Sweetening Patents (Class 208/189)
  • Patent number: 6673236
    Abstract: The present invention provides a method for producing hydrocarbon fuels with ultra-low levels of sulfur. The method involves catalytic oxidation of the sulfurous compounds within the hydrocarbon fuel, followed by extraction of the oxidized (and polarized) sulfurous compounds using a polar solvent. The present invention teaches the involvement of ethanol during catalytic oxidation. In this way, the oxidation catalyst has a dual-role in the oxidation process: firstly the catalyst directly oxidizes the sulfurous compounds, and secondly the oxidation catalyst converts of a small portion of the alcohol to the corresponding peroxy acid, which also helps to drive the oxidation process.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: January 6, 2004
    Assignee: Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources
    Inventors: Maria Stanciulescu, Michio Ikura
  • Publication number: 20030188992
    Abstract: A process for decreasing the amount of sulfur in a petroleum stream.
    Type: Application
    Filed: February 7, 2003
    Publication date: October 9, 2003
    Inventors: Thomas R. Halbert, Craig A. McKnight, John P. Greeley, Bruce R. Cook, Garland B. Brignac, Mark A. Greaney, Robert C. Welch
  • Publication number: 20030183555
    Abstract: The object of the present invention is a process for the elimination of sulphur compounds from the gasoline fraction, characterized in that it comprises carrying out an oxidation reaction of said sulphur compounds using at least one organic-inorganic composite as a catalyst which comprises at least:
    Type: Application
    Filed: April 11, 2003
    Publication date: October 2, 2003
    Inventors: Avelino Corma Canos, Marcelo Eduardo Domine, Cristina Martinez Sanchez
  • Publication number: 20030127362
    Abstract: A process for the production of naphtha streams from cracked naphthas having sulfur levels which help meet future EPA gasoline sulfur standards (30 ppm range and below).
    Type: Application
    Filed: October 18, 2002
    Publication date: July 10, 2003
    Inventors: Thomas R. Halbert, John P. Greeley, Robert C. Welch
  • Patent number: 6565740
    Abstract: The present invention related to a process for sweetening of LPG light petroleum distillates by liquid liquid extraction using metal phtalocyanine sulphonamide catalyst which comprises extracting the mercaptanes contain in LPG, light petroleum distillate like pentanes, light straight run naphtha by liquid-liquid extraction using an aqueous or alcoholic solution of alkali metal hydroxide of concentration ranging between 1 wt % to 50 wt % in the presence of a metal phthalocyanine sulphonamide catalyst in the concentration ranging from 5-4000 ppmw, at a temperature ranging from 10° C. to 80° C. at a pressure ranging from 1 kg/cm2-50 kg/cm2 in a continuous or batch manner, converting the mercaptanes present in above said extract into corresponding disulphides by passing air, oxygen or any oxygen containing gas at the above same temperature and pressure, regenerating the alkali solution containing catalyst for recycling by separating the upper layer of disulphides from said alkali solution of catalyst.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: May 20, 2003
    Assignee: Council of Scientific and Industrial Research
    Inventors: Bir Sain, Som Nath Puri, Gautam Das, Bhagwati Prasad Balodi, Sunil Kumar, Anil Kumar, Virendra Kumar Kapoor, Virendra Kumar Bhatia, Turuga Sundara Rama Prasada Rao, Gur Pratap Rai
  • Patent number: 6531052
    Abstract: Sulfur species are removed from hydrocarbon fluids by a process that includes contacting the fluid with a solid adsorbent having a porous substrate impregnated with silver oxide. The solid adsorbent preferably comprises activated alumina. The solid adsorbent may be regenerated with a two step process including: 1) heating the adsorbent in an inert atmosphere, preferably an atmosphere containing nitrogen, so that sulfur species are stripped from the adsorbent without oxidizing them, and 2) heating the adsorbent in an oxidizing atmosphere, preferably an atmosphere containing approximately 20% oxygen, so that the silver contained on the adsorbent is re-oxidized, forming silver oxide.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: March 11, 2003
    Assignee: Alcoa Inc.
    Inventors: Robert A. Frye, Dana L. Rehms, Elise M. Mophett
  • Patent number: 6488840
    Abstract: This invention relates to reducing the amount of thiols (mercaptans) in petroleum streams, specifically, mercaptans above the five carbon molecular weight range.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mark Alan Greaney, Michael Charles Kerby, Roby Bearden, Jr.
  • Patent number: 6485633
    Abstract: The demercaptanizaiton of petroleum distillates can be carried out by sorption of the mercaptan with activated carbon and oxidation of the sorbed mercaptan to disulfide at between approximately 20° C. to 55° C. The activated carbon used in the process is commercially readily available. Its surface area typically ranges from between approximately 500 to 1500 m2/g and has substantial percentage of the pores in the 10 to 100 Angstrom range.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: November 26, 2002
    Assignee: DS2 Tech, Inc.
    Inventors: William Wismann, Santosh K. Gangwal
  • Publication number: 20020166799
    Abstract: The present invention relate to a process for sweetening of LPG, light petroleum distillates by liquid-liquid extraction using metal phthalocyanine sulphonamide catalyst which comprises extracting the mercaptanes contained in LPG, light petroleum distillate like pentanes, light straight run naphtha by liquid-liquid extraction using an aqueous or alcoholic solution of alkali metal hydroxide of concentration ranging between 1 wt % to 50 wt % in the presence of a metal phthalocyanine sulphonamide catalyst in the concentration ranging from 5-4000 ppmw, at a temperature ranging from 10° C. to 80° C., at a pressure ranging from 1 kg/cm2-50 kg/cm2 in a continuous or batch manner, converting the mercaptanes present in above said extract into corresponding disulphides by passing air, oxygen or any oxygen containing gas at the above same temperature and pressure, regenerating the alkali solution containing catalyst for recycling by separating the upper layer of disulphides from said alkali solution of catalyst.
    Type: Application
    Filed: March 26, 2001
    Publication date: November 14, 2002
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Bir Sain, Som Nath Puri, Gautam Das, Bhagwati Prasad Balodi, Sunil Kumar, Anil Kumar, Virendra Kumar Kapoor, Virendra Kumar Bhatia, Turuga Sundara Rama Prasada Rao, Gur Pratap Rai
  • Publication number: 20020153280
    Abstract: The invention relates to a process for the production of gasoline with a low sulfur content that comprises at least the following stages:
    Type: Application
    Filed: April 1, 2002
    Publication date: October 24, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Publication number: 20020139714
    Abstract: A method for reducing the level of elemental sulfur from sulfur-containing hydrocarbon streams as well as reducing the level of total sulfur in such streams. Preferred hydrocarbon streams include fuel streams such as naphtha streams that are transported through a pipeline. The sulfur-containing hydrocarbon stream is contacted with a mixture of water, a caustic, at least one metal sulfide, and an aromatic mercaptan. This results in an aqueous phase and a hydrocarbon phase containing reduced levels of both elemental sulfur and total sulfur.
    Type: Application
    Filed: December 17, 2001
    Publication date: October 3, 2002
    Inventors: Joseph L. Feimer, Robert J. Falkiner
  • Publication number: 20020130062
    Abstract: The demercaptanizaiton of petroleum distillates can be carried out by sorption of the mercaptan with activated carbon and oxidation of the sorbed mercaptan to disulfide at between approximately 20° C. to 55° C. The activated carbon used in the process is commercially readily available. Its surface area typically ranges from between approximately 500 to 1500 m2/g and has substantial percentage of the pores in the 10 to 100 Angstrom range.
    Type: Application
    Filed: December 13, 2000
    Publication date: September 19, 2002
    Applicant: DS2 Tech. Inc.
    Inventors: William Wismann, Santosh K. Gangwal
  • Patent number: 6444117
    Abstract: The general object of this invention is to provide an improved process for sweetening and desulfurizing sulfur-containing crude oil streams. Heating the sulfur-containing crude oil stream to an elevated temperature for an extended period of time while stirring and bubbling an inert gas into the crude accelerates the removal of sulfur containing gases from the crude oil stream. Furthermore, the addition of a polyalkylamine to the stirred crude oil can also greatly assist in the expulsion of sulfur containing gases. After processing under these conditions, the hydrogen sulfide producing capacity of the crude oil is reduced significantly, thus making the crude safer for transportation and handling by reducing the health and environmental risks.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: September 3, 2002
    Assignee: Texaco, Inc.
    Inventors: M. Rashid Khan, Vincent P. Nero, Lee Ann Brugger, Stephen J. DeCanio, David A. Storm
  • Patent number: 6440299
    Abstract: A process for treating a light cracked naphtha to be used as an etherification feed stock is disclosed in which mercaptans, H2S and diolefins are removed simultaneously in a distillation column reactor using a reduced nickel catalyst. The mercaptans and H2S are reacted with the diolefins to form sulfides which are higher boiling than that portion of the naphtha which is used as feed to the etherification unit. The higher boiling sulfides are removed as bottoms along with any C6 and heavier materials. Any diolefins not converted to sulfides are selectively hydrogenated to mono-olefins for use in the etherification process.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: August 27, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Patent number: 6416658
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is subjected to simultaneous hydrodesulfurization and splitting into a light boiling range naphtha and a heavy boiling range naphtha, which have been treated to covert mercaptans in the fractions to H2S, which is separated with and separated from the light naphtha wherein the improvement is a further hydrodesulfurization by contacting the light boiling range naphtha with hydrogen in countercurrent flow in a fixed bed of hydrodesulfurization catalyst to remove recombinant mercaptans which are formed by the reverse reaction of H2S with olefins in the naphtha during the initial hydrodesulfurization.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: July 9, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Mario J. Maraschino, Montri Vichailak, Bertrand Klussman, Harjeet Virdi
  • Publication number: 20020043482
    Abstract: The desulfurization of petroleum distillates can be carried out by cyclic low-temperature adsorption of oxidized sulfur compounds with activated carbon followed by regeneration of the activated carbon using an organic solvent. The activated carbon used in the process is commercially available and its surface area that ranges from approximately 500 to 2000 m2/g having a substantial portion of its pores in the range between 10 to 100 Angstroms.
    Type: Application
    Filed: December 13, 2000
    Publication date: April 18, 2002
    Applicant: DS2 Tech, Inc.
    Inventors: William Wismann, Santosh K. Gangwal
  • Patent number: 6338792
    Abstract: A novel liquid collector assembly has been developed for a reactor used in the sweetening of sour hydrocarbons (e.g. sour gasoline). This refinery process normally involves contacting a reaction liquid, comprising both aqueous (caustic solution) and organic (hydrocarbon) phases, with a fixed bed of oxidation catalyst. The collector assembly design, comprising a piping manifold and a plurality of dependent, vertically aligned, and perforated conduits, allows for improved separation of the reaction products into essentially pure treated hydrocarbon and spent alkaline reagent streams. If sodium hydroxide is used as caustic solution, for example, the treated hydrocarbon product will normally contain less than 1 ppm by weight of sodium.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: January 15, 2002
    Assignee: UOP LLC
    Inventor: Luigi Laricchia
  • Publication number: 20010050245
    Abstract: A process for treating a light cracked naphtha to be used as an etherification feed stock is disclosed in which mercaptans, H2S and diolefins are removed simultaneously in a distillation column reactor using a reduced nickel catalyst. The mercaptans and H2S are reacted with the diolefins to form sulfides which are higher boiling than that portion of the naphtha which is used as feed to the etherification unit. The higher boiling sulfides are removed as bottoms along with any C6 and heavier materials. Any diolefins not converted to sulfides are selectively hydrogenated to mono-olefins for use in the etherification process.
    Type: Application
    Filed: July 18, 2001
    Publication date: December 13, 2001
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Patent number: 6187173
    Abstract: A process and apparatus for treating raw gasoline from catalytic cracking to obtain gasoline with the qualities required for use as motor fuel comprises selective hydrogenation followed by stabilization and optional cooling of the effluent, then sweetening followed by degassing to obtain a dedienized, stabilized and sweetened gasoline. The hydrogenation catalyst preferably comprises 0.1-1% of palladium deposited on a support, sweetening is preferably carried out on a solid catalyst containing an aluminosilicate of an alkali metal (for example sodalite), a metal chelate and activated charcoal. The product from this process can be placed directly in the gasoline pool or, advantageously, fractionated to obtain one or more cuts which can be used as feeds for etherification.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Chapus, Blaise Didillon, Christian Marcilly, Charles Cameron
  • Patent number: 6117309
    Abstract: A process for recovering a base oil of lubricating viscosity from used oil in which, following optional pretreatment, used oil is re-refined by distilling it in distillation apparatus having multiple theoretical plates. Impurities are then extracted from the lube range distillate fraction or fractions with a liquid extractant such as N-Methyl-2-Pyrrolidone (NMP) at a temperature below the temperature, if any, of complete miscibility of the extractant and the oil. The oil and extractant are then separated whereupon the extractant is re-used in the process and the oil is subject to further treatment, as necessary, for targeted uses.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: September 12, 2000
    Assignee: Probex Corporation
    Inventors: Alexander D. B. Daspit, Martin MacDonald, Thomas G. Murray
  • Patent number: 6063266
    Abstract: A process for removing essentially naphthenic acids from a crude oil which has not previously been fractionated by distillation, or from which only a naphtha fraction has been distilled. The crude oil is hydrogenated at 1-50 bars and 100-300.degree. C. over a catalyst of the kind used for hydrogenation of atmospheric residue oils. As a catalyst, especially Ni--Mo or Ni--Co deposited on alumina as a carrier material is used.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: May 16, 2000
    Assignee: Den norske stats oljeseskap a.s.
    Inventors: Knut Grande, Carsten Sorlie
  • Patent number: 6013175
    Abstract: A method for scavenging mercaptans in a hydrocarbon fluid is disclosed. According to the method, an effective mercaptan-scavenging amount of an aqueous scavenging composition is added to the fluid. The composition comprises a quaternary ammonium hydroxide of the formula R.sup.1 R.sup.2 R.sup.3 R.sup.4 NOH. R.sup.1 and R.sup.2 are, independently, alkyl groups of from one to about eighteen carbon atoms, aryl groups of from six to about eighteen carbon atoms or alkylaryl groups of from seven to about eighteen carbon atoms. R.sup.3 is an alkyl group of from two to about eighteen carbon atoms, an aryl group of from two to about eighteen carbon atoms or an alkylaryl group of from four to about eighteen carbon atoms. R.sup.2 and R.sup.3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom. R.sup.4 is --(CH.sub.2 CH.sub.2 O).sub.n H, wherein n is an integer from one to about eighteen, or --CHR.sup.5 CHR.sup.6 Y, wherein R.sup.5 and R.sup.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: January 11, 2000
    Assignee: Baker Hughes, Inc.
    Inventors: Jerry J. Weers, David R. Gentry
  • Patent number: 5961820
    Abstract: Sulfur-containing carbonaceous materials are desulfurized by reaction with a mixture of an oxidizing agent and a carbonyl compound under alkaline conditions at a temperature ranging from ambient temperature to about 250.degree. F. and a pressure of about 1 atmosphere to 2 atmospheres. The products of the reaction are a desulfurized carbonaceous material in which the sulfur content is less than about 1%, and gaseous sulfur compounds. The carbonyl compound can be recovered and reused.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: October 5, 1999
    Assignee: DS2 Tech, Inc.
    Inventors: James K. Jeanblanc, William E. Wismann
  • Patent number: 5928502
    Abstract: The invention comprises a method for reducing the amount of carboxylic acids in petroleum feeds comprising the steps of (a) adding to said petroleum feed a catalytic agent comprising an oil soluble or oil dispersible compound of a metal selected from the group consisting of Group VB, VIB, VIIB and VIII metals, wherein the amount of metal in said petroleum feed is at least about 5 wppm, (b) heating said petroleum feed with said catalytic agent in a reactor at a temperature of about 400 to about 800.degree. F. (about 204.44 to about 426.67.degree. C.) and a pressure of about atmospheric to about 1000 psig (about 6996.33 kPa) in the substantial absence of hydrogen, and (c) sweeping the reactor containing said petroleum feed and said catalytic agent with an inert gas to maintain the combined water and carbon dioxide partial pressure below about 50 psia (344.75 kPa).
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: July 27, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Roby Bearden, Saul Charles Blum, William Neergaard Olmstead
  • Patent number: 5914030
    Abstract: The invention comprises a method for reducing the amount of carboxylic acids in petroleum feeds comprising the steps of (a) adding to said petroleum feed a catalytic agent comprising an oil soluble or oil dispersible compound of a metal selected from the group consisting of Group VB, VIB, VIIB and VIII metals, wherein the amount of metal in said petroleum feed is at least about 5 wppm, (b) heating said petroleum feed with said catalytic agent in a reactor at a temperature of about 400 to about 800.degree. F. (about 204.44 to about 426.67.degree. C.), under a hydrogen pressure of 15 psig to 1000 psig (204.75 to 6996.33 kPa), and (c) sweeping the reactor containing said petroleum feed and said catalytic agent with hydrogen-containing gas at a rate sufficient to maintain the combined water and carbon dioxide partial pressure below about 50 psia (about 344.75 kPa).
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: June 22, 1999
    Assignee: Exxon Research and Engineering. Co.
    Inventors: Roby Bearden, Saul Charles Blum, William Neergaard Olmstead
  • Patent number: 5897769
    Abstract: A process for selectively removing lower molecular weight naphthenic acids from an acidic crude by treating the crude with a small pore hydrotreating catalyst at temperatures of from about 200.degree. to 370.degree. C. Removing these lower molecular weight naphthenic acids reduces the corrosive nature of acidic crudes.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: April 27, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Kenneth L. Trachte, Winston K. Robbins
  • Patent number: 5858212
    Abstract: A hydrocarbon stream containing sulfur and sulfur compounds is contacted with a water suspension of dolomitic lime and dibasic acid catalyst in a reaction vessel in order to transfer the sulfur and sulfur compounds from the petroleum vapor to the water phase. During sulfur removal, naphthenic acid present in the hot petroleum vapor is converted to a high quality naphtha fraction. In the water phase, the sulfur compounds react with the available alkalinity from the dolomitic lime and dibasic acid. The insoluble calcium or magnesium based reaction products can then be removed from the water phase through conventional solids concentrating and separating equipment.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: January 12, 1999
    Assignee: InterGlobal Desulfuruzations Systems, Inc.
    Inventor: John J. Darcy
  • Patent number: 5840177
    Abstract: A method for scavenging mercaptans in a hydrocarbon fluid is disclosed. According to the method, an effective mercaptan-scavenging amount of an aqueous scavenging composition is added to the fluid. The composition comprises a quaternary ammonium hydroxide of the formula R.sup.1 R.sup.2 R.sup.3 R.sup.4 NOH. R.sup.1 and R.sup.2 are, independently, alkyl groups of from one to about eighteen carbon atoms, aryl groups of from six to about eighteen carbon atoms or alkylaryl groups of from seven to about eighteen carbon atoms. R.sup.3 is an alkyl group of from two to about eighteen carbon atoms, an aryl group of from two to about eighteen carbon atoms or an alkylaryl group of from four to about eighteen carbon atoms. R.sup.2 and R.sup.3 may be joined to form a heterocyclic ring including the N and optionally an oxygen atom. R.sup.4 is --(CH.sub.2 CH.sub.2 O).sub.n H, wherein n is an integer from one to about eighteen, or --CHR.sup.5 CHR.sup.6 Y, wherein R.sup.5 and R.sup.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: November 24, 1998
    Assignee: Baker Hughes Incorporated
    Inventors: Jerry J. Weers, David R. Gentry
  • Patent number: 5820766
    Abstract: A composition and a process for substantially reducing or removing sulfide from a sulfide-containing fluid are disclosed. The composition comprises, or is prepared by combining components comprising, a sulfide-containing fluid and a sulfide-scavenging amount of a sulfide scavenger selected from the group consisting of bromates, iodates, and combinations of two or more thereof. The process comprises contacting a sulfide-containing fluid with a sulfide-scavenging amount of a sulfide scavenger under a condition sufficient to substantially reduce the sulfide concentration in the fluid.
    Type: Grant
    Filed: April 23, 1997
    Date of Patent: October 13, 1998
    Assignee: Phillips Petroleum Company
    Inventors: Diane Gevertz, Gary E. Jenneman
  • Patent number: 5741415
    Abstract: The demercaptanization of petroleum distillates may be carried out by means of the oxidation of the mercaptans contained therein using the oxygen in the air, at a temperature of about 80.degree. to about 220.degree. C., in the presence of about 0.01 to about 10.0 mass % of a water-soluble salt of copper, iron, nickel, or cobalt, on a fibrous carbonaceous material in the form of a woven fabric, felt, rope, or twisted strand, used as a heterogeneous catalyst. The fibrous carbonaceous material used in the process contains oxides of calcium, magnesium, copper, manganese, iron, zinc, and aluminum in an amount of up to about 0.03 mass %.
    Type: Grant
    Filed: September 27, 1994
    Date of Patent: April 21, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventors: A. M. Mazgarov, A. F. Vildanov, N. G. Bazhirova
  • Patent number: 5698103
    Abstract: Sweetening of sour hydrocarbon feedstocks by contacting with an aqueous solution of a metal chelate as an oxidation catalyst in the presence of oxygen is hindered by the difficulty of recovering metal chelate. Extraction of the aqueous phase with a liquid secondary amine with low water solubility removes a main portion of the metal chelate, usually a mixture of polysulfonated cobalt phthalocyanines, from the aqueous phase, and subsequent recovery of the chelate from the amine extract enables a viable alternative to feed bed processes.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: December 16, 1997
    Assignee: UOP
    Inventor: Paul R. Kurek
  • Patent number: 5593932
    Abstract: A catalytic mixture of discrete solid materials and a mercaptan oxidation process for using the catalytic mixture have been developed. The catalytic mixture comprises a metal chelate dispersed on a non-basic solid support and a solid base. The process involves contacting a sour middle distillate hydrocarbon fraction which contains mercaptans with the supported metal chelate and the solid base mixture in the presence of an oxidizing agent and a polar compound. The process is unique in that both the catalyst and the base are discrete solid materials.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: January 14, 1997
    Assignee: UOP
    Inventors: Ralph D. Gillespie, Jeffery C. Bricker, Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5591323
    Abstract: A process for sweetening a petroleum cut containing mercaptans, wherein said petroleum cut is subjected to oxidation conditions by being contacted with a porous catalyst, in the presence of air said process being characterised in that said catalyst comprises 10 to 98% by weight of at least one mineral solid phase constituted of an alkaline aluminosilicate with a Si/Al atomic ratio less than or equal to 5, 1 to 60% by weight of active carbon, 0.02 to 2% by weight of at least one metal chelate and 0 to 20% by weight of at least one organic or mineral binding agent, has a basicity determined according to the 2896 ASTM standard with 20 milligrams of potash per gram and a total BET surface area of 10 m.sup.2 g.sup.-1, and contains inside its pore structure a permanent aqueous phase representing 0.1 to 40% by weight of dry catalyst.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 7, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Christian Marcilly, Serge Leporq, Philippe Courty
  • Patent number: 5552060
    Abstract: The present invention provides a method for scavenging H.sub.2 S from aqueous and hydrocarbon substrates using an epoxide. Preferred epoxides are styrene oxide, 1,3-butadiene diepoxide, and cyclohexene oxide.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: September 3, 1996
    Assignee: Baker Hughes Incorporated
    Inventor: Glenn L. Roof
  • Patent number: 5543036
    Abstract: A process for hydrotreating a hydrocarbon feedstock, such as light cycle oil, using a catalyst composition containing a hydrogenation/dehydrogenation component and an acidic solid component including a Group IVB metal oxide modified with an oxyanion of a Group VIB metal. The hydrotreating process removes contaminants, such as sulfur and/or nitrogen, from the feedstock.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: August 6, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Scott Han, Daniel J. Martenak, Jose G. Santiesteban, Dennis E. Walsh
  • Patent number: 5529967
    Abstract: A catalytic system of physically separate and discrete solid materials and a mercaptan oxidation process for using the catalytic system have been developed. The catalytic system comprises a supported metal chelate dispersed on a non-basic solid support and a solid base. The process involves contacting a sour middle distillate hydrocarbon fraction which contains mercaptans first with the solid base and then, in the presence of an oxidizing agent and a polar compound, with the supported metal chelate. The process is unique in that both the catalyst and the base are solid materials and that the solid base is in a separate fixed bed from the supported metal chelate.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: June 25, 1996
    Assignee: UOP
    Inventors: Ralph D. Gillespie, Jeffery C. Bricker, Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5463134
    Abstract: Contaminants such as mercaptans, oxygenates and olefins are removed from paraffin-rich feed streams through the use of catalytic distillation performed using an acid catalyst such as a sulphonated resin in the substantial absence of hydrogen. The mercaptans are reacted with the olefins to form less volatile thioethers removed as part of a net bottoms stream with the treated paraffins being removed as the overhead stream.
    Type: Grant
    Filed: May 4, 1994
    Date of Patent: October 31, 1995
    Assignee: UOP
    Inventor: Stanley J. Frey
  • Patent number: 5413704
    Abstract: A catalytic mixture of discrete solid materials and a mercaptan oxidation process for using the catalytic mixture have been developed. The catalytic mixture comprises a metal chelate dispersed on a non-basic solid support and a solid base. The process involves contacting a sour middle distillate hydrocarbon fraction which contains mercaptans with the supported metal chelate and the solid base mixture in the presence of an oxidizing agent and a polar compound. The process is unique in that both the catalyst and the base are discrete solid materials.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventors: Ralph D. Gillespie, Jeffery C. Bricker, Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5413701
    Abstract: A catalytic system of physically separate and discrete solid materials and a mercaptan oxidation process for using the catalytic system have been developed. The catalytic system comprises a supported metal chelate dispersed on a non-basic solid support and a solid base. The process involves contacting a sour middle distillate hydrocarbon fraction which contains mercaptans first with the solid base and then, in the presence of an oxidizing agent and a polar compound, with the supported metal chelate. The process is unique in that both the catalyst and the base are solid materials and that the solid base is in a separate fixed bed from the supported metal chelate.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventors: Ralph D. Gillespie, Jeffery C. Bricker, Blaise J. Arena, Jennifer S. Holmgren
  • Patent number: 5401390
    Abstract: A catalyst and a process for using the catalyst have been developed. The catalyst is a metal chelate dispersed on a basic support which is a combination of a solid base and a secondary component. The solid base can be a solid solution of metal oxides and/or a layered double hydroxide (LDH) and the secondary component can be calcium oxide, magnesium oxide, calcium hydroxide and magnesium hydroxide. The process involves contacting a sour hydrocarbon fraction which contains mercaptans with the catalyst in the presence of an oxidizing agent and a polar compound. Examples of these polar compounds are water and alcohols, with methanol being especially preferred. The process is unique in that the solid solution or LDH are solid bases which eliminates the need for a liquid base. Optionally, an onium compound may be used as a catalyst promoter.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Barret A. Ferm, Blaise J. Arena, Jennifer S. Holmgern
  • Patent number: 5382354
    Abstract: A process for the fixed-bed sweetening of sour petroleum distillates with fraction temperatures of from about 125.degree. to about 350.degree. C. and having an acid number of 0.03 mg of KOH/g or higher. The reduction of the acidity and the oxidation of the mercaptans necessary for the sweetening of the distillates are carried out together in a single stage by passing the distillate, in the presence of an oxidizing agent but in the absence of a basic solution, and particularly of an alkali-metal hydroxide solution, over an oxidation catalyst whose specific surface ranges from 1 to 10 m.sup.2 /gram, and preferably from 2 to 6 m.sup.2 /gram, and whose micropore volume ranges from 0.01 to 0.10 cm.sup.3 /gram, and preferably from 0.02 to 0.05 cm.sup.3 /gram.
    Type: Grant
    Filed: November 13, 1991
    Date of Patent: January 17, 1995
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Patrick Ansquer, Jean-Michel Orgebin
  • Patent number: 5344555
    Abstract: Sour sulfhydryl group containing oils are treated with an effective amount of a sweetening, hydrogen sulfide vapor reducing quaternary ammonium compound of the formula ##STR1## (a) wherein (i) R.sup.1, R.sup.2 and R.sup.3 are hydrocarbon groups including alkyl, aryl, alkaryl or arylalkyl groups, of up to 24 carbon atoms, and if an alkyl group, may include a cycloalkyl; with the proviso that two of R.sup.1, R.sup.2 and R.sup.3 may be in saturated heterocyclic ring which includes said nitrogen atom and may also include an oxygen atom; and (ii) at least one of R.sup.1, R.sup.2 and R.sup.3 has two or more carbon atoms; and (b) wherein R.sup.4, R.sup.5, R.sup.6 and R.sup.7 independently are hydrogen or a hydrocarbon group of up to six carbon atoms, with the proviso that two of R.sup.4, R.sup.5, R.sup.6 and R.sup.7 may be in a cycloalkane ring. The compounds used in this treatment are especially suitable for high boiling, heavy residual fuels under low mix conditions.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: September 6, 1994
    Assignee: Baker Hughes Incorporated
    Inventors: Glenn L. Roof, Lawrence N. Kremer, Robert V. Market
  • Patent number: 5286372
    Abstract: A process for treating a hydrocarbon fraction which contains mercaptans has been developed. The process uses a novel catalyst which is composed of a metal chelate dispersed on a basic support which is either a solid solution of metal oxides or a layered double hydroxide (LDH). In the process the hydrocarbon fraction is contacted with the catalyst in the presence of an oxidizing agent and a polar compound. Examples of these polar compounds are water and alcohols, with methanol being especially preferred. The process is unique in that the solid solution or LDH are solid bases which eliminates the need for a liquid base. Optionally, an onium compound may be used as a catalyst promoter.
    Type: Grant
    Filed: April 9, 1993
    Date of Patent: February 15, 1994
    Assignee: UOP
    Inventors: Blaise J. Arena, Jennifer S. Holmgren, Barret A. Ferm
  • Patent number: 5273646
    Abstract: This invention relates to a process for improving the activity of a catalyst effective in sweetening a hydrocarbon fraction containing mercaptans. The process involves adding to the hydrocarbon fraction an effective amount of an aqueous solution comprising ammonium hydroxide, a metal chelate and an onium compound.
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: December 28, 1993
    Assignee: UOP
    Inventors: Robert R. Frame, Jeffery C. Bricker, Laurence O. Stine, Thomas A. Verachtert
  • Patent number: 5266185
    Abstract: Hydrogen sulfide evolution in a heavy hydrocarbon (such as a residual fuel oil) derived from a heavy crude oil (such as a API 8 gravity crude) is suppressed by contacting the hydrocarbon with a compound corresponding to the reaction product of a heterocyclic aldehyde (such as furfural) and an organic primary amine.
    Type: Grant
    Filed: September 10, 1990
    Date of Patent: November 30, 1993
    Assignee: Petrolite Corporation
    Inventors: Jerry J. Weers, Timothy J. O'Brien, Catherine E. Thomasson
  • Patent number: 5223127
    Abstract: A method for scavenging hydrogen sulfide in an aqueous and/or hydrocarbon medium is disclosed. According to the method, the medium is contacted with an effective amount of an amidine selected from the group consisting of monoamidines of from 1 to about 18 carbon atoms and polyamidines comprising from 2 to 3 amidine groups of from 1 to about 18 carbon atoms per amidine group.
    Type: Grant
    Filed: July 18, 1991
    Date of Patent: June 29, 1993
    Assignee: Petrolite Corporation
    Inventors: Jerry J. Weers, Catherine E. Thomasson
  • Patent number: 5213680
    Abstract: Sour sulfhydryl-group containing oils are treated with an amount of hexamethylenetetramine effective to sweeten the oil and reduce headspace H.sub.2 S to a desired level.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: May 25, 1993
    Assignee: Baker Hughes Incorporated
    Inventors: Lawrence N. Kremer, John Link, Glenn L. Roof
  • Patent number: 5202494
    Abstract: Process and apparatus for continuous production of disulfides by reacting at least one mercaptan and oxygen in the presence of a suitable catalyst selected from the group consisting of an alkaline earth metal oxide alone or in combination with an alkali metal oxide, on a refractory support, or a basic form of macroreticular polystyrene-divinyl benzene copolymer.
    Type: Grant
    Filed: May 31, 1990
    Date of Patent: April 13, 1993
    Assignee: Phillips Petroleum Company
    Inventors: John S. Roberts, Harold R. Hunt, Charles A. Drake
  • Patent number: 5190640
    Abstract: Sour sulfhydryl group containing oils and gases are treated with an effective amount of a sweetening, hydrogen sulfide quantity reducing aminocarbinol of the formulaR.sub.2 N--CH(--R.sup.1)OHwherein R.sup.1 is hydrogen or a hydrocarbyl or inertly substituted hydrocarbyl and each R is independently hydrocarbyl or inertly substituted hydrocarbyl or both R groups are collectively a divalent hydrocarbon or ether radical combined with the nitrogen of the aminocarbinol to form a heterocyclic ring represented by the formula(--R--R--)>N--CH(--R.sup.1)OH.The aminocarbinols used in this treatment are especially suitable for sour gases and high boiling, heavy residual fuels under low mix conditions.
    Type: Grant
    Filed: September 18, 1991
    Date of Patent: March 2, 1993
    Assignee: Baker Hughes Incorporated
    Inventors: Glenn L. Roof, Lawrence N. Kremer, Robert V. Market
  • Patent number: 5180484
    Abstract: This invention relates to a liquid-liquid process for treating a sour hydrocarbon fraction. The process comprises contacting the hydrocarbon fraction in the presence of an oxidizing agent with an aqueous solution containing ammonium hydroxide, a metal chelate and an onium compound selected from the group consisting of quaternary ammonium, phosphonium, arsonium, stibonium, oxonium and sulfonium compounds. A preferred onium compound is a quaternary ammonium compound with an especially preferred compound being a quaternary ammonium halide.
    Type: Grant
    Filed: November 29, 1991
    Date of Patent: January 19, 1993
    Assignee: UOP
    Inventors: Robert R. Frame, Jeffery C. Bricker, Laurence O. Stine, Thomas A. Verachtert