Soaking Patents (Class 208/131)
  • Patent number: 7604731
    Abstract: A process is disclosed for producing needle coke from heavy atmospheric distillation residues having sulfur no more than 0.7 wt %, which process involves the steps of heating the feedstock to a temperature in the range of 440 to 520° C. for thermal cracking in a soaking column under pressure in the range of 1 to 10 kg/cm2 to separate the easily cokable material, separating the cracked products in a quench column and a distillation column and then subjecting the hydrocarbon fraction from the bottom of the quench column and a hydrocarbon fraction having a boiling point in the range of 380 to 480° C. from the distillation column and/or any other suitable heavier hydrocarbon streams in a definite ratio depending on certain characteristic parameters to thermal cracking in a second soaking column at a temperature of 460 to 540° C.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: October 20, 2009
    Assignee: Indian Oil Corporation Limited
    Inventors: Debasis Bhattacharyya, Satheesh Vetterkunnel Kumaran, Bandaru Venkata Hari Prasad Gupta, Pramod Kumar, Asit Kumar Das, Gadari Saidulu, Satyen Kumar Das, Gurpreet Singh Kapur, Veena Bansal, Venkatachalam Krishnan, Satish Makhija, Sobhan Ghosh, Niranjan Raghunath Raje
  • Patent number: 7597797
    Abstract: Coker heater operation is improved by on-line spalling of coker heater pipes. In one embodiment an off-line pipe is added to the on-line coker heater pipes. When an on-line pipe is to be spalled, flow is diverted to the off-line pipe allowing for full operation of the coker heater. In another embodiment, a thermal transfer resistant zone plate is movably mounted in the radiant section of the coker heater. By moving the zone plate from an operating position to a spalling position and adjusting the temperature of the plurality of burners, the temperature of the pipes in the zone of the heater radiant section to be spalled can be lowered, while the temperature in the remaining zones of the heater radiant section are fully operational.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: October 6, 2009
    Assignee: Alliance Process Partners, LLC
    Inventor: Robert L. Gregory
  • Publication number: 20090229463
    Abstract: Production of coke and activated carbon from coal products, including the production of low ash coal and activated carbon products from coal products, and the production of very low ash coke and activated carbon products from coal products.
    Type: Application
    Filed: February 13, 2009
    Publication date: September 17, 2009
    Applicant: Coalstar Industries, Inc.
    Inventor: Geoffrey R. Wilson
  • Publication number: 20090184029
    Abstract: A method for altering coke morphology in a delayed coking process of heavy oil is provided. An effective amount of oil dispersible or oil soluble metal salts of aromatic sulfonic acids and/or polysulfonic acids is added or contacted with the resid or heavy oil at a point before or after the step of heating the heavy oil to coking temperatures. The addition of additives facilitates the formation of shot coke and inhibits the formation of sponge coke.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 23, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Varadaraj, Michael Siskin, Leo D. Brown, Cornelius H. Brons
  • Patent number: 7540951
    Abstract: A process for preparation of synthetic crude from a deposit of heavy crude, comprises: (a) the extraction of heavy crude by technology using steam; (b) the separation of crude extract and water; (c) the separation of crude into at least one light fraction and one heavy fraction; (d) the conversion of the heavy fraction of separation into a lighter product, said converted product, and a residue; (e) optionally, the partial or total hydrotreatment of the converted product and/or the light fraction (or fractions) obtained during the separation c), (f) the combustion and/or gasification of the conversion residue; the converted product and the light fraction (or fractions) for separation, optionally having been subjected to a hydrotreatment e), constituting the synthetic crude; said combustion allowing the generation of steam and/or electricity and said gasification allowing the generation of hydrogen; the steam and/or electricity thus generated being used for the extraction a) and/or the electricity and/or hydrog
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: June 2, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Arnault Selmen, Thierry Gauthier, Mathieu Pinault, Eric Benazzi
  • Patent number: 7534326
    Abstract: Clamping system and method for clamping the bottom head cover of a coke drum to the bottom flange thereof are disclosed. The system and method include determining the flange stiffness or resistance to deflection resulting from the spring-like force exerted on the bottom head cover and bottom flange gasket seating surface by the gasket in its compressed state. This deflection information may then be used to estimate the minimum number of clamps needed to ensure sufficient load remains on the gasket at the midpoints between the clamps to effectively keep the gasket sealed. An appropriate number of clamps may then be disposed around the periphery of the bottom flange to clamp it to the bottom head cover. In one practical design, each clamp engages a lug attached to the periphery of the bottom head cover such that the clamp does not extend underneath the bottom head cover when clamped.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 19, 2009
    Assignee: ConocoPhillipcs Company
    Inventors: Brian J. Doerksen, Vance C. Green, Jinyang James Lu, Charles Schroeder, Meir Snir, Mohamad T. Ali
  • Patent number: 7524411
    Abstract: Tubes within a radiant heating section of a coking furnace are arranged differently than in a single vertical column and connected together in a simple, planar serpentine pattern. The tubes are arranged in a plurality of offset or staggered vertical columns. This arrangement permits the upper tubes to be close to the radiant heat source and also allows the tube bends connecting adjacent tubes to be of greater radius, so that the pressure at which the feedstock is passed through the tube bundle can be lower allowing more vaporization of the cracked process fluids.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 28, 2009
    Assignee: ConocoPhillips Company
    Inventor: Brian Jay Doerksen
  • Patent number: 7427350
    Abstract: It has been discovered that crosslinked polydimethylsiloxane (PDMS) resins are useful defoamers and antifoamers for hydrocarbon-containing liquids, such as delayed coker feedstocks and feedstocks to preflash and atmospheric towers. These PDMS resins are crosslinked with either alkyl polysilicate or siloxane. The crosslinked PDMS resins may be used alone or together with linear PDMS, and are typically blended with a carrier such as kerosene for easier handling. Importantly, the use of crosslinked branched PDMS resins permit less total amount of polysiloxanes to be used, which reduces the silicon carryover in coker products and reduces poisoning of downstream catalysts.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: September 23, 2008
    Assignee: Baker Hughes Incorporated
    Inventor: Lawrence N. Kremer
  • Patent number: 7425259
    Abstract: Metal additives to hydrocarbon feed streams give improved hydrocarbon liquid yield during thermal cracking thereof. Suitable additives include metal overbases and metal dispersions and the metals suitable include, but are not necessarily limited to, magnesium, calcium, aluminum, zinc, silicon, barium, cerium, and strontium overbases and dispersions. Coker feedstocks are a particular hydrocarbon feed stream to which the method can be advantageously applied, but the technique may be used on any hydrocarbon feed that is thermally cracked.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: September 16, 2008
    Assignee: Baker Hughes Incorporated
    Inventors: Joseph L. Stark, Thomas Falkler
  • Patent number: 7419608
    Abstract: The present invention falls within the field of purifying oil-laden wastewater, which provides a method for purifying coke-cooling wastewater in a delayed coking process in petroleum chemical field. The method comprises the following steps: (a) cooling the coke-cooling wastewater produced in a delayed coking process to 5-55° C. under 0.1-0.25 MPa absolute pressure, to obtain cooled coke-cooling wastewater; (b) subjecting the cooled coke-cooling wastewater to solid-liquid separation, to obtain a coke breeze phase and a liquid phase; (c) further separating the obtained liquid phase, to obtain an oil phase and a water phase; and (d) further discharging water from the obtained oil phase, to obtain the separated oil phase. The present invention also provides an equipment for carrying out the method.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: September 2, 2008
    Assignees: East China University of Science and Technology, Sinopec Zhenhai Refining & Chemical Company Limited, Luoyang Petrochemical Engineering Corporation (LPEC) Sinopec
    Inventors: Hualin Wang, Zhuoqun Qian, Jianwen Wang, Baohua Dai, Jiangqing Hu, Shuilong Yu, Chengyu Xu, Tianming Hou, Hejie Li, Jianghua Xu, Lixin Zhang
  • Patent number: 7416654
    Abstract: Metal additives to hydrocarbon feed streams give improved hydrocarbon liquid yield during thermal cracking thereof. Suitable additives include metal overbases and metal dispersions and the metals suitable include, but are not necessarily limited to, magnesium, calcium, barium, strontium, aluminum, boron, zinc, silicon, cerium, titanium, zirconium, chromium, molybdenum, tungsten, and/or platinum, overbases and dispersions. Coker feedstocks and visbreaker feeds are particular hydrocarbon feed streams to which the method can be advantageously applied, but the technique may be used on any hydrocarbon feed that is thermally cracked.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: August 26, 2008
    Assignee: Baker Hughes Incorporated
    Inventors: Joseph L. Stark, Thomas Falkler, Jerry J. Weers, Michael J. Zetlmeisl
  • Patent number: 7393435
    Abstract: Described is an injection charging system in delayed coking drums (11), comprised of at least two injection pipes (11a) connected to the sidewall of a coking drum (1) in its tricone portion, and fed by a circular distributor crown, in order to allow coupling or decoupling of the large lower flange (11e) of the coking drum (1) without needing to disconnect the injection system (11) from the pumping and heating system (10).
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 1, 2008
    Assignee: Petroleo Brasiliero S.A.
    Inventor: Eduardo Cardoso De Melo Guerra
  • Patent number: 7374665
    Abstract: A method of blending delayed coker feedstocks to produce a coke that is easier to remove from a coker drum. A first feedstock is selected having less than about 250 wppm dispersed metals content and greater than about 5.24 API gravity. A second delayed coker feedstock is blended with said first resid feedstock so that the total dispersed metals content of the blend will be greater than about 250 wppm and the API gravity will be less than about 5.24.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 20, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christopher P. Eppig, Michael Siskin, Fritz A. Bernatz, Charles J. Mart
  • Patent number: 7371317
    Abstract: A delayed coking process for producing more uniform and higher quality coke by increasing the drum inlet temperature of the feedstock at least 2° F. during a fill cycle.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: May 13, 2008
    Assignee: Conocophillips.Company
    Inventors: Bruce A. Newman, Ivan G. McConkey, Bruce R. Goddard, James R. Roth
  • Patent number: 7318891
    Abstract: A process for producing pitch from pitch precursors, such as wood tar, coal tar or petroleum fractions is disclosed. Direct contact heat exchange of the pitch precursor with molten metal, preferably maintained as a metal continuous bath, heats the pitch precursor to a temperature sufficient to induce thermal polymerization reactions and produce a pitch product.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: January 15, 2008
    Assignee: DTX Technologies LLC
    Inventor: Donald P. Malone
  • Patent number: 7318890
    Abstract: A process for fractionating crude pitch by direct contact heating with molten metal is disclosed. The crude pitch, which may contain water, contaminants and/or distillables is heated by direct contact heat exchange with molten metal, preferably maintained as a metal continuous bath, operating at a temperature of 100 to 600° C. The molten metal heating zone is maintained at a temperature and pressure sufficient to vaporize a desired amount of contaminants or volatile material from crude pitch to produce pitch product having a desired softening point. New pitch materials, having a softening point above those achievable by conventional techniques, are also produced.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: January 15, 2008
    Assignee: DTX Technologies LLC
    Inventor: Donald P. Malone
  • Patent number: 7306713
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown
  • Patent number: 7303664
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably shot coke. A coker feedstock, such as a vacuum residuum, is heated in a heating zone to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 4, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Patent number: 7160437
    Abstract: The present invention relates to a method for determining the source of fouling in petroleum thermal conversion process units. More particularly, the invention distinguishes whether fouling occurs due to feed entrainment of small feed droplets or vapor phase condensation.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Leo D. Brown, Peter S. Maa, William N. Olmstead, Michael Siskin
  • Patent number: 7128812
    Abstract: A foam level in a delayed coking drum is detected by utilizing the varying density of the boiling mass in the coke drum which has larger bubbles and is less dense at the top and smaller bubbles and a higher density at the bottom. A plurality of radiation detectors are disposed on the drum and calibrated such that zero radiation is equivalent to 100 percent level. The percentage reading for each detector is multiplied by the fraction of height each detector is in relation to the total height of all the detectors to give a product and the products summed to give a level.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: October 31, 2006
    Inventor: Carl E. Cupit
  • Patent number: 6989082
    Abstract: An apparatus for removing a bottom cover on a coke drum. A support structure supports at least the coke drum. A vertical actuator has a cover end attached to the bottom cover and a support end attached to the support structure, and is arranged to move the bottom cover vertically in a removal operation of the bottom cover. A rotating actuator has a cover end attached to the bottom cover and a support end attached to the support structure, and is arranged to rotate the bottom cover in a removal operation. A frame assembly having opposing ends is provided, a pivoting end being attached to the bottom cover and a sliding end being slidably mounted. The frame assembly, the vertical actuator and the rotating actuator cooperate to remove the bottom cover in a removal operation.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: January 24, 2006
    Assignee: Foster Wheeler USA Corporation
    Inventors: Allen S. Malsbury, Ronald T. Myszka, Mark Y. Chen, Scott P. Slingerland
  • Patent number: 6972085
    Abstract: A system for refining hydrocarbon containing materials in a continuous coking mode may provide a pyrolyzer (1) which may be inclined to effect a liquid seal between a liquid conduction environment (6) and a gaseous conduction environment (7). A heat source (9) may heat the material past the coking point and the system may include a screw or auger (10) which can continuously remove the coke while simultaneously outputting refined products.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 6, 2005
    Assignee: The University of Wyoming Research Corporation
    Inventors: Lee E. Brecher, Lyle A. Johnson, Jr., Vijay K. Sethi
  • Patent number: 6919017
    Abstract: A process and an apparatus for removing particulate material from a flash zone gas oil stream produced in a delayed coking unit. The process and apparatus of the invention employ cyclonic separation to remove particulate material from the flash zone gas oil stream. The stream can then be further processed, for example by passing the stream to a fixed bed catalytic hydroprocessing unit and then to a fluidized bed catalytic cracking unit, or to other processing units, thereby enhancing the value of the flash zone gas oil stream.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: July 19, 2005
    Assignee: ConocoPhillips Company
    Inventors: Sharon A. Annesley, Gary C. Hughes, Jamal Allyen Sandarusi
  • Patent number: 6860985
    Abstract: The invention relates to a method for improving yield in petroleum streams derived from coking processes. In a preferred embodiment, the invention relates to a method for regenerating filters employed to remove particulate matter from coker gas oil to improve coker gas oil yield and yield of upgraded coker gas oil products.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 1, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Ramesh R. Hemrajani, Glen E. Phillips, Simon R. Kelemen, Kuangnan Qian
  • Patent number: 6852215
    Abstract: A method for upgrading a hydrocarbon in which an oxygen source and a hydrogen source are ignited and the resulting synthetic gas is used to initiate a predominantly gas phase heavy oil upgrade reaction. The upgrade reaction is quenched with an additional source of un-upgraded hydrocarbon.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: February 8, 2005
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael Y. Wen, Eric D. Nelson
  • Patent number: 6852213
    Abstract: This invention is directed to a method of inhibiting fouling of heat transfer surfaces in contact with petroleum or hydrocarbon feedstocks comprising contacting the heat-transfer surfaces with an effective amount of a thermally-treated phosphorous-sulfur compound and to methods and apparatus for preparing and contacting the thermally-treated phosphorous-sulfur compounds with the heat transfer surfaces.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: February 8, 2005
    Assignee: Nalco Energy Services
    Inventor: Youdong Tong
  • Publication number: 20040262198
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Application
    Filed: May 14, 2004
    Publication date: December 30, 2004
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Publication number: 20040256292
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Application
    Filed: May 14, 2004
    Publication date: December 23, 2004
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown
  • Publication number: 20040238408
    Abstract: An apparatus including a coke drum for coking hydrocarbon substances, a valve disposed near the bottom of the coke drum, and a discharge conduit for removing coke from the coke drum, wherein the discharge conduit is connected to the valve such that when the valve is open, the coke may be removed via the discharge conduit.
    Type: Application
    Filed: July 9, 2004
    Publication date: December 2, 2004
    Applicant: Foster Wheeler USA Corporation
    Inventor: Allen S. Malsbury
  • Publication number: 20040173504
    Abstract: A process for coking a heavy oil feedstock with elimination of recycle is disclosed. In a preferred embodiment, heavy hydrocarbon feed is directly passed to the coking vessels, coker overhead vapors are combined and passed directly to a fractionator and fractionator bottoms are recovered as product for further processing in other refining systems. Distillate coker product is not used to reduce the heavy hydrocarbon feed viscosity or to manage coke fouling in the coker furnace.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 9, 2004
    Applicant: Chevron U.S.A. Inc.
    Inventors: Steve Klasnich, Robert V. Bell
  • Patent number: 6773579
    Abstract: A process for substantially decreasing fouling in a refinery unit. The process comprises preheating a feed to said refinery unit reactor zone and there-after introducing the feed into said refinery unit reactor zone for reaction. The feed is preheated for a time and at a temperature sufficient to cause an effective amount of any polymers and/or oligomers contained in feed to decompose or unzip to substantially reduce fouling in the refinery unit.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: August 10, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Simon Robert Kelemen
  • Patent number: 6764592
    Abstract: A method of producing petroleum coke in a petroleum coking system comprising the steps of (a) adding a fluid to a live coking drum while warming a second drum so that additional vapor is provided in the live drum and (b) reducing pressure loss in the live drum by regulating the addition of the fluid based upon a target pressure for the live drum and by regulating the flow of warm-up vapor from the live drum to the second drum based upon a target pressure for the second drum. The flow of warm-up vapor from the live drum to the second drum is preferably conducted via a conduit system having a total length of less than 100 feet.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: July 20, 2004
    Inventor: Kazem Ganji
  • Patent number: 6758945
    Abstract: A method and apparatus for quenching the coke drum vapor line from a coke drum to the main fractionator in a coker unit whereby the volume of quench liquid prevents the drum vapor line from plugging with carbon-based deposits. A differential pressure control technique is utilized to quench the drum vapors being delivered to the fractionator as opposed to a temperature, delta temperature, uninsulated vapor line, or fixed flow rate control as used in the prior art. Vapor line quench control by differential pressure prevents over-quenching of the vapor line during a coke drum switch, unit startup, or slowdown as well as under-quenching during drum warm-ups. It improves the fractionator recovery time from a drum switch and overall liquid product yield during the drum cycle which can be produced by over-quenching. It also prevents the vapor line from drying out at anytime, an under-quenched condition, as long as the quench oil quality and conditions do not vary significantly.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: July 6, 2004
    Assignee: Shell Oil Company
    Inventor: Stephen Michel Haik
  • Publication number: 20040118746
    Abstract: A safe, efficient and repetitively operable coke vessel decoking system is disclosed. In a preferred embodiment the closed system comprises a coker vessel pressure-tightly sealed to a top head system, which includes a closure housing with a laterally moveable horizontal closure member therein and a cutting head enclosure, which further comprises a drill stem guide, an access door, and a cutting assembly mounted therein. A novel feature of the invention is a steam purge/blocking system whereby steam pressure is maintained in the closure housing during the coking cycle to maintain seal integrity. Personnel safety during decoking operations is greatly enhanced by eliminating dangerous manual tasks associated with the prior art such as unbolting and removing top head devices. The system can be remotely and repetitively operated through numerous coking/decoking cycles without removal of any system element.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Applicant: Chevron U.S.A. Inc.
    Inventors: Dale W. Wilborn, Christopher I. Fitzgerald, Ronald R. DiPadua, Gary D. Stewart
  • Patent number: 6746596
    Abstract: The process has to do with a circuit involving a fluidized bed coker reactor working in tandem with a fluidized bed coke burner. The burner is operated at a reduced temperature in the range 550° C.-630° C. Simultaneously, the coke circulation rate is increased to ensure the heat requirement of the reactor is met. It is found that sulphur emissions from the burner are significantly reduced.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: June 8, 2004
    Assignees: AEC Oil Sands, L.P., AEC Oil Sands Limited Partnership, Athabasca Oil Sands Investment Inc., Nexen Inc., Canadian Oil Sands Investments Inc., Gulf Canada Resources Limited, Imperial Oil Resources, Mocal Energy Limited, Murphy Oil Company Ltd., Petro-Canada
    Inventors: Keng H. Chung, Edward Furimsky
  • Patent number: 6717021
    Abstract: A solvating component for a solvated mesophase pitch. The solvated component includes a mixture of aromatic hydrocarbons having boiling points in the atmospheric equivalent boiling point range of about 285° to about 500° C. (about 550° F.-932° F.). At least 80% of the carbon atoms of the hydrocarbons are aromatic as characterized by carbon 13 NMR. The aromatic hydrocarbons are selected from a group consisting of aromatic compounds having 2 to 5 aromatic rings, substituted aromatic compounds having 2 to 5 aromatic rings wherein said substituents are alkyl groups having 1 to 3 carbons, hydroaromatic compounds having 2 to 5 rings, substituted aromatic compounds having 2 to 5 rings wherein said substituents are alkyl groups having 1 to 3 carbons, and mixtures thereof.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: April 6, 2004
    Assignee: ConocoPhillips Company
    Inventors: H. Ernest Romine, John A. Rodgers, W. Mark Southard, Edward J. Nanni
  • Patent number: 6673234
    Abstract: A combined process of low degree solvent deasphalting and delayed coking, which comprises feeding a deasphalting stock and a solvent into an extractor and making the yield of the deasphalted oil 70 wt %-95 wt %, and introducing a part or all of the deasphalted oil and optionally a conventional coking stock into a delayed coker. This process increases the yield of liquid products, removes the heavy asphaltene which is prone to coke, extends the run length of the delayed coker, and at the same time, lowers the content of impurities in coke, enlarges the sources of the stocks for producing the needle coke.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: January 6, 2004
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Rui Li, Zijun Wang, Jun Long
  • Patent number: 6652714
    Abstract: A drill stem stabilizer used in a decoking apparatus that includes a drill stem and a drilling structure on which the drill stem is supported for vertical movement above and within a coke drum. The stabilizer includes a bearing and a support member. The bearing is adapted to guide the longitudinal movement of the drill stem. The support member extends laterally from the bearing and attaches to the drilling structure, and maintains the bearing in a position to guide the drill stem as it is moved into or out of the coke drum. In one embodiment, the drilling structure includes a pair of substantially vertical guide rails, and the support member attaches to the guide rails.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: November 25, 2003
    Assignee: Foster Wheeler Corporation
    Inventor: Braddie D. Breaux
  • Publication number: 20030192810
    Abstract: A process and an apparatus for removing particulate material from a flash zone gas oil stream produced in a delayed coking unit. The process and apparatus of the invention employ cyclonic separation to remove particulate material from the flash zone gas oil stream. The stream can then be further processed, for example by passing the stream to a fixed bed catalytic hydroprocessing unit and then to a fluidized bed catalytic cracking unit, or to other processing units, thereby enhancing the value of the flash zone gas oil stream.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventors: Sharon A. Annesley, Gary C. Hughes, Jamal Allyen Sandarusi
  • Publication number: 20030116470
    Abstract: A novel apparatus for producing sweet synthetic crude from a heavy hydrocarbon feed comprising: an upgrader for receiving said heavy hydrocarbon feed and producing a distillate fraction including sour products, and high-carbon content by-products; a gasifier for receiving the high-carbon content by-products and producing synthetic fuel gas and sour by-products; a hydroprocessing unit for receiving the sour by-products and hydrogen gas, thereby producing gas and sweet crude; and a hydrogen recovery unit for receiving said synthetic fuel gas and producing further hydrogen gas and hydrogen-depleted synthetic fuel gas, said further hydrogen gas being supplied to said hydroprocessing unit.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 26, 2003
    Inventors: Philip Rettger, Randall Goldstein, Jim Arnold
  • Publication number: 20030102250
    Abstract: A delayed coking process wherein substantially all of the coke produced is free-flowing anisotropic shot coke. A coker feedstock, such as a vacuum residuum, is treated with an oxidizing agent, such as air, to increase the level of one or more of asphaltenes, polars, and organically bound oxygen groups. The oxidized feedstock is then heated to coking temperatures and passed to a coker drum for an effective amount of time to allow volatiles to evolve and to produce a substantially free-flowing anisotropic shot coke.
    Type: Application
    Filed: November 12, 2002
    Publication date: June 5, 2003
    Inventors: Michael Siskin, David T. Ferrughelli, Martin L. Gorbaty, Simon R. Kelemen, Leo D. Brown
  • Publication number: 20030098260
    Abstract: A delayed coking process for producing more uniform and higher quality coke by increasing the drum inlet temperature of the feedstock at least 2° F. during a fill cycle.
    Type: Application
    Filed: August 22, 2002
    Publication date: May 29, 2003
    Inventors: Bruce A. Newman, Ivan G. McConkey, Bruce R. Goddard, James R. Roth
  • Patent number: 6533922
    Abstract: A process for decreasing fouling in a refinery unit comprising preheating a hydrocarbon feed to a refinery unit reactor zone and thereafter introducing the feed into the refinery unit reactor zone for reaction. The feed contains polymers and oligomers, and is preheated for a time and at a temperature sufficient such that when the feed is introduced into the refinery unit reaction zone for reaction, the combination of the pre-heating and heating attributable to the reaction zone causes at least 85% of the polymers and oligomers contained in the feed to unzip and wherein no more than about 5 wt % coke is formed in said feed during the preheating step.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: March 18, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Simon Robert Kelemen
  • Patent number: 6524469
    Abstract: An improved heavy oil conversion process is disclosed in which the heavy oil feed is first thermally cracked using visbreaking or hydrovisbreaking technology to produce a product that is lower in molecular weight and boiling point than the feed. The product is then deasphalted using an alkane solvent at a solvent to feed ratio of less than 2 wherein separation of solvent and deasphalted oil from the asphaltenes is achieved through the use of a two-stage membrane separation system in which the second stage is a centrifugal membrane.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: February 25, 2003
    Assignee: Trans Ionics Corporation
    Inventor: Robert C. Schucker
  • Publication number: 20030024854
    Abstract: A method for upgrading a hydrocarbon in which an oxygen source and a hydrogen source are ignited and the resulting synthetic gas is used to initiate a predominantly gas phase heavy oil upgrade reaction. The upgrade reaction is quenched with an additional source of un-upgraded hydrocarbon.
    Type: Application
    Filed: April 18, 2002
    Publication date: February 6, 2003
    Inventors: Michael Y. Wen, Eric D. Nelson
  • Patent number: 6512156
    Abstract: A two-step method and apparatus for controlling cracking severity in the effluent from a cracking furnace such as an ethylene cracker. The method includes two steps. The first step consists of determining the near infrared spectrum of effluent in-line. The second step consists of changing the temperature and/or residence time of the furnace according to the determination of the first step. The apparatus includes a light source mounted on a conduit for the effluent, a light detector mounted on the opposite side of the conduit from the light source to receive light emitted from the light source, means for sheltering the light source from the effluent, means for sheltering the lights detector from the effluent, means for flowing a fluid past the light source at a higher pressure than the pressure of the effluent; and means for flowing a fluid past the light detector at a higher pressure than the pressure of the effluent.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: January 28, 2003
    Assignee: The Dow Chemical Company
    Inventors: Gerardus J. Timmermans, Henrious J. Morgenstern
  • Patent number: 6497812
    Abstract: Processes for converting C1 to C3 alkanes into high purity C6 to C24 normal alpha olefins and internal combustion engine grade fuels and/or lubricating oils comprising a sequence of fractionation and thermal cracking and/or hydrocracking operations. The C6 to C24 normal alpha olefin fractions generally have a purity of at least about 90 wt. %.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: December 24, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventor: William L. Schinski
  • Publication number: 20020179493
    Abstract: A premium “fuel-grade” petroleum coke is produced by modifying petroleum coking technology. Coking process parameters are controlled to consistently produce petroleum coke within a predetermined range for volatile combustible material (VCM) content. The invention includes a process of producing a coke fuel, the method comprising steps: (a) obtaining a coke precursor material derived from crude oil and having a volatile organic component; and (b) subjecting the coke precursor material to a thermal cracking process for sufficient time and at sufficient temperature and under sufficient pressure so as to produce a coke product having volatile combustible materials (VCMs) present in an amount in the range of from about 13% to about 50% by weight. Most preferably, the volatile combustible materials in the coke product typically may be in the range of from about 15% to about 30% by weight.
    Type: Application
    Filed: December 20, 2001
    Publication date: December 5, 2002
    Applicant: Environmental & Energy Enterprises, LLC
    Inventor: Roger G. Etter
  • Patent number: 6485631
    Abstract: A process for thermal and, optionally, catalytic upgrading and hydrogenation of hydrocarbons is described, wherein the hydrocarbons (oil) with a lower API grade is passed through one or more reactors connected in parallell or in series, preferably in series, in liquid state where it under pressure and intense agitation at a given temperature is thermally upgraded by increasing API, and that the product is discharged in liquid state, and whereby the agitation is effected by whipping elements, optionally made of a catalytic material acting as a catalyst in upgrading the oil in the reactor.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: November 26, 2002
    Assignee: Ellycrack AS
    Inventor: Olav Ellingsen
  • Publication number: 20020166795
    Abstract: A process for decreasing fouling in a refinery unit.
    Type: Application
    Filed: March 9, 2001
    Publication date: November 14, 2002
    Inventors: Michael Siskin, Simon Robert Kelemen