG
  • Publication number: 20150028325
    Abstract: A mold for transferring a fine pattern, suitable for producing a substrate having a concave-convex structure such as a diffraction grating, can be provided by a simple process and with a high throughput. A method for producing a mold for transferring a fine pattern includes: a step of coating a surface of a base member with a solution containing a block copolymer and polyalkylene oxide; a solvent phase-separation step of phase-separating the block copolymer under a presence of vapor of an organic solvent so as to obtain a block copolymer film of the block copolymer, the block copolymer film having a concave-convex structure on a surface thereof and a horizontal cylinder structure in an interior thereof; a step of stacking a metal layer by electroforming; and a step of releasing the base member having the concave-convex structure formed thereon from the metal layer.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Takashi SEKI, Satoshi MASUYAMA, Maki FUKUDA, Suzushi NISHIMURA
  • Publication number: 20150004438
    Abstract: According to one embodiment, there is provided a method for forming a pattern including forming an island-like metal underlayer comprised of a first metal, a phase-separated release layer including a first metal, a second metal, and a metal oxide, a mask layer, and a resist layer on a processed layer in this order, forming a concave-convex pattern on the resist layer, transferring the pattern to the mask layer, the phase-separated release layer, and the processed layer in this order, dissolving the phase-separated release layer using a peeling liquid for dissolving the first metal and the second metal, and removing the mask layer from the processed layer to expose the concave-convex pattern.
    Type: Application
    Filed: October 22, 2013
    Publication date: January 1, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Takizawa, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Publication number: 20140311911
    Abstract: A multi-stage transfer mold manufacturing method that can save labor in a step of connecting by a multi-stage connection, a multi-stage transfer mold manufactured thereby, and a component produced thereby are provided for production of a multi-stage component by electroplating. A method therefor includes the steps of forming a resist pattern having a shape of a component with a desired aspect ratio on a metal substrate, a sidewall of the resist pattern forming a desired angle, forming, on the resist pattern, a resist pattern having a shape and a thickness of a connection pillar for connecting with an upper layer, creating a transfer mold by filling up the resist pattern on which the resist pattern having the shape of the connection pillar by electroplating to a predetermined thickness, and providing a master mold by separating the transfer mold from the metal substrate.
    Type: Application
    Filed: November 15, 2011
    Publication date: October 23, 2014
    Inventors: Takashi Sano, Tokinori Terada
  • Publication number: 20140291157
    Abstract: A transfer mold, which has superior durability and high aspect ratio, for production of a component by electroplating and a component produced thereby are provided. A method therefor includes the steps of forming a resist pattern having a shape of a component with a desired aspect ratio on a metal substrate, a sidewall of the resist pattern forming a desired angle, creating a transfer mold by filing up the resist pattern having the shape of the component by electroplating to a predetermined thickness and providing a master mold by separating the transfer mold from the metal substrate.
    Type: Application
    Filed: November 15, 2011
    Publication date: October 2, 2014
    Applicant: LEAP Co.., Ltd.
    Inventors: Takashi Sano, Tokinori Terada
  • Publication number: 20140248513
    Abstract: According to one embodiment, there is provided a method for producing a magnetic recording medium which includes forming a mask layer on a magnetic recording layer, applying metal fine particles on the mask layer, covering the metal fine particles with an overcoat layer, irradiating with energy beams through the overcoat layer so as to deactivate a protective coating of the metal fine particles, transferring a metal fine particle pattern from the mask layer to the magnetic recording layer, and removing the mask layer from the magnetic recording layer.
    Type: Application
    Filed: July 12, 2013
    Publication date: September 4, 2014
    Inventors: Kazutaka Takizawa, Akira Watanabe, Kaori Kimura, Tsuyoshi Onitsuka, Takeshi Iwasaki, Akihiko Takeo
  • Publication number: 20140202869
    Abstract: A method for manufacturing a molding core includes: providing a cylindrical roller having a circumference surface coated with a first film layer; coating a second film layer on the first film layer; coating a preprocessed molding film on the second film layer; engraving a number of molding patterns on the preprocessed molding film to obtain a molding film; separating the molding film from the roller and spreading out the molding film to be a flat plate; and manufacturing the molding core using the molding film by electroforming method.
    Type: Application
    Filed: July 29, 2013
    Publication date: July 24, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIA-LING HSU
  • Patent number: 8758589
    Abstract: An antireflection film of the present invention includes a plurality of first raised portions, each of which has a two-dimensional size of not less than 1 ?m and less than 100 ?m when seen in a direction normal to the film, and a plurality of second raised portions, each of which has a two-dimensional size of not less than 10 nm and less than 500 nm when seen in a direction normal to the film. In at least one embodiment, the antireflection film has a first surface shape or a second surface shape that is inverse to the first surface shape relative to a film surface. In the first surface shape, the second raised portions are provided on the first raised portions and between the plurality of first raised portions, and the elevation angle ? of a surface of the first raised portions relative to the film surface is about 90° or more. The antireflection film of the present invention has a more excellent antiglare function than conventional ones.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: June 24, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hidekazu Hayashi, Tokio Taguchi, Akiyoshi Fujii, Nobuaki Yamada
  • Publication number: 20140027293
    Abstract: A system, and corresponding method for use, for providing a mass-producible retroreflective material, or sheeting, featuring full cube corner pins is presented. The full cube corner shaping may be provided with the use of a diamond turning tool. The diamond turning tool may be used to simultaneously manufacture a number of pins. The pins may be used to form a mold featuring a triangular or full cube corner surface formation.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 30, 2014
    Applicant: Orafol Americas Inc.
    Inventor: Xiao Jing Lu
  • Publication number: 20130341834
    Abstract: A method for producing a resin molding die (13) for molding a first substrate (2) having a flow path (2b) and a through-hole (2a), wherein a base die (10) having a concave part (10b) corresponding to the flow path (2b) and a through-hole (10a) corresponding to through-hole (2a) and deeper than the concave part (10b) is prepared, the base die (10) is subjected to electroforming with a first material and is then subjected to electroforming with a second material which is different from the first material, and a protruding part for forming through-hole (10a) by removing the first material that was electrodeposited on through-hole (10a) is formed. The first material has a smaller electroforming stress than the second material, the first material exerts a higher adhesiveness with regard to the base die than the second material, and the second material is harder than the first material.
    Type: Application
    Filed: February 24, 2012
    Publication date: December 26, 2013
    Applicant: KONICA MINOLTA, INC.
    Inventor: Takehiko Goshima
  • Publication number: 20130327741
    Abstract: A method for producing an alumina template of nanorods, the alumina template, and the nanorods are provided for overcoming the problems of the conventional alumina template having anodic aluminum oxide that may be peeled off from a substrate or forming a non-conductive oxide easily, and the alumina template includes a conductive substrate composed of an active metal and an inert metal, so that the alumina template can be attached onto the active metal and inert metal at the same time, and the active metal can be used for securing the alumina template and supporting the alumina template on the inert metal, and the anodic aluminum oxide attached onto the inert metal can be used for providing a better conductivity, such that a stable and highly conductive alumina template can be produced.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 12, 2013
    Applicant: SOUTHERN TAIWAN UNIVERSITY
    Inventors: Hsyi-En CHENG, Bo-Jiun YEH
  • Publication number: 20130299796
    Abstract: A method for producing a mold includes: applying a block copolymer solution made of first and second polymers on a base member; performing a first annealing process at a temperature higher than Tg of the block copolymer after drying the coating film; forming a concavity and convexity structure on the base member by removing the second polymer by an etching process; performing a second annealing process of the concavity and convexity structure at a temperature higher than Tg of the first polymer; forming a seed layer on the structure; laminating or stacking a metal layer on the seed layer by an electroforming; and peeling off the metal layer from the base member. The second annealing process enables satisfactory transfer of a concavity and convexity structure on the base member onto the metal layer.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 14, 2013
    Inventors: Satoshi MASUYAMA, Madoka TAKAHASHI, Suzushi NISHIMURA, Maki FUKUDA, Takashi SEKI
  • Publication number: 20130292052
    Abstract: The disclosure relates to a method for manufacturing a photoaligning integrated large area metallic stamp, which includes the following steps: making a unit device PLC mold pattern, and molding a unit PLC device pattern through a multistep imprinting method using the PLC mold pattern; heat treating the unit PLC device pattern to minimize scattering loss due to surface roughness; making a groove pattern for supporting an optical fiber; making an integrated PDMS mold for a unit device by aligning the unit PLC device pattern and the groove pattern; and repeatedly replicating the integrated PDMS mold for a unit device to make a large area PDMS pattern, and making a large area stamp through electroforming using the large area PDMS pattern.
    Type: Application
    Filed: February 22, 2011
    Publication date: November 7, 2013
    Applicant: Pusan National University Industry-University Cooperation Foundation
    Inventors: Myung Yung Jeong, Seung Hun Oh, Jin Hwa Ryu, Sang Uk Cho, Tae Ho Lee
  • Patent number: 8574469
    Abstract: A processing method for a mold (1) to form a pattern of recessed portions (13) on a product forming surface (11) formed on the mold (1) includes a photoresist forming step in which a thermally deformable heat-mode photoresist layer (12) is formed on the product forming surface (11), a laser beam illumination step in which a laser beam is applied to the photoresist layer (12) by an exposure device incorporating a semiconductor laser to form a pattern of recessed portions (13), and an asperity forming step in which asperities are formed on the product forming surface (11) by making use of the pattern of recessed portions (13).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: November 5, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Yoshihisa Usami
  • Patent number: 8563226
    Abstract: The invention relates to a method (3) of fabricating a mold (39, 39?) including the following steps: (a) depositing (9) an electrically conductive layer on the top (20) and bottom (22) of a wafer (21) made of silicon-based material; (b) securing (13) the wafer to a substrate (23) using an adhesive layer; (c) removing (15) one part (26) of the conductive layer from the top of the wafer (21); and (d) etching (17) the wafer as far as the bottom conductive layer (22) thereof in the shape (26) of the one part removed from the top conductive layer (22) to form at least one cavity (25) in the mold. The invention concerns the field of micromechanical parts, particularly, for timepiece movements.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 22, 2013
    Assignee: Nivarox-FAR S.A.
    Inventors: Pierre Cusin, Clare Golfier, Jean-Philippe Thiebaud
  • Publication number: 20130234364
    Abstract: A method is provided for mastering optically variable devices (OVDs) used to authenticate optical discs. The method generally includes the steps of providing a laser beam recorder (LBR), introducing a substrate to the LBR, and exposing a portion of the substrate to the LBR, The mastering system thus includes the LBR, which has a laser that emits a beam, a processor or computer for programming or otherwise controlling the beam in order to expose the substrate and create the desired optical effect. Depending on the material used for the substrate, the exposure is then developed, if necessary, and processed to generate a master for the OVD. The OVD can then be replicated in order to provide authentic resultant products or articles, such as optical discs.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 12, 2013
    Applicant: 3dcd, LLC
    Inventors: NIGEL C. ABRAHAM, Holger HOFMANN, Raymond L. KEATING
  • Publication number: 20130200541
    Abstract: The invention relates to a stamper in which an oxide film having a fine concave-convex structure made up of a plurality of fine pores having an aspect ratio represented by [the depth of the fine pores/the average interval between the fine pores] of 1 to 4 is formed on the surface of an aluminum base material which is made of aluminum having a content of Ti of 150 ppm to 500 ppm, a content of B or C of 1 ppm to 50 ppm and a purity of 99.9% or more. According to the invention, it is possible to provide a low-cost stamper in which the emergence of a pattern derived from the traces of crystal grains on the surface of the oxide film is suppressed, an article having a favorable appearance, which is manufactured using the above stamper, and a method for manufacturing the above.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 8, 2013
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroaki Kita, Kota Shirai, Katsuhiro Kojima
  • Publication number: 20130192992
    Abstract: An article is provided, the article including a substrate having a surface, a nano-structure array formed on the substrate, the nano-structure array including a plurality of nano-structures extending from the surface of the substrate, and a cover layer formed on and around the nano-structures to anchor the cover layer to the substrate.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 1, 2013
    Inventors: Peter Mardilovich, Anthony M. Fuller, Qingqiao Wei
  • Publication number: 20130189497
    Abstract: Nano-scale structures are provided wherein nano-structures are formed on a substrate surface and a base material is applied between the nano-structures.
    Type: Application
    Filed: October 13, 2011
    Publication date: July 25, 2013
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Peter Mardilovich, Qingqiao Wei, Anthony M. Fuller
  • Patent number: 8470154
    Abstract: The method of fabricating metal microstructures includes the following steps: a) taking a substrate that has a conductive strike surface; b) to d) forming a first resin mould by UV photolithography, the apertures in the first resin mould revealing the conductive strike surface of the substrate; e) electroforming the first element by galvanic deposition of a first metal material in the apertures of the first resin mould, f) removing the first mould around the first element to expose the conductive strike surface of the substrate; g) to i) forming a new resin mould by UV photolithography, the apertures in the new resin mould revealing the first element, and the conductive strike surface of the substrate; j) electroforming the second element by galvanic deposition of a second metal material in the apertures of the new resin mould to form said metal microstructure; k) separating said metal microstructure from the substrate and from said new mould.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: June 25, 2013
    Assignee: Nivarox-FAR S.A.
    Inventor: Gilles Rey-Mermet
  • Patent number: 8465639
    Abstract: A system, and corresponding method for use, for providing a mass-producible retroreflective material, or sheeting, featuring full cube corner pins is presented. The full cube corner shaping may be provided with the use of a diamond turning tool. The diamond turning tool may be used to simultaneously manufacture a number of pins. The pins may be used to form a mold featuring a triangular or full cube corner surface formation.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: June 18, 2013
    Assignee: ORAFOL Americas Inc.
    Inventor: Xiao-Jing Lu
  • Patent number: 8431004
    Abstract: A method for making a stamper which has an uneven surface pattern, in which unit structures are arranged in x and y directions at respective periods that are both shorter than the shortest wavelength of an incoming light ray, on the surface of a substrate and satisfies the following Inequality (1): ? ? ? x , y ? min < 1 ni + ni · sin ? ? ? ? ? i max ( 1 ) where ?min is the shortest wavelength of the incoming light ray, ?imax is the largest angle of incidence of the incoming light ray, ni is the refractive index of an incidence medium, ?x is the period of the uneven surface pattern in the x direction, and ?y is the period of the pattern in the y direction. As a result, diffraction of short-wave light components can be reduced in a broad wavelength range.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 30, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tokio Taguchi, Shun Ueki, Kozo Nakamura, Kazuhiko Tsuda
  • Patent number: 8403659
    Abstract: An electroformed tooling device is disclosed. The device includes an electroformed tool with electrodeposited metal which has been plated from a structured substrate on a molding side to function as a molding surface and an uneven contour on a non-molding side of the electroformed tool left as a by-product of electroforming. The device also includes a blank base comprising a top surface, a network of thermal management channels, and at least a first opening and a second opening communicating with the network of thermal management channels to allow fluid to flow into the first opening and flow through the network of thermal management channels and flow out the second opening. The top surface further includes an electro-discharge machined contoured surface to mate with the uneven contour on the non-molding side of the electroformed tool. Fluid flowing through the thermal management channels cools or alternately cools and heats the electroformed tool.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 26, 2013
    Inventor: Robert E. Szokolay
  • Publication number: 20130048502
    Abstract: For forming a nickel mold, a metal and a corresponding etchant are selected such that the etchant selectively etches the metal over nickel. The metal is sputtered onto a surface of a template having nano-structures to form a sacrificial layer covering the nano-structures. Nickel is electroplated onto the sacrificial layer to form a nickel mold, but leaving a portion of the sacrificial layer exposed. The sacrificial layer is contacted with the etchant through the exposed portion of the sacrificial layer to etch away the sacrificial layer until the nickel mold is separated from the template. Subsequently, the nickel mold may be replicated or scaled-up to produce a replicate mold by electroplating, where the replicate mold has nano-structures that match the nano-structures on the template. The metal may be copper.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: Agency for Science, Technology and Research
    Inventors: Kambiz Ansari, Christina Yuan Ling Tan, Yee Chong Loke, Jarrett Dumond, Isabel Rodriguez
  • Publication number: 20130052294
    Abstract: A method of making a molding tool includes: preparing an imprinting master having a surface relief pattern; applying a curable material on a flexible film; embossing the curable material on the flexible film using the imprinting master so as to transfer the surface relief pattern to the curable material; curing the embossed curable material so as to form a patterned-and-cured material; attaching and conforming the flexible film to a non-planar surface of a model; forming a thin metal film over the patterned-and-cured material; electroforming a metal layer over the thin metal film so as to form a molding tool of the metal layer; and removing the molding tool from the thin metal film.
    Type: Application
    Filed: March 30, 2011
    Publication date: February 28, 2013
    Applicant: TAIWAN GREEN POINT ENTERPRISES CO., LTD.
    Inventors: Shaupoh Wang, Ray Long Tsai, Tung Chuan Chen, Pei Shan Hsieh, Hui Mei Chang, Shih Tsung Chang
  • Patent number: 8372253
    Abstract: According to one embodiment, patterns of protrusions and recesses includes a substrate including a conductive region on at least one major surface, and a projecting pattern layer formed on the conductive region on the major surface, and made of a microcrystalline material, a polycrystalline material, an amorphous material, or an oxide of the microcrystalline, polycrystalline, or amorphous material.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: February 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Shirotori, Yoshiyuki Kamata, Takuya Shimada, Masatoshi Sakurai
  • Patent number: 8349163
    Abstract: According to one embodiment, an electroforming master comprises a patterns of protrusions and recesses formed on one major surface of an Si substrate having two major surfaces, corresponding to information for positioning of a read/write head (a preamble, address, and burst), recording tracks or recording bits. Impurity ions are doped in the surface of this patterns of protrusions and recesses. The impurity ion concentration distribution in the film thickness direction of the Si substrate has a peak in a portion from the patterns of protrusions and recesses surface to a depth of 40 nm in the film thickness direction. The impurity concentration of this peak is 1×1020 to 2×1021 ions/cm3.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Shirotori, Akira Watanabe, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 8329069
    Abstract: A motheye mold fabrication method of at least one embodiment of the present invention includes the steps of: (a) preparing an Al base in which an Al content is less than 99.99 mass %; (b) partially anodizing the Al base to form a porous alumina layer which has a plurality of very small recessed portions; (c) after step (b), allowing the porous alumina layer to be in contact with an etchant which contains an anodic inhibitor, thereby enlarging the plurality of very small recessed portions of the porous alumina layer; and (d) after step (c), further anodizing the Al base to grow the plurality of very small recessed portions.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 11, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Ichiro Ihara
  • Publication number: 20120282442
    Abstract: There are provided a mold manufacture method capable of easily manufacturing a mold having a nanosized fine structure, and a mold obtained using such method. The mold manufacture method includes: a step of forming a self-assembled film 2 on an inorganic thin film 1 having the fine structure, the self-assembled film 2 being composed of a silane coupling agent having a functional group including at least one of an amino group, a mercapto group, a thiol group, a disulfide group, a cyano group, a halogen group and a sulfonic acid group; a conductive layer formation step of forming a conductive layer 3 on the self-assembled film 2; and a step of forming a metal film 4 on the conductive layer 3 through electroplating.
    Type: Application
    Filed: June 28, 2012
    Publication date: November 8, 2012
    Applicant: Waseda University
    Inventors: Takayuki Homma, Mikiko Saito