With Group V Metal Or Metal Oxide (i.e., V, Nb, Ta, As, Sb, Bi, Or Oxide Thereof) Patents (Class 208/111.2)
-
Patent number: 10577546Abstract: Processes for producing deasphalted oil are provided which involve combining a supercritical water stream with a pressurized, heated, hydrocarbon-based composition to create a combined feed stream, introducing the combined feed stream to a supercritical reactor to produce and upgraded product, and depressurizing the upgraded product. The depressurized upgraded product is separated into a light and a heavy fraction, where the heavy fraction has a greater concentration of asphaltene than the light fraction. The light fraction is passed to a separator to separate into a gas fraction, a paraffinic fraction, and a water fraction and the heavy fraction and the paraffinic fraction are combined to remove the asphaltene and produce deasphalted oil. In some embodiments, the paraffinic fraction is dewatered before combining with the heavy fraction.Type: GrantFiled: December 13, 2017Date of Patent: March 3, 2020Assignee: Saudi Arabian Oil CompanyInventors: Ki-Hyouk Choi, Mazin M. Fathi, Abdullah T. Alabdulhadi
-
Patent number: 10450247Abstract: A method for producing hydrocarbons and hydrogen from methane. The method includes packing a catalyst comprising platinum, bismuth and a support material into a reactor; introducing a reactant mixture containing methane into the reactor such that the reactant mixture containing methane is in close contact with the reactant mixture; and heating the reactant mixture containing methane to a temperature for a period of time.Type: GrantFiled: September 19, 2018Date of Patent: October 22, 2019Assignee: Purdue Research FoundationInventors: Arvind Varma, Yang Xiao
-
Patent number: 10414991Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.Type: GrantFiled: June 19, 2017Date of Patent: September 17, 2019Assignee: ExxonMobil Research and Engineering CompanyInventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
-
Patent number: 10130938Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.Type: GrantFiled: September 2, 2014Date of Patent: November 20, 2018Assignee: ExxonMobil Chemical Patents Inc.Inventors: Chuansheng Bai, Jean W. Beeckman, Hans K. T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
-
Patent number: 9421529Abstract: A method of reactivating a spent catalyst comprising a metal and a catalyst support, the method comprising redispersing the metal in the spent catalyst to produce a redispersed spent catalyst, contacting the redispersed spent catalyst with a reactivating composition to produce a redispersed, reactivated spent catalyst, and thermally treating the redispersed, reactivated spent catalyst to produce a reactivated catalyst.Type: GrantFiled: January 20, 2014Date of Patent: August 23, 2016Assignee: Chevron Philips Chemical Company LPInventor: An-Hsiang Wu
-
Patent number: 8691080Abstract: One exemplary embodiment can include a slurry hydrocracking process. The process can include combining one or more hydrocarbons and a slurry hydrocracking catalyst as a feed to a slurry hydrocracking reaction zone, fractionating an effluent from the slurry hydrocracking reaction zone, separating the pitch from at least a portion of the slurry hydrocracking catalyst, and recycling the suspension to the slurry hydrocracking reaction zone. The slurry hydrocracking catalyst may include a support. Fractionating the effluent may provide a light vacuum gas oil, a heavy vacuum gas oil, and a mixture comprising a pitch and the slurry hydrocracking catalyst. Generally, the separated slurry hydrocracking catalyst is comprised in a suspension.Type: GrantFiled: June 10, 2010Date of Patent: April 8, 2014Assignee: UOP LLCInventor: Robert Haizmann
-
Publication number: 20120145595Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide and a metal-containing catalyst at a temperature of 375° C. to 500° C. and a pressure of from 6.9 MPa to 27.5 MPa to produce a vapor comprising a first hydrocarbon-containing product, where the hydrogen sulfide is mixed with the feedstock, metal-containing catalyst, and hydrogen at a mole ratio of hydrogen sulfide to hydrogen of at least 1:10. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. and a pressure of from 3.4 MPa to 27.5 MPa to produce a second hydrocarbon-containing product.Type: ApplicationFiled: December 8, 2011Publication date: June 14, 2012Applicant: SHELL OIL COMPANYInventors: Stanley Nemec MILAM, Michael Anthony REYNOLDS, Scott Lee WELLINGTON, Frederik Arnold BUHRMAN
-
Patent number: 8007765Abstract: The present invention relates to a microporous crystalline material characterized in that it has the following chemical composition in the calcined from: xX2O3:nYO2:mGeO2 in which (n+m) is at least 5, X is one or more trivalent elements, Y corresponds to one or more tetravalent elements other than Ge, “x” may have any value, including zero, and the ratio Y/Ge is greater than 0.1, and it has a characteristic X-ray diffraction pattern. Its also relates to a method for preparing it and to its use in the conversion of organic-compounds supplies.Type: GrantFiled: February 22, 2007Date of Patent: August 30, 2011Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de ValenciaInventors: Manuel Moliner Marin, Maria Jose Diaz Cabanas, Angel Cantin Sanz, Avelino Corma Canos
-
Patent number: 7959796Abstract: Contact of a crude feed with one or more catalysts produces a total product that include a crude product. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.Type: GrantFiled: December 16, 2004Date of Patent: June 14, 2011Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Patent number: 7837863Abstract: Contact of a crude feed with one or more catalysts produces a total product that include a crude product. The crude feed has a total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of at least 0.00001 grams per gram of crude feed. At least one of the catalysts includes vanadium. The crude product is a liquid mixture at 25° C. and 0.101 MPa and has a total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of at most 90% of the total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.Type: GrantFiled: December 16, 2004Date of Patent: November 23, 2010Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Patent number: 7641787Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a particulate NOx composition containing particles of a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500. Preferably, the NOx reduction composition contains NOx reduction zeolite particles bound with an inorganic binder. In the alternative, the NOx reduction zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. Compositions in accordance with the invention are very effective for the reduction of NOx emissions released from the regenerator of a fluid catalytic cracking unit operating under FCC process conditions without a substantial change in conversion or yield of cracked products.Type: GrantFiled: November 7, 2008Date of Patent: January 5, 2010Assignee: W.R. Grace & Co.-Conn.Inventors: George Yaluris, Michael Scott Ziebarth, Xinjin Zhao
-
Patent number: 7449169Abstract: The present invention refers to a microporous crystalline material of zeolitic nature (ITQ-22) which, in the calcined state, has the empirical formula x(M1/nX02):yYO2:zR:wH20 wherein M is H+ or at least one inorganic cation of charge +n; X is at least one chemical element of oxidation state +3, preferably selected from the group consisting of Al, Ga, B, Fe and Cr; Y is at least one chemical element with oxidation state +4 other than Si and Ge, preferably selected from the group consisting of Ti, Sn and V; x has a value less than 0.2, preferably less than 0.1 and can take the value zero, y has a value less than 0.1, preferably less than 0.05 and can take the value zero, z has a value less than 0.8, preferably between 0.005 and 0.5 and can take the value zero, with a characteristic X-ray diffraction pattern, to the method of preparation and to the use of the material in separation and transformation processes of organic compounds.Type: GrantFiled: November 23, 2004Date of Patent: November 11, 2008Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de ValenciaInventors: Avelino Corma Canós, Fernando Rey García, Susana Valencia Valencia, Luis Joaquín Martinez Triguero
-
Patent number: 7381321Abstract: Process for transforming a gas-oil fraction that makes it possible to produce a fuel that has a quality according to stringent requirements in terms of sulfur content, aromatic compound content, cetane number, boiling point, T95, of 95% of the compounds and density, d15/4, at 15° C. This process comprises a hydrorefining stage and a hydrocracking stage, whereby the latter uses a catalyst that contains at least one zeolite. The conversion of products that have a boiling point of less than 150° C. is, throughout the two stages of hydrocracking and hydrorefining, less than 40% by weight and, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the hydrocracking stage is less than the temperature, TR1, of the hydrorefining stage, and the variation between temperatures TR1 and TR2 is between 0 and 80° C.Type: GrantFiled: February 19, 2003Date of Patent: June 3, 2008Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Pierre Marion
-
Patent number: 7332071Abstract: Process for transforming a gas oil fraction that makes it possible to produce a fuel that has a quality according to stringent requirements in terms of sulfur content, aromatic compound content, cetane number, boiling point, T95, of 95% of the compounds and density, d15/4, at 15° C. This process comprises a hydrorefining stage and a subsequent stage, whereby the latter uses a catalyst that is selected from the group that consists of hydrorefining catalysts and catalysts that comprise at least one mixed oxide, a metal of group VIB, and a non-noble metal of group VIII. The conversion of products that have a boiling point of less than 150° C. is, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the subsequent stage is less than the temperature, TR1, of the hydrorefining stage, and the variation between temperatures TR1 and TR2 is between 0 and 80° C.Type: GrantFiled: February 19, 2003Date of Patent: February 19, 2008Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Pierre Marion
-
Patent number: 7297831Abstract: Disclosed is a process of preparing aromatic hydrocarbons and liquefied petroleum gas (LPG) from a hydrocarbon mixture, in which a non-aromatic compound in the hydrocarbon feedstock mixture is converted into a gaseous material having a large amount of LPG through hydrocracking, and an aromatic compound therein is converted into an oil component having large amounts of benzene, toluene, and xylene (BTX) through dealkylation and transalkylation, in the presence of a catalyst obtained by supporting platinum/bismuth onto a mixture support having zeolite and an inorganic binder. The gaseous product is separated into LPG and a mixture of methane and ethane depending on differences in boiling point through distillation, while the liquid product is separated into benzene, toluene, xylene, and C9+ aromatic compounds depending on differences in boiling point through distillation.Type: GrantFiled: November 8, 2006Date of Patent: November 20, 2007Assignee: SK CorporationInventors: Jong Hyung Lee, Seung Hoon Oh, Kyoung Hak Sung, Sun Choi, Yong Seung Kim, Byeung Soo Lim
-
Patent number: 6736959Abstract: The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which the feed to be treated is brought into contact with a catalyst. The catalyst comprises at least one dioctahedral 2:1 phyllosilicate, preferably synthesised in a fluoride medium in the presence of the acid HF and/or a further source of fluoride anions, and preferably having an interplanar spacing of at least 20×10−10 m (2 nm) and comprising pillars based on at least one oxide of elements from groups IVB, VB, VIB, VIII, IB, IIB, IIA or IVA or any combination of these oxides, and preferably selected from the group SiO2, Al2O3, TiO2, ZrO2 and V2O5, or any combination of these latter. The catalyst further comprises at least one hydrodehydrogenating element in the metallic form. The process is carried out at a temperature in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and at an hourly space velocity in the range 0.Type: GrantFiled: July 23, 2001Date of Patent: May 18, 2004Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Nathalie Marchal-George
-
Patent number: 6733657Abstract: A hydrocarbon conversion catalyst contains at least one silica-alumina having the following characteristics: A content by weight of silica SiO2 of between 10 and 60% by weight; an Na content less than 300 ppm by weight; a total pore volume of between 0.5 and 1.2 m/g measured by mercury porosimetry; a porosity of said silica-alumina wherein: the volume of mesopores whose diameter is between 40 Å and 150 Å, and whose mean diameter varies between 80 and 120 Å represents between 30 and 80% of the total pore volume, and (ii) the volume of macropores, whose diameter is greater than 500 Å and preferably between 1000 Å and 10,000 Å represents between 20 and 80% of the total pore volume; a specific surface area greater than 200 m2/g, and at least one hydro-dehydrogenating element selected metals of group VIB and group VIII, and optionally phosphorus, boron, silicon, or elements of group VIIA, VIIB or VB.Type: GrantFiled: January 15, 2002Date of Patent: May 11, 2004Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Tivadar Cseri, Magalie Roy-Auberger, Patrick Euzen
-
Publication number: 20030173253Abstract: The invention provides an amorphous hydrocracking catalyst for conversion of a hydrocarbon feed having a fraction above the diesel boiling range to diesel and a process using said catalyst. The catalyst includes Al2O3—SiO2 support, a noble catalytically active metal which is active for hydrocracking of a hydrocarbon above the diesel boiling range and a transition metal oxide selected from group V, VI and VII.Type: ApplicationFiled: April 3, 2003Publication date: September 18, 2003Inventors: Aubin-Maurice Liwanga-Ehumbu, Jacobus Lucas Visagie, Dieter Otto Leckel
-
Patent number: 6500330Abstract: The invention relates to a hydrocracking catalyst comprising at least one amorphous or poorly crystallized matrix of the oxide type, at least one element of group VB, preferably niobium, and at least one zeolite Y not globally dealuminized, at least one promoter element chosen from the group consisting of boron, phosphorus and silicon, optionally at least one element chosen from the elements of group VIB and group VIII, optionally at least one element of group VIIA. The invention also relates to the use of this catalyst for hydrocracking hydrocarbon feeds.Type: GrantFiled: November 29, 2000Date of Patent: December 31, 2002Assignee: Institut Francais du PetroleInventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
-
Publication number: 20020170847Abstract: The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which the feed to be treated is brought into contact with a catalyst comprising at least one dioctahedral 2:1 phyllosilicate, preferably synthesised in a fluoride medium in the presence of the acid HF and/or a further source of fluoride anions, and preferably wherein the interplanar spacing is at least 20×10−10 m (2 nm) and comprising pillars based on at least one oxide of elements from groups IVB, VB, VIB, VIII, IB, IIB, IIA or IVA or any combination of these oxides, preferably selected from the group formed by SiO2, Al2O3, TiO2, ZrO2 and V2O5, or any combination of these latter, and at least one hydrodehydrogenating element in the metallic form. The process is carried out at a temperature in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and at an hourly space velocity in the range 0.Type: ApplicationFiled: July 23, 2001Publication date: November 21, 2002Applicant: Institut Francais du PetroleInventors: Eric Benazzi, Nathalie Marchal-George
-
Publication number: 20020016253Abstract: A catalyst comprising 0.1-99.7% by weight of at least one alumina matrix; 0.1-80% by weight of at least one globally non dealuminated Y zeolite with a lattice parameter of more than 2.438 nm, a global SiO2/Al2O3 mole ratio of less than 8, and a framework SiO2/Al2O3 mole ratio of less than 21 and more than the global SiO2/Al2O3 mole ratio; 0.1-30% by weight of at least one group VIII metal and/or 1-40% by weight of at least one group VIB metal (% oxide); 0.1-20% by weight of at least one promoter element selected from the group formed by boron and silicon (% oxide); 0-20% by weight of at least one group VIIA element; 0-20% by weight of phosphorous (% oxide); 0.1-20% by weight of at least one group VIIB element, useful for hydrocracking processes, especially at low pressures of 7.5 to 11 MPa.Type: ApplicationFiled: May 5, 1999Publication date: February 7, 2002Inventors: SAMUEL MIGNARD, NATHALIE GEORGE-MARCHAL, SLAVIK KASZTELAN
-
Patent number: 6344135Abstract: The invention concerns a hydrocracking process using a catalyst comprising at least one matrix, an IM-5 zeolite, at least one metal selected from the group formed by metals from group VIB and group VIII of the periodic table, optionally at least one element selected from the group formed by phosphorous, boron and silicon, and optionally at least one group VIIA and/or at least one group VIIB and/or at least one group VB element (in particular niobium). The invention also concerns a catalyst containing at least one matrix, an IM-5 zeolite, at least one metal from groups VIII and/or VIB and at least one promoter element which is boron and/or silicon. The catalyst can also contain at least one group VIIA element and/or at least one group VIIB element and/or at least one group VB element.Type: GrantFiled: February 23, 2000Date of Patent: February 5, 2002Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Slavik Kasztelan
-
Patent number: 6251261Abstract: The invention relates to a hydrocracking catalyst that comprises at least one oxide-type amorphous or poorly crystallized matrix, at least one element of group VB, preferably niobium, and at least one clay that is selected from the group that is formed by the 2:1 dioctahedral phyllosilicates and the 2:1 trioctahedral phyllosilicates, optionally at least one element that is selected from among the elements of group VIB and group VIII, optionally at least one element that is selected from the group that is formed by P, B, Si, and optionally at least one element of group VIIA. The invention also relates to the use of this catalyst in hydrocracking of feedstocks that contain hydrocarbon.Type: GrantFiled: June 25, 1999Date of Patent: June 26, 2001Assignee: Institut Francais du PetroleInventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
-
Publication number: 20010000006Abstract: Hydrocarbon feeds are subjected to hydrocracking in the presence of a hydrocracking catalyst comprising at least one amorphous or poorly crystallized matrix of the oxide type, at least one element of group VB, preferably niobium, and at least one zeolite Y not globally dealuminized, at least one promoter element chosen from the group consisting of boron, phosphorus and silicon, optionally at least one element chosen from the elements of group VIB and group VIII, optionally at least one element of group VIIA.Type: ApplicationFiled: November 29, 2000Publication date: March 15, 2001Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
-
Patent number: 6171474Abstract: Useful for example, for the hydrocracking of hydrocarbons is a catalyst comprising a matrix, at least one Y zeolite which is dealuminated and has a lattice parameter in the range 2.424 nm to 2.455 nm, a global SiO2/Al2O3 mole ratio is more than 8, the quantity of alkaline-earth metal cations or alkali metal cations and/or rare earth metal cations is such that the atomic ratio (n×Mn+)/Al is less than 0.8, the specific surface area, determined using the BET method, is more than 400 m2/g, and the water adsorption capacity is more than 6% by weight for P/P0 =0.2 at 25° C., said catalyst also comprising silicon deposited on the catalyst.Type: GrantFiled: May 5, 1999Date of Patent: January 9, 2001Assignee: Institut Francais du PetroleInventors: Slavik Kasztelan, Nathalie George-Marchal, Eric Benazzi
-
Patent number: 6171475Abstract: A method for converting a polymer or oligomer derived from an ethylenically unsaturated monomer into alkanes or into a hydrocarbon fraction or a lower oligomer fraction by controlled hydrocracking, wherein the polymer or oligomer is exposed to a catalyst based on a metal hydride or an organometallic complex supported on a mineral carrier, the complex having at least one hydrocarbon ligand and optionally at least one hydride ligand, and the resulting mixture is reacted with hydrogen to cause catalytic hydrocracking of the polymer or oligomer. The polymer or oligomer is broken down into reclaimable products with a lower molecular weight for use, e.g., in the field of polymers, particularly controlled molecular weight polymers, fuels or lubricants.Type: GrantFiled: January 12, 1998Date of Patent: January 9, 2001Assignee: CPE-Lyon-FCRInventors: V{acute over (e)}ronique Dufaud, Jean-Marie Basset