Liquid Feeding Patents (Class 208/166)
  • Patent number: 10557091
    Abstract: A reforming reactor and process of using same in which residence time of feed within a chamber of a reactor is shortened. Feed is injected into the reactor into a non-reactive zone. The non-reactive zone has two portions, a first portion receiving the feed, and a second portion receiving a purge gas. The purge gas will flow from the second portion to the first portion to prevent flow of the feed from the first portion to the second portion. The combined gas may be passed to a reaction zone for catalytic reforming. The first portion and the second portion may be separated by a baffle.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 11, 2020
    Assignee: UOP LLC
    Inventors: Ka L. Lok, Bryan K. Glover, Alexander V. Sabitov, Jeffrey R. Grott
  • Patent number: 9486767
    Abstract: The present invention concerns a radial bed reactor comprising a vessel provided with a reaction zone with a moving catalyst bed. The reactor further comprises, inside the reaction zone: at least two feed distribution tubes, each having a first end in communication with the feed inlet means and a second, closed end, the distribution tubes extending in a substantially vertical manner and being designed to allow the feed to pass through the reaction zone and to retain the catalysts; and at least two effluent collection tubes, each having a first end (14) communicating with the effluent outlet means and a second, closed end (15), the collection tubes extending in a substantially vertical manner and being designed to allow effluent to pass through the collection tube and to retain the catalysts.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: November 8, 2016
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Frederic Bazer-Bachi, Fabrice Deleau, Alexandre Pagot
  • Patent number: 9370758
    Abstract: One exemplary embodiment can be a process for transferring catalyst in a fluid catalytic cracking apparatus. The process can include passing the catalyst through a conveyor wherein the conveyor contains a screw for transporting the catalyst.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: June 21, 2016
    Assignee: UOP LLC
    Inventors: Sathit Kulprathipanja, Paolo Palmas
  • Patent number: 9322076
    Abstract: A method and apparatus for controlling a temperature within a reactor vessel such as an autoclave operating at elevated temperature and pressure. The apparatus includes a preheating vessel for preheating a feed material such as an aqueous slurry. The preheating vessel forms part of a preheating control system providing the primary means of temperature control within the reactor vessel. The apparatus also comprises secondary means for heating and cooling the reactor. Feed material temperature is increased or decreased by the preheating control system, based on the reactor temperature. Where the preheating control system is at or near its capacity for heating or cooling, the secondary heating or cooling means is activated to bring the reactor temperature within an optimum range.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 26, 2016
    Assignee: HATCH LTD.
    Inventors: Kevin S. Fraser, Murray S. Pearson, William E. McCombe
  • Patent number: 6755962
    Abstract: A slurry phase reactor is designed to treat extra heavy petroleum crude in a combination of thermal-zone and catalytic-zone in a counterflow system where liquid feed is added to the top and hydrogen at the bottom. Feed enters the gas-phase thermal zone, where it passes to a liquid-phase thermal zone. In the liquid-phase thermal zone, the hydrocarbon is thermally cracked and the unreacted liquid is further passed to a catalytic-zone below in communication with the thermal-zone. Catalyst can be added or removed as required in a continuous mode without shutting down the system. The heat generated inside the catalytic cracking zone is distributed to the entire reactor as the gaseous product flows upward. Feed is brought to the reaction conditions by the heat recovered from the gas-phase zone. Reaction temperature could be controlled by feed temperature.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: June 29, 2004
    Assignee: ConocoPhillips Company
    Inventor: Dwijen K. Banerjee
  • Patent number: 6010620
    Abstract: An arrangement for the controlled production of an essentially linear array of hydrocarbon feed injection jets maintains stable and reliable jets by passing individual piping for each jet through a support shroud that is located in a contacting vessel. Controlled atomization is provided by independently injecting a uniform quantity of gas medium into each of the plurality of uniformly created feed injection streams upstream of a discharge nozzle that separately discharges each mixed stream of hydrocarbons and gas medium into a stream of catalyst particles at or about the inner end of the support shroud. The feed injection jets are suitable for positioning in an inner location of large contacting vessel. Uniformity of distribution is obtained by dividing the hydrocarbons streams from an oil header into an individual oil conduit for each spray injection nozzle.
    Type: Grant
    Filed: November 11, 1997
    Date of Patent: January 4, 2000
    Assignee: UOP LLC
    Inventors: Daniel N. Myers, Aziz A. Sattar
  • Patent number: 5948240
    Abstract: A process for contacting reactants with a particulate catalyst while indirectly contacting the reactants with a heat exchange medium amid simultaneous exchange of catalyst particles by an operation that sequentially restricts reactant flow while moving catalyst through reaction stacks in which the reactant flow has been restricted. The process permits a change out of catalyst in a channel type reactor arrangement that would normally restrict catalyst flow during operation. Moving catalyst through a heat exchange type reactor having reactant and heat exchange channels permits control of catalyst activity as well as temperatures.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: September 7, 1999
    Assignee: UOP LLC
    Inventors: Robert C. Mulvaney, III, Kevin J. Brandner, Steven T. Arakawa, Paul Anderson
  • Patent number: 5762888
    Abstract: A vessel arrangement and process for contacting a fluid reactant with a particulate catalyst in a plurality of flow channels and discharging fluid and particles from the flow channels. The particles are discharged axially from the bottom of the flow channels into an unconfined bed of particles. Fluid is discharged in a transverse direction through the sides of the flow channels and across screen openings located a short distance above the channel outlets. A plurality of chambers, additional particulate material or baffles regulate fluid flow through sections of the screens and prevent excessive fluid velocity in any section from holding up particle flow through the flow channels. The reactor arrangement and process of this invention is a particularly useful for arrangements that may be used to operate a reactor under isothermal or other controlled temperature conditions where a heat transfer fluid surrounds a plurality of tubular conduits or multiple flow channels that confine the particles and fluid.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: June 9, 1998
    Assignee: UOP
    Inventor: Paul A. Sechrist
  • Patent number: 5733440
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: March 31, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5710356
    Abstract: A novel, packed-bed, reverse flow reactor is provided for the endothermic dehydrogenation of ethylbenzene to styrene. The catalyst bed is flanked by inert end sections to prevent the occurrence of the reverse reaction. Ethylbenzene vapor is added at one end of the reactor while superheated steam is added concurrently at a downstream location. The flow direction is periodically reversed by alternating the ethylbenzene introduction between the reactor ends and the steam introduction between axially symmetric locations away from the reactor ends. Employing a steam to ethylbenzene feed ratio of 8:1 to 10.2:1 (as compared to 12:1 to 17:1 employed during conventional adiabatic operation), it is shown that the proposed reverse flow operation produces reactor temperatures that are hundreds of degrees higher than the mixing cup temperature of the feed streams.
    Type: Grant
    Filed: November 22, 1994
    Date of Patent: January 20, 1998
    Assignee: The University of Kansas
    Inventors: Bala Subramaniam, Jon D. Snyder
  • Patent number: 5660715
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed which substantially fills the entire volume of a reactor vessel. Catalyst are selected to be essentially the same density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed catalyst bed at the design feed rates. The liquid and gas components of the hydrocarbon feed stream flow into the bed of catalyst and a quenching medium, which is preferably a liquid, is injected into the bed of catalyst. Injection of a liquid quench reduces the gas component of the hydrocarbon feed stream while simultaneously increasing the residence time and reducing the liquid velocity of the liquid component of the hydrocarbon feed stream within the substantially packed bed of catalyst.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 26, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventors: Harold J. Trimble, Bruce E. Reynolds, Robert W. Bachtel, Robert J. Klett, David N. Brossard, David E. Earls
  • Patent number: 5599440
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: February 4, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5589057
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. The liquid and gas components of the hydrocarbon feed flow into the catalyst bed from concentric annular rings that are coaxial with the catalyst bed. At the desired hydrocarbon flow rate, such catalyst bed continually flows in a plug-like manner downwardly through the reactor vessel. Catalyst is removed on a periodic or semicontinuous basis by laminarly flowing catalyst particles in a liquid stream out of the bottom of the catalyst bed.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: December 31, 1996
    Assignee: Chevron U.S.A. Inc.
    Inventors: Harold J. Trimble, Brian A. Darsow
  • Patent number: 5545382
    Abstract: A reactor arrangement and process for contacting a fluid reactant with a particulate catalyst in a plurality of flow channels and discharging converted reactant fluid and particles from the flow channels. The particles are discharged axially from the bottom of the flow channels into an unconfined bed of particles. Reactants are discharged in a transverse direction through the sides of the flow channels and across screen openings located a short distance above the channel outlets. A plurality of chambers regulate fluid flow through sections of the screens and prevent excessive fluid velocity in any section from holding up particle flow through the flow channels. The reactor arrangement and process of this invention is particularly useful for arrangements that may be used to operate a reactor under isothermal or other controlled temperature controlled conditions where a heat transfer fluid surrounds a plurality of tubular conduits or multiple flow channels that confine the particles and reactants.
    Type: Grant
    Filed: November 25, 1994
    Date of Patent: August 13, 1996
    Assignee: UOP
    Inventor: Paul A. Sechrist
  • Patent number: 5498327
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 12, 1996
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanne L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5492617
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed which substantially fills the entire volume of a reactor vessel. Catalyst are selected to be essentially the same density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed catalyst bed at the design feed rates. The liquid and gas components of the hydrocarbon feed stream flow into the bed of catalyst and a quenching medium, which is preferably a liquid, is injected into the bed of catalyst. Injection of a liquid quench reduces the gas component of the hydrocarbon feed stream while simultaneously increasing the residence time and reducing the liquid velocity of the liquid component of the hydrocarbon feed stream within the substantially packed bed of catalyst.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: February 20, 1996
    Inventors: Harold J. Trimble, Bruce E. Reynolds, Robert W. Bachtel, Robert J. Klett, David N. Brossard, David E. Earls
  • Patent number: 5409598
    Abstract: On-stream catalyst replacement hydroprocessing method wherein an upstream mixture of hydrogen and hydrocarbon liquid counter flows through a downwardly moving bed of hydroprocessing catalyst in a reactor vessel. The mixed feed stream of hydrogen and liquid hydrocarbon components enters a surge zone between the lower end of the reactor and a plenum zone to form a common pool under a conical support for the lower end of the downflowing catalyst bed. The mixed feed enters the plenum chamber through a plurality of passageways extending downwardly from the plenum zone to the same depth adjacent the lower end of the surge zone so that the liquid component normally prevents hydrogen from establishing independent paths before entering the plenum zone. Separation of the hydrogen and hydrocarbon liquid components from the mixed feed is thus assured to occur in the plenum zone directly below the pervious conical support to form a plurality of stepped concentric local reservoir rings under the conical support.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: April 25, 1995
    Assignee: Chevron Research Company
    Inventors: David C. Kramer, Bruce E. Stangeland, David S. Smith, James T. McCall, Georgieanna Scheuerman, Robert W. Bachtel
  • Patent number: 5215653
    Abstract: An improved method of controlling catalyst inventory in the reactor of an ebullated bed process has been discovered. Pressure differentials are measured to calculate a catalyst inventory characterization factor. This factor is calculated by means of a new algorithm. Aged catalyst is withdrawn and fresh catalyst added in an amount to reestablish the value of the factor. The catalyst to oil ratio is maintained despite changes in bed ebullation, gas and liquid holdups, oil residence time and conversion.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: June 1, 1993
    Assignee: Texaco Inc.
    Inventors: Gerald V. Nelson, Govanon Nongbri
  • Patent number: 5076908
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid at a rate insufficient to levitate the bed and with catalyst selected by a density, shape and size at a design feed rate of liquids and gas to prevent ebulation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion in a large pilot plant run with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: July 19, 1989
    Date of Patent: December 31, 1991
    Assignee: Chevron Research & Technology Company
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel
  • Patent number: 4975036
    Abstract: Process and apparatus for the catalytic treatment of hydrocarbon oils comprising the use of by-pass means allowing the transport of oil inside the reactor from above the uppermost catalyst bed to outlet means without contacting catalytic material during transport.
    Type: Grant
    Filed: March 2, 1988
    Date of Patent: December 4, 1990
    Assignee: Shell Oil Company
    Inventor: Aravamuthan Jagannathan
  • Patent number: 4869808
    Abstract: A continuous process for hydrocarbon conversion wherein a hydrocarbon charge stock is catlytically converted in the presence of hydrogen at hydrocarbon conversion conditions including a first inlet temperature, a first hydrogen to hydrocarbon mole ratio and a first mass flow rate of hydrocarbon into a hydrocarbon product stream in a high space velocity moving bed radial flow reactor containing catalyst wherein at least a portion of the catalyst is pinned and thereby immobilized during high space velocity conversion which process comprises: (a) reducing the first inlet temperature of the reactor by about 10.degree. F. (5.5.degree. C.) to about 100.degree. F. (55.5.degree. C.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: September 26, 1989
    Assignee: UOP
    Inventors: Bipin V. Vora, Norman H. Scott
  • Patent number: 4859316
    Abstract: A process for withdrawing solids from a vessel utilizing an inserted nozzle comprising an outer tube and one or more inner tube(s) retracted inside the outer tube, which process comprises introducing an entrainment liquid into the vessel upstream from a pick-area where the solids are withdrawn, introducing dilution transport liquid into the area for solids to be removed through the outer tube in such a way that it does not substantially infludence the flow of the solids and the entrainment liquid introduced upstream from the pick-up area, and withdrawing transport liquid and solids through the retracted inner tube(s).
    Type: Grant
    Filed: October 27, 1987
    Date of Patent: August 22, 1989
    Assignee: Shell Oil Company
    Inventor: Hugo G. Polderman
  • Patent number: 4750989
    Abstract: An effective, efficient and safe method is provided to accurately determine the amount of catalyst in an ebullated bed reactor without depressurizing the reactor or exposing the hydrocarbon in the reactors to oxidizing, flammable, or explosive conditions. Measurements are made automatically by density detectors and pressure sensors along with other equipment.
    Type: Grant
    Filed: January 16, 1987
    Date of Patent: June 14, 1988
    Assignee: Amoco Corporation
    Inventor: David J. Soderberg
  • Patent number: 4664782
    Abstract: The particulate solid is maintained in a bed in contact with a liquid within a high pressure vessel. The particulate solid is supported in the vessel in a cone-like configuration. A discharge tube is provided communicating with the particulate solid running from the bottom of the cone externally of said vessel and pressure on the supported particulate is produced to discharge said particulate out of said vessel via the discharge tube.
    Type: Grant
    Filed: January 9, 1986
    Date of Patent: May 12, 1987
    Assignee: Intevep, S.A.
    Inventors: Roberto E. Galiasso, Jose I. Belandria, Pasquale L. Caprioli
  • Patent number: 4444653
    Abstract: Catalysts solid particles are supplied to a vertical reactor for the catalytic treatment of fluid charges, at the upper part of said reactor and are progressively withdrawn from the lower part thereof either continuously or periodically through a funnel having the shape of an inverted cone or an inverted pyramid. At least a portion of the charge is introduced at the lower part of the reactor through orifices above the walls of the funnel at a distance thereof from 1 to 500 times the average size of a catalyst particle.
    Type: Grant
    Filed: February 2, 1983
    Date of Patent: April 24, 1984
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Paul Euzen, Yves Jacquin
  • Patent number: 4392943
    Abstract: In a process for the catalytic treatment of hydrocarbon charges in the presence of hydrogen in a vertical reactor where the catalyst is introduced at the top and withdrawn at the bottom, countercurrently with the charge which is introduced at the bottom and discharged from the top. There is provided a flared funnel for the catalyst discharge having small perforations for the upward flow of the charge with the perforations of a size sufficiently small to prevent passage of the catalyst therethrough. These perforations are in association with injection tubes having orifices opening in the vicinity of the funnel wall, wherethrough at least a portion of the fluid charge is injected.
    Type: Grant
    Filed: April 29, 1982
    Date of Patent: July 12, 1983
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Paul Euzen, Yves Jacquin, Hugo Van Landeghem, deceased
  • Patent number: 4213847
    Abstract: Heavy petroliferous stocks such as vacuum and atmospheric resids, tar sand oils, shale oils, liquids from conversion of coal and the like are concurrently distilled and hydroprocessed for removal of sulfur, nitrogen and metals and are hydrocracked or otherwise hydroprocessed in a packed distillation column under hydrogen pressure wherein the packing is constituted, at least to a substantial extent in both stripping and rectifying sections by catalyst suited to the desired conversions. In a specific application to catalytic hydrodewaxing of lubricating oil stocks, improvement of Viscosity Index (VI) of dewaxed product results.
    Type: Grant
    Filed: May 16, 1979
    Date of Patent: July 22, 1980
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Ikai Wang
  • Patent number: 4194964
    Abstract: Heavy petroliferous stocks such as vacuum and atmospheric resids, tar sand oils, shale oils, liquids from conversion of coal and the like are concurrently distilled and hydroprocessed for removal of sulfur, nitrogen and metals and are hydrocracked or otherwise hydroprocessed in a packed distillation column under hydrogen pressure wherein the packing is constituted, at least to a substantial extent in both stripping and rectifying sections by catalyst suited to the desired conversions.
    Type: Grant
    Filed: July 10, 1978
    Date of Patent: March 25, 1980
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Ikai Wang
  • Patent number: 4026674
    Abstract: A gas phase and a liquid phase pass countercurrently through a reaction vessel, and solid particles move from stage to stage in the reactor concurrently with either the liquid phase or the gas phase. In one embodiment of the invention the liquid phase is a hydrocarbon oil to be treated, for example, desulphurized, the gas phase is hydrogen, and the solid particles are hydrodesulphurization catalyst particles.
    Type: Grant
    Filed: October 30, 1975
    Date of Patent: May 31, 1977
    Assignee: Commonwealth Oil Refining Co., Inc.
    Inventor: Gerald W. G. McDonald