Solids Transferring Patents (Class 208/173)
  • Patent number: 9630188
    Abstract: A device and method for processing decoke effluent to remove particulate matter and pollutant gases is provided, with particular concern for meeting ever more stringent environmental standards.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 25, 2017
    Assignee: Technip Stone & Webster Process Technology, Inc.
    Inventors: Bruce Evans, Qingqi “Harry” Wang
  • Patent number: 9527028
    Abstract: Process for adsorbing a species from a feed gas stream. Feed gas stream is introduced to an adsorption zone having a sorbent. Species from the feed gas stream is adsorbed onto the sorbent at an adsorbing temperature to enrich the sorbent with the species and deplete the species from the feed gas stream. Species-lean product gas stream is output. Species-rich sorbent from the adsorption zone is passed to a regeneration zone. Regenerant gas at a regenerating temperature greater than the adsorbing temperature is introduced into the regeneration zone to strip the species from the species-rich sorbent. Regenerated sorbent from the regeneration zone passes to a cooling zone disposed below the regeneration zone. Regenerated sorbent is cooled at a cooling temperature below the regenerating temperature. Cooled sorbent is transferred to the adsorbent zone.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: December 27, 2016
    Assignee: UOP LLC
    Inventors: Clayton C. Sadler, David A. Wegerer, Matthew Lippmann
  • Patent number: 9452404
    Abstract: A fluid catalytic cracking apparatus and process is disclosed, providing for efficient conversion of heavy hydrocarbon feeds to light olefins, aromatics, and gasoline. A countercurrent flow reactor operating in bubbling or turbulent fluidization regimes is integrated with a fluid catalytic cracking riser reactor. A heavy hydrocarbon feed is catalytically cracked to naphtha and light olefins in the riser reactor, a co-current flow reactor. To enhance the yields and selectivity to light olefins, cracked hydrocarbon products from the riser reactor, such as C4 and naphtha range hydrocarbons, may be recycled and processed in the countercurrent flow reactor. The integration of the countercurrent flow reactor with a conventional FCC riser reactor and catalyst regeneration system may overcome heat balance issues commonly associated with two-stage cracking processes, may substantially increase the overall conversion and light olefins yield, and/or may increases the capability to process heavier feedstocks.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 27, 2016
    Assignee: Lummus Technology Inc.
    Inventors: Rama Rao Marri, Dalip Singh Soni, Pramod Kumar
  • Patent number: 8192691
    Abstract: One exemplary embodiment can include an apparatus for transferring catalyst from a regeneration zone to a reaction zone in a hydrocarbon conversion unit. The hydrocarbon conversion unit can include a transfer vessel, and first, second, and third lines. The transfer vessel can transfer regenerated catalyst from the regeneration zone at a first pressure to the reaction zone at a second pressure where the second pressure is greater than the first pressure. Generally, the first line communicates the catalyst to the transfer vessel and is coupled to a first valve to allow catalyst into the transfer vessel and the second line communicates the catalyst from the transfer vessel and is coupled to a second valve to allow catalyst out of the transfer vessel. The third line for allowing the passage of gas therethrough may be at a pressure higher than the first pressure having a first portion communicating with the transfer vessel and having a second portion coupled to third and fourth valves.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: June 5, 2012
    Assignee: UOP LLC
    Inventors: David J. Fecteau, Paul A. Sechrist, Christopher Naunheimer
  • Patent number: 7887264
    Abstract: Method and apparatus are provided for transferring particles from an upper zone through an intermediate zone to a lower zone. The transfer of particles between the zones through valveless conduits is regulated by varying the pressure of the intermediate zone and the flow rate of gas passing through the valveless conduits. A body within the lower zone is in particle communication with a valveless conduit and obstructs the particle flow within the lower zone.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 15, 2011
    Assignee: UOP LLC
    Inventors: Christopher Naunheimer, Paul A. Sechrist
  • Patent number: 7878737
    Abstract: Method and apparatus are provided for transferring particles from an upper zone through an intermediate zone to a lower zone. A valveless conduit provides particle communication from the upper zone to the middle zone and a valved conduit provides particle communication from the middle zone to the lower zone. The transfer of particles between the zones through the conduits is regulated by varying the pressure of the middle zone, the flow rate of gas passing through the valveless conduit, and the valve in the valved conduit.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 1, 2011
    Assignee: UOP LLC
    Inventor: Christopher Naunheimer
  • Patent number: 7878736
    Abstract: Method and apparatus are provided for transferring particles from an upper zone through an intermediate zone to a lower zone. The transfer of particles between the zones through valveless conduits is regulated by varying the pressure of the intermediate zone and the flow rate of gas passing through the valveless conduits. A container within the second zone is in particle communication with a valveless conduit and provides more consistent particle flows.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 1, 2011
    Assignee: UOP LLC
    Inventors: Christopher Naunheimer, Paul A. Sechrist
  • Patent number: 7874769
    Abstract: Method and apparatus are provided for transferring particles from an upper zone through an intermediate zone to a lower zone. The transfer of particles between the zones through valveless conduits is regulated by varying the pressure of the intermediate zone and the flow rate of gas passing through the valveless conduits. A body within the lower zone is in particle communication with a valveless conduit and obstructs the particle flow within the lower zone.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 25, 2011
    Assignee: UOP LLC
    Inventors: Christopher Naunheimer, Paul A. Sechrist
  • Patent number: 7854835
    Abstract: A hydrocarbon desulfurization system that circulates fluidizable solid particles through a fluidized bed reactor, a fluidized bed regenerator, and a fluidized bed reducer to thereby provide for substantially continuous desulfurization of a hydrocarbon-containing fluid stream and substantially continuous regeneration of the solid particles. A novel transport system is employed for transporting the solid particles between the reactor, the regenerator, and the reducer. The transport system uses close-coupled vessels and gravity flow between various vessels to minimize equipment cost and particle attrition.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: December 21, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Victor G. Hoover, Max W. Thompson, Darrin D. Barnes, Joe D. Cox, Philip L. Collins, Christopher J. Lafrancois, Ricky E. Snelling, Jean B. Thesee, Robert Zapata
  • Patent number: 7841807
    Abstract: Method and apparatus are provided for transferring particles from an upper zone through an intermediate zone to a lower zone. The transfer of particles between the zones through valveless conduits is regulated by varying the pressure of the intermediate zone and the flow rate of gas passing through the valveless conduits. A container within the second zone is in particle communication with a valveless conduit and provides more consistent particle flows.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: November 30, 2010
    Assignee: UOP LLC
    Inventors: Christopher Naunheimer, Paul A. Sechrist
  • Patent number: 7841808
    Abstract: Method and apparatus are provided for transferring particles from an upper zone through an intermediate zone to a lower zone. A valveless conduit provides particle communication from the upper zone to the middle zone and a valved conduit provides particle communication from the middle zone to the lower zone. The transfer of particles between the zones through the conduits is regulated by varying the pressure of the middle zone, the flow rate of gas passing through the valveless conduit, and the valve in the valved conduit.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: November 30, 2010
    Assignee: UOP LLC
    Inventor: Christopher Naunheimer
  • Patent number: 7811447
    Abstract: One exemplary embodiment can include a method of controlling a catalyst transfer vessel cycle of loading and unloading based on an expected level of a catalyst in a downstream vessel for a hydrocarbon conversion unit. The method can include calculating an expected catalyst level in the downstream vessel based on the unloading of the catalyst transfer vessel to adjust a setpoint to change the catalyst transfer vessel cycle of loading and unloading.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: David J. Fecteau, Christopher Naunheimer
  • Patent number: 7803326
    Abstract: One exemplary embodiment can include an apparatus for transferring catalyst from a regeneration zone to a reaction zone in a hydrocarbon conversion unit. The hydrocarbon conversion unit can include a transfer vessel, and first, second, and third lines. The transfer vessel can transfer regenerated catalyst from the regeneration zone at a first pressure to the reaction zone at a second pressure where the second pressure is greater than the first pressure. Generally, the first line communicates the catalyst to the transfer vessel and is coupled to a first valve to allow catalyst into the transfer vessel and the second line communicates the catalyst from the transfer vessel and is coupled to a second valve to allow catalyst out of the transfer vessel. The third line for allowing the passage of gas therethrough may be at a pressure higher than the first pressure having a first portion communicating with the transfer vessel and having a second portion coupled to third and fourth valves.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: September 28, 2010
    Assignee: UOP LLC
    Inventors: David J. Fecteau, Paul A. Sechrist, Christopher Naunheimer
  • Patent number: 7655138
    Abstract: A system which circulates fluidizable solid particles through a fluidized bed reactor, a fluidized bed regenerator, and a fluidized bed reducer to thereby provide for substantially continuous desulfurization of a hydrocarbon-containing fluid stream and substantially continuous regeneration of the solid particles is disclosed.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 2, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Victor G Hoover, Daniel T Fernald, Gwen J DeBrower
  • Patent number: 7547387
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: June 16, 2009
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 7241376
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: July 10, 2007
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 7172685
    Abstract: A hydrocarbon desulfurization system employing regenerable solid sorbent particulates in a fluidized bed desulfurization reactor. The sulfur-loaded sorbent particulates are continuously withdrawn from the reactor and transferred to a regenerator. A novel solids transport mechanism provides for the safe and effective transfer of the sulfur-loaded sorbent particulates from the high pressure hydrocarbon environment of the reactor to the low pressure oxygen environment of the regenerator.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: February 6, 2007
    Assignee: Conocophillips Company
    Inventors: Max W. Thompson, Behzad Jazayeri, Robert Zapata, Manuel Hernandez
  • Patent number: 6814857
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 9, 2004
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Publication number: 20030192811
    Abstract: A hydrocarbon desulfurization system employing regenerable solid sorbent particulates in a fluidized bed desulfurization reactor. The sulfur-loaded sorbent particulates are continuously withdrawn from the reactor and transferred to a regenerator. A novel solids transport mechanism provides for the safe and effective transfer of the sulfur-loaded sorbent particulates from the high pressure hydrocarbon environment of the reactor to the low pressure oxygen environment of the regenerator.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventors: Max W. Thompson, Behzad Jazayeri, Robert Zapata, Manuel Hernandez
  • Patent number: 6280609
    Abstract: A process and apparatus for contacting reactants with a particulate catalyst while indirectly contacting the reactants with a heat exchange medium performs heat exchange in a first reaction zone and moves catalyst, at least intermittently, through the second reaction zone while the process is operating. The first reaction zone is preferably a fixed bed reaction zone. The use of first reaction zone as a fixed bed reaction zone simplifies the process arrangement by not requiring means for catalyst movement in a reaction zone that performs simultaneous heat exchange. Long periods of operation are possible since the first reaction zone will typically experience a slow rate of catalyst deactivation and need infrequent regeneration. The first reaction zone may also be designed for catalyst movement, but independently controlled from the first reaction zone to facilitate the movement of catalyst therethrough.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: August 28, 2001
    Assignee: UOP LLC
    Inventors: Bipin V. Vora, Raymond A. Pogliano
  • Patent number: 5948240
    Abstract: A process for contacting reactants with a particulate catalyst while indirectly contacting the reactants with a heat exchange medium amid simultaneous exchange of catalyst particles by an operation that sequentially restricts reactant flow while moving catalyst through reaction stacks in which the reactant flow has been restricted. The process permits a change out of catalyst in a channel type reactor arrangement that would normally restrict catalyst flow during operation. Moving catalyst through a heat exchange type reactor having reactant and heat exchange channels permits control of catalyst activity as well as temperatures.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: September 7, 1999
    Assignee: UOP LLC
    Inventors: Robert C. Mulvaney, III, Kevin J. Brandner, Steven T. Arakawa, Paul Anderson
  • Patent number: 5858210
    Abstract: A controlled method of changing the transport rate of particles between a source zone and a destination zone is disclosed. Changes are made in a desired value of the pressure difference of the conduit between the two zones through which the particles are transported. The changes are of a magnitude that are determined by the batchwise transfer of particles into the source zone and are performed at a rate that is determined by the dynamics of the process, rather than by the frequency of the batchwise transfers, until the desired final value of the pressure difference is reached. The method minimizes fluctuations in the pressures of the two zones without over-sized vessels or additional equipment that would otherwise be needed to accommodate pressure changes. This results in a savings in construction costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: January 12, 1999
    Assignee: UOP LLC
    Inventor: Larry D. Richardson
  • Patent number: 5840176
    Abstract: A method for replacing particles in a process that transfers particles is disclosed. This invention employs a seal zone which is in communication with two zones of the process and in which particles that are being added to the process are purged. This invention allows particles to be replaced without reducing the normal rate of particle transfer through the process, which results in a savings in downtime costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: November 24, 1998
    Assignee: UOP LLC
    Inventors: Roger R. Lawrence, Frank T. Micklich, Charles T. Ressl, Paul A. Sechrist
  • Patent number: 5792429
    Abstract: Problems with pressure in a catalyst bed contained within a vessel arise where there is some sort of blockage in the bed such as a crust formed by a layer of catalyst particles sticking together. To overcome this problem control means is provided to coordinate the flow of nitrogen gas into the vessel and the resulting gas pressure build up and maintenance in the catalyst bed and in the bottom of the vessel as well as in the vapor space of the vessel above the catalyst bed.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: August 11, 1998
    Assignee: Catalyst Technology
    Inventors: Thomas Peyton Easterly, William Ogle Jones
  • Patent number: 5716516
    Abstract: A system for transporting particulate material uses a combination of non-mechanical valves and pneumatic and gravity transport to reduce breakage of particulate material. This system is particularly useful for the conveyance of catalyst particles where a lift conduit raises the particles from a low elevation to a relatively higher elevation. A particular advantage of the arrangement is the elimination of pneumatic conveyance through elbows to reduce pressure drop and eliminate churning of catalyst particles. The elbows are replaced with an impactless flow diverter that uses gravity assisted conveyance to eliminate or minimize the attrition resulting from pneumatic conveyance.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: February 10, 1998
    Assignee: UOP
    Inventor: Frank T. Micklich
  • Patent number: 5545312
    Abstract: A method and apparatus for replacing particles in a process that transfers particles is disclosed. This invention employs a seal zone which is in communication with two zones of the process and in which particles that are being added to the process are purged. This invention allows particles to be replaced without reducing the normal rate of particle transfer through the process, which results in a savings in downtime costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: August 13, 1996
    Assignee: UOP
    Inventors: Roger R. Lawrence, Frank T. Micklich, Charles T. Ressl, Paul A. Sechrist
  • Patent number: 5516422
    Abstract: A process for transferring catalyst particles between multiple reactions zones simplifies the system for use of a single valve operation by passing a purge gas into a lower section of a reaction zone that discharges catalyst from the reaction zone into a lift vessel and uses the intermittent introduction of a lift gas stream to entrain catalyst particles in a dilute phase upward lift step to a succeeding reaction zone while simultaneously retarding the flow of catalyst particles down the discharge conduit and interrupting the flow of purge gas down the discharge conduit. In this manner a flow of purge gas can constantly enter the reaction zone supplying catalyst particles to the lift system thereby preventing any flow of reactants from the reactor into the lift system while only the addition of lift gas into the lift system needs to be cycled on and off to intermittently transfer the catalyst particles upwardly in dilute phase to the top of the next reaction zone.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: May 14, 1996
    Assignee: UOP
    Inventor: Patrick O. Sajbel
  • Patent number: 5500110
    Abstract: A controlled method of changing the transport rate of particles between two zones is disclosed. Changes are made in a computed value of the pressure difference of the conduit between the two zones through which the particles are transported. The changes are of a predetermined magnitude and are performed at predetermined time intervals, until the desired final value of the pressure difference is reached. The method minimizes fluctuations in the pressures of the two zones without over-sized vessels or additional equipment that would otherwise be needed to accommodate pressure changes. This results in a savings in construction costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: March 19, 1996
    Assignee: UOP
    Inventors: Paul A. Sechrist, Roger R. Lawrence, Frank T. Micklich, Larry D. Richardson, David M. Kazell
  • Patent number: 5338440
    Abstract: A controlled method of transporting catalyst between two zones while inhibiting communication between the atmospheres of the zones is disclosed. Communication between the zones is inhibited by controlling pressure differences. The two zones are separated by a means to lift catalyst, which results in a savings in construction costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: August 16, 1994
    Assignee: UOP
    Inventors: Paul A. Sechrist, Roger R. Lawrence, Larry D. Richardson
  • Patent number: 5277880
    Abstract: Apparatus for regenerating spent hydrocarbon conversion catalyst. Catalyst particles in a vertically-elongated movable tapered bed are contacted with a hot oxygen-containing gas stream in order to remove, by means of combustion, coke which accumulated on the catalyst particles while they were used in a hydrocarbon conversion zone. Catalyst moves downward under the influence of gravity. The catalyst bed is tapered such that the thickness of the bed, in a dimension which is transverse to the direction of catalyst movement, varies from a minimum at the top of the tapered bed to a maximum at the bottom of the tapered bed. Gas passes through the tapered bed in a direction which is substantially transverse to the direction of catalyst movement. Substantially, all of the catalyst in the bed is in contact with the flowing gas.
    Type: Grant
    Filed: January 27, 1992
    Date of Patent: January 11, 1994
    Assignee: UOP
    Inventors: Paul A. Sechrist, William J. Koves
  • Patent number: 5076908
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid at a rate insufficient to levitate the bed and with catalyst selected by a density, shape and size at a design feed rate of liquids and gas to prevent ebulation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion in a large pilot plant run with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: July 19, 1989
    Date of Patent: December 31, 1991
    Assignee: Chevron Research & Technology Company
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel
  • Patent number: 5055177
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow strippping gas to enter the conduit to improve the separator of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: July 5, 1990
    Date of Patent: October 8, 1991
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 5039397
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow stripping gas to enter the conduit to improve the separation of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: January 30, 1990
    Date of Patent: August 13, 1991
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 5021147
    Abstract: A system for adding and withdrawing solids to a high pressure reactor wherein there is provided improved control of flow and concentrations of a slurry of solids in a transport oil for introducing and withdrawing solids from the reactor. In addition, there is provided for improved heating and cooling of the solids.
    Type: Grant
    Filed: June 7, 1989
    Date of Patent: June 4, 1991
    Assignee: Abb Lummus Crest, Inc.
    Inventors: Roger P. Van Driesen, William R. Adams, Mario Baldasarri, John Caspers, Harold Trimble
  • Patent number: 4875995
    Abstract: A system for adding and withdrawing solids to a high pressure reactor wherein there is provided improved control of flow and concentrations of a slurry of solids in a transport oil for introducing and withdrawing solids from the reactor. In addition, there is provided for improved heating and cooling of the solids.
    Type: Grant
    Filed: February 8, 1988
    Date of Patent: October 24, 1989
    Assignee: Lummus Crest, Inc.
    Inventors: Roger P. Van Driesen, William R. Adams, Mario Baldasarri, John Caspers, Harold Trimble
  • Patent number: 4872969
    Abstract: A method and apparatus are provided for controlling the transfer of particles between zones of different pressure using particle collection and particle transfer conduits. The solids are moved from a low pressure zone to a high pressure zone by means of a valveless lock hopper system that vents all of the gas from the collection zones through the particle collection conduits. Venting gas from the collection zones through the transfer conduits prevents erosion of control valves and eliminates the need for filters which are prone to clogging. The venting of gas is accomplished by varying the size of the transfer conduits between zones. The invention is particularly applicable in the regeneration of catalyst used in hydrocarbon conversion processes such as catalytic reforming.
    Type: Grant
    Filed: March 28, 1988
    Date of Patent: October 10, 1989
    Assignee: UOP
    Inventor: Paul A. Sechrist
  • Patent number: 4859643
    Abstract: A method for regenerating coke-contaminated catalyst particles achieves better utilization of oxygen and minimizes surface area loss of the catalyst by confining particles in the combustion section of a regeneration zone to a tapered bed configuration. In this method, catalyst particles move through the regeneration zone in continuous or semi-continuous flow and are formed into a vertically elongated bed of particles in the regeneration zone. An oxygen-containing gas is passed through the particle bed in a transverse direction and initiates combustion of the coke deposits along a burn front that extends diagonally through the catalyst bed from the inlet surface of the bed to the outlet surface of the bed.
    Type: Grant
    Filed: May 11, 1988
    Date of Patent: August 22, 1989
    Assignee: UOP
    Inventors: Paul A. Sechrist, WIlliam J. Koves
  • Patent number: 4859316
    Abstract: A process for withdrawing solids from a vessel utilizing an inserted nozzle comprising an outer tube and one or more inner tube(s) retracted inside the outer tube, which process comprises introducing an entrainment liquid into the vessel upstream from a pick-area where the solids are withdrawn, introducing dilution transport liquid into the area for solids to be removed through the outer tube in such a way that it does not substantially infludence the flow of the solids and the entrainment liquid introduced upstream from the pick-up area, and withdrawing transport liquid and solids through the retracted inner tube(s).
    Type: Grant
    Filed: October 27, 1987
    Date of Patent: August 22, 1989
    Assignee: Shell Oil Company
    Inventor: Hugo G. Polderman
  • Patent number: 4820494
    Abstract: An apparatus for delivering fluidization gas to a bed of particulate solids to selectively, locally fluidize the solids above a delivery conduit in communication with a reaction chamber. Also an apparatus is disclosed for intimately mixing hydrocarbon feed with the particulate solids at the end of the delivery conduit in the reaction chamber.
    Type: Grant
    Filed: October 19, 1981
    Date of Patent: April 11, 1989
    Inventors: Robert J. Gartside, Herman N. Woebcke
  • Patent number: 4744887
    Abstract: A system for adding and withdrawing solids to a high pressure reactor wherein there is provided improved control of flow and concentrations of a slurry of solids in a transport oil for introducing and withdrawing solids from the reactor. In addition, there is provided for improved heating and cooling of the solids.
    Type: Grant
    Filed: December 20, 1985
    Date of Patent: May 17, 1988
    Assignee: Lummus Crest Inc.
    Inventors: Roger P. Van Driesen, William R. Adams, Mario Baldasarri, John Caspers, Harold Trimble
  • Patent number: 4664782
    Abstract: The particulate solid is maintained in a bed in contact with a liquid within a high pressure vessel. The particulate solid is supported in the vessel in a cone-like configuration. A discharge tube is provided communicating with the particulate solid running from the bottom of the cone externally of said vessel and pressure on the supported particulate is produced to discharge said particulate out of said vessel via the discharge tube.
    Type: Grant
    Filed: January 9, 1986
    Date of Patent: May 12, 1987
    Assignee: Intevep, S.A.
    Inventors: Roberto E. Galiasso, Jose I. Belandria, Pasquale L. Caprioli
  • Patent number: 4590045
    Abstract: The present invention relates to a movable catalyst bed reactor provided with catalyst bed supporting and guiding means in the shape of one or more downwardly converging conical surfaces with one or more vertical outlet channels connected to the lower end(s) of the conical surface(s), the supporting and guiding means comprising one or more screen sections for withdrawal of reactor effluent from the catalyst, and separate outlet means for reactor effluent and catalyst, wherein the vessel is further provided with conduit means for forming a protecting layer of substantially spherical particles along the surface(s) of the screen section(s) facing catalyst, which layer is movable along the screen section(s).
    Type: Grant
    Filed: February 19, 1985
    Date of Patent: May 20, 1986
    Assignee: Shell Oil Company
    Inventors: Hans van der Wal, Hendrik J. Scheffer
  • Patent number: 4576712
    Abstract: Method and apparatus are provided for maintaining a substantially continuous gas flow through particulate solids in two zones. The solids are moved from a low pressure zone to a high pressure zone by means of a valveless lock hopper system. Maintenance of gas flow while simultaneously transferring particles between zones is accomplished without the use of moving equipment such as valves. The invention is particularly applicable in the regeneration of catalyst used in hydrocarbon conversion processes such as catalytic reforming.
    Type: Grant
    Filed: December 26, 1984
    Date of Patent: March 18, 1986
    Assignee: UOP Inc.
    Inventor: Arthur R. Greenwood
  • Patent number: 4567023
    Abstract: An improved multiple stage reactor system for effecting radial flow contact of a reactant stream with catalyst particles movable as an annular-form bed through said system by gravity flow. The improved multiple stage reactor system may be advantageously employed in the catalytic conversion of hydrocarbons and in particular in the catalytic reforming of a naphtha boiling range charge stock.
    Type: Grant
    Filed: February 27, 1984
    Date of Patent: January 28, 1986
    Assignee: UOP Inc.
    Inventors: Arthur R. Greenwood, Jeffrey E. Burgard, Roger L. Throndson
  • Patent number: 4338187
    Abstract: An apparatus and process for delivering fluidization gas to a bed of particulate solids to selectively locally fluidize the solids above a delivery conduit in communication with a reaction chamber. Also an apparatus and process for intimately mixing hydrocarbon feed with the particulate solids at the end of the delivery conduit in the reaction chamber.
    Type: Grant
    Filed: October 22, 1979
    Date of Patent: July 6, 1982
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Robert J. Gartside, Herman N. Woebcke
  • Patent number: 4133743
    Abstract: Continuous process for converting hydrocarbons in the presence of a granular catalyst including a metal from group VI a, VII a or VIII, deposited on a carrier, comprising passing a charge of hydrocarbons with hydrogen through a series of at least two vertical catalytic zones in which the catalyst bed moves progressively downwardly, withdrawing progressively the catalyst from the bottom of the last catalytic zone, and reintroducing the same, after regeneration, at the top of the first catalytic zone.
    Type: Grant
    Filed: November 15, 1976
    Date of Patent: January 9, 1979
    Assignee: Institut Francais du Petrole
    Inventors: Roger Boret, Charles Bronner, Roland Huin, Andre Vidal