With Subsequent Treatment Of Product Patents (Class 208/212)
  • Publication number: 20010020596
    Abstract: A two step sulfur removal for treatment of hydrocarbonaceous fuel intended for use in a fuel cell comprising a mild hydrotreating step followed by an extraction step reduces the sulfur content in fuel to 5 ppm total sulfur or less and a fuel processor suitable for carrying out the process.
    Type: Application
    Filed: April 3, 2001
    Publication date: September 13, 2001
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Lawrence W. Jossens, Curtis L. Munson, Gunther H. Dieckmann
  • Patent number: 6277271
    Abstract: A process for the desulfurization of hydrocarbonaceous oil wherein the hydrocarbonaceous oil and a recycle stream containing sulfur-oxidated compounds is contacted with a hydrodesulfurization catalyst in a hydrodesulfurization reaction zone to reduce the sulfur level to a relatively low level and then contacting the resulting hydrocarbonaceous stream from the hydrodesulfurization zone with an oxidizing agent to convert the residual, low level of sulfur compounds into sulfur-oxidated compounds. The residual oxidizing agent is decomposed and the resulting hydrocarbonaceous oil stream containing the sulfur-oxidated compounds is separated to produce a stream containing the sulfur-oxidated compounds and a hydrocarbonaceous oil stream having a reduced concentration of sulfur-oxidated compounds. At least a portion of the sulfur-oxidated compounds is recycled to the hydrodesulfurization reaction zone.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: August 21, 2001
    Assignee: UOP LLC
    Inventor: Joseph A. Kocal
  • Patent number: 6245221
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh, and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: June 12, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: William C. Baird, Jr., Gary B. McVicker, James J. Schorfheide, Darryl P. Klein, Sylvain S. Hantzer, Michel Daage, Michele S. Touvelle, Edward S. Ellis, David E. W. Vaughan, Jingguang Chen
  • Patent number: 6228254
    Abstract: A two step sulfur removal comprising a mild hydrotreating step followed by an extraction step reduces the sulfur content in gasoline to a very low level without significantly reducing the octane of the gasoline.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: May 8, 2001
    Assignee: Chevron U.S.A., Inc.
    Inventors: Lawrence W. Jossens, Curtis L. Munson
  • Patent number: 6224749
    Abstract: A three stage hydroprocessing process includes two liquid and one vapor reaction stages, both of which produce an effluent comprising liquid and vapor. Both vapor effluents comprise vaporized hydrocarbonaceous material. Fresh hydrogen is used for the hydroprocessing in both liquid stages. The second stage liquid effluent comprises the product liquid. The first stage liquid effluent is the feed for the second stage. The first stage vapor effluent is hydroprocessed in the vapor stage and then cooled to condense and recover at least a portion of the processed vapor as additional product liquid.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: May 1, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, Henry Jung, Edward S. Ellis, Gerald E. Markley
  • Patent number: 6221240
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: April 24, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Darryl P. Klein, Michele S. Touvelle, Edward S. Ellis, Carl W. Hudson, Sylvain Hantzer, Jingguang Chen, David E. W. Vaughan, Michel Daage, James J. Schorfheide, William C. Baird, Jr., Gary B. McVicker
  • Patent number: 6221239
    Abstract: A process for transforming a gas oil cut into a dearomatised fuel with a high cetane number comprises at least one first, deep desulphurisation and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatisation, in which the desulphurised and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: April 24, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6217750
    Abstract: The invention concerns a process for purifying naphthalene. The process comprises selective hydrotreatment corresponding to hydrodesulphuration and/or hydrodenitrogenation and/or hydrodehydroxylation and/or hydrogenation of olefins while limiting naphthalene hydrogenation. The catalyst used comprises a matrix, at least one group VIII metal, at least one group VI metal and optionally phosphorous. It has a specific surface area of at most 220 m2/g, a pore volume of 0.35-0.7 ml/g and an average pore diameter of over 10 nm. The process is carried out at 150-325° C. at a pressure of 0.1-0.9 MPa, with an HSV of 0.05-10 h−1, and a H2/naphthalene ratio of 0.1-1.3 mole/mole. The effluent, freed of H2S, NH3 and water, undergoes a naphthalene separation process by distillation or, as is preferable, by crystallisation. Further, recycling the separated tetralin to the hydrotreatment step can substantially increase the naphthalene yield.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: April 17, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Guenaël Drouglazet, Slavik Kasztelan, Jean Cosyns, Michel Bloch, René Genin
  • Patent number: 6190535
    Abstract: A catalytic hydrocracking process wherein a denitrification and desulfurization reaction zone effluent is heat-exchanged with a hydrogen-rich gaseous stream and introduced into a hydrocracking zone. The resulting effluent from the hydrocracking zone is passed directly without cooling into a hot, high-pressure stripper utilizing a hot, hydrogen-rich gaseous stream at least a portion of which is heated during the heat exchange with the denitrification and desulfurization reaction zone effluent. The stripper overhead is partially condensed to produce a hydrogen-rich gaseous stream and a liquid stream containing hydrocracked hydrocarbon compounds. At least a portion of the stripper bottoms is recycled to the denitrification and desulfurization reaction zone.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: February 20, 2001
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Richard K. Hoehn
  • Patent number: 6179995
    Abstract: An integrated residuum hydroconversion process which includes a residuum hydrotreater and a desulfurized oil hydrocracker produces high quantities of high quality middle distillate fuels. Distillate range products from the residuum hydrotreater are hydrocracked, while catalyst fouling from heavy aromatics present in the hydrotreated products is minimized. The process includes a single hydrogen supply and recovery loop for increased cost and energy savings.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: January 30, 2001
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis R. Cash, Martin J. Armstrong
  • Patent number: 6171478
    Abstract: A process for the desulfurization of hydrocarbonaceous oil wherein the hydrocarbonaceous oil is contacted with a hydrodesulfurization catalyst in a hydrodesulfurization reaction zone to reduce the sulfur level to a relatively low level and then contacting the resulting hydrocarbonaceous stream from the hydrodesulfurization zone with an oxidizing agent to convert the residual, low level of sulfur compounds into sulfur-oxidated compounds. The resulting hydrocarbonaceous oil stream containing the sulfur-oxidated compounds is separated after decomposing any residual oxidizing agent to produce a stream containing the sulfur-oxidated compounds and a hydrocarbonaceous oil stream having a reduced concentration of sulfur-oxidated compounds.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: January 9, 2001
    Assignee: UOP LLC
    Inventors: Carlos A. Cabrera, Tamotsu Imai
  • Patent number: 6171471
    Abstract: The present invention is a slurry-type process for upgrading heavy oils to FCC and S/C feeds under temperature and pressure conditions similar to MSHP, but employing catalysts in concentrations small enough (e.g., <300 ppm Mo on feed) that they need not be recycled.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: January 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: David T. Ferrughelli, Martin L. Gorbaty
  • Patent number: 6165348
    Abstract: The invention concerns a petroleum product and a process for the production of a petroleum product which can form part of a blend for an internal combustion engine fuel, the process comprisinga) hydrotreating a hydrocarbon feedstock at a partial pressure of hydrogen at the reactor outlet of about 0.5 MPa to about 6 MPa,b) separating a product (P) from step a) into a product (P1) with a final boiling point of about 300.degree. C. and a product (P2) with an initial boiling point greater than the final boiling point of product (P1),c) performing a liquid-liquid extraction with a solvent (S1), to produce an extract (E1) and a raffinate (R1) from product (P2),d) recovering solvent (S1) from raffinate (R1) to produce a product (Q1), depleted in solvent (S1), which has improved qualities and contains less than 500 ppm by weight of sulphur.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: December 26, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Massimo Zuliani, Paul Mikitenko, Marc Boulet, Roben Loutaty, Jean Claude Company
  • Patent number: 6110358
    Abstract: A method for producing a process oil in which a naphthenic rich distillate is processed through a single hydrotreating stage, the hydrotreated distillate is then solvent extracted to yield a process oil which passes IP-346 and AMES screening test.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: August 29, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Keith K. Aldous, Jacob B. Angelo, Joseph P. Boyle
  • Patent number: 6103106
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds and the ring opening of ring compounds present in petroleum and petrochemical streams. The process is conducted in the presence of hydrogen, one or more noble metal catalysts, and a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, James J. Schorfheide, William C. Baird Jr., Michele S. Touvelle, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E.W. Vaughan, Jingguang Chen, Sylvain S. Hantzer
  • Patent number: 6096195
    Abstract: Described in a process for hydrotreating (HDT) a petroleum feedstock (1) that contains sulfur and nitrogen are the catalytic cracking of the ammonia, produced by the hydrotreating process, in a catalytic cracking furnace (F), the cooling (E2) and separating of the cracking effluent to produce an H.sub.2 S containing gas phase, the extraction of the hydrogen sulfide from said gas phase and from the hydrotreating purge gas in an amine washing unit (20), and the separation (SM) of the hydrogen from the resultant effluent. The recovered hydrogen is recycled to hydrotreating unit (HDT) via a pipe (17).
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: August 1, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Christian Streicher, Fabrice Lecomte, Christian Busson
  • Patent number: 6090270
    Abstract: An integrated process for treating pyrolysis gasolines by depentanizing the pyrolysis gasoline in a first distillation column reactor which also subjects the C.sub.5 fraction to selective hydrogenation of acetylenes and diolefins. The bottoms or C.sub.6 + material is then subjected to further distillation in a second distillation column reactor to remove either a C.sub.6 and lighter or C.sub.8 and lighter overheads which contains a benzene/toluene/xylene (BTX) concentrate while at the same time removing mercaptans and selectively hydrogenating the diolefins. The BTX concentrate is then subjected to hydrodesulfurization prior to aromatics extraction and separation of the benzene from the toluene and xylene. Concurrently with the benzene separation any remaining olef ins are saturated to remove the color bodies. Finally the heavy gasoline fraction is subjected to the concurrent catalytic removal of mercaptans and separation to remove the heaviest material.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: July 18, 2000
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary R. Gildert
  • Patent number: 6042716
    Abstract: A process for transforming a gas oil cut into a dearomatized fuel with a high cetane number comprises at least one first, deep desulphurization and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatization, in which the desulphurized and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: March 28, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6024864
    Abstract: A method for producing a process oil is provided in which an aromatic extract oil is added to a paraffinic rich feed to provide a blended feed. The blended feed is then hydrotreated in a first hydrotreating stage to convert at least a portion of sulfur and nitrogen in the feed to hydrogen sulfide and ammonia. After stripping, the feed is subjected to a second hydrotreating stage to provide a process oil.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: February 15, 2000
    Assignee: Exxon Research and Engineering Co
    Inventors: Keith Kaluna Aldous, Jacob Ben Angelo, Joseph Philip Boyle, Bruce M. Jarnot, Wayne E. Hanson
  • Patent number: 6017443
    Abstract: A method and reactor for catalytic hydroprocessing liquid hydrocarbon feedstock at elevated temperatures and pressures for producing a liquid hydrocarbon product involves introducing the feedstock into a reactor having upper and lower reaction zones, each reaction zone having a hydroprocessing catalyst bed therein, the feedstock being introduced at the top of the lower reaction zone for downward flow through and reaction within the catalyst bed therein; collecting a partially reacted liquid effluent from the lower reaction zone; pumping the partially reacted liquid effluent to and introducing it at the top of the upper reaction zone for downward flow through and reaction within the catalyst bed therein; introducing hydrogen gas at the top of the upper reaction zone for flow downwardly and sequentially through and over the catalyst beds in the upper and lower reaction zones in co-current contact with the liquid in the reaction zones, the hydrogen reacting with the liquid in the reaction zones whereby the liqui
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: January 25, 2000
    Assignee: Mobil Oil Corporation
    Inventor: John S. Buchanan
  • Patent number: 6007704
    Abstract: Catalytic cracking gaseolines are treated by: (a) fractionating the raw gasoline cut into two cuts; (b) optional selective diene hydrodenation of the light cut, then mild hydrotreatment and stripping; (c) sweetening the light cut which is conducted before the mild hydrotreatment step by contact with a supported catalyst containing 0.1-1% by weight of palladium, or after the mild hydrotreatment step and which is then an extractive sweetening step, or with a catalyst having an alkaline base optionally incorporated and also an oxidizing agent. The heavy gaseoline fraction is optionally desilphurized in a hydrotreatment unit. The desulpurized and sweetened light gaesoline can be added to the gasoline pool either directly or mixed with the desulphurized heavy gaseoline cut.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: December 28, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Chapus, Blaise Didillon, Christian Marcilly, Charles Cameron
  • Patent number: 6002058
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: December 14, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 5989411
    Abstract: A hydroprocessing process for removing impurities from a feed comprising a hydrocarbonaceous liquid comprises at least two cocurrent, upflow hydroprocessing reaction stages and a non-catalytic, vapor-liquid contacting stage. The reaction and contacting stages may all be in the same reactor vessel. The feed and a hydrogen treat gas are passed up into a catalyst bed which comprises the first reaction stage, which produces a partially hydroprocessed liquid and vapor effluent. This first stage vapor is passed up into the contacting stage in which it contacts a hydrocarbonaceous liquid which reduces the vapor impurity content. The impurity-enriched contacting liquid passes down and mixes with the first stage liquid effluent. The combined effluents and hydrogen are passed up into the second reaction stage to form a processed product liquid and hydrogen-containing vapor effluent.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: November 23, 1999
    Assignee: Exxon Research and Engineering Company
    Inventor: Ramesh Gupta
  • Patent number: 5985135
    Abstract: A hydroprocessing process for removing impurities from a feed comprising a hydrocarbonaceous liquid comprises at least one cocurrent, upflow hydroprocessing reaction stage, a vapor-liquid contacting stage and a downflow hydroprocessing reaction stage. The feed and hydrogen react in the upflow stage to produce a partially hydroprocessed liquid and vapor effluent. The vapor contacts a hydrocarbonaceous liquid in the contacting stage, which transfers impurities from the vapor into the liquid. The impurity-enriched contacting liquid mixes with the upflow stage liquid effluent and the combined liquid effluents react with hydrogen in the downflow reaction stage, to form a hydroprocessed product liquid and vapor effluent. Additional product liquid is recovered by cooling and condensing either or both the contacting and downflow stage vapor effluents.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: November 16, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventor: Ramesh Gupta
  • Patent number: 5980730
    Abstract: A process for converting a heavy hydrocarbon fraction comprises treating the hydrocarbon feed in a hydroconversion section in the presence of hydrogen, the section comprising at least one three-phase reactor containing at least one ebullated bed hydroconversion catalyst, operating in liquid and gas riser mode, said reactor comprising at least one means for removing catalyst from said reactor and at least one means for adding fresh catalyst to said reactor.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: November 9, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Thierry Chapus, Stephane Kressman, Jean-Luc Duplan, Alain Billon, Gerard Heinrich
  • Patent number: 5976354
    Abstract: In an integrated lube oil process, a lube oil stock is hydrotreated over a non-noble metal containing hydrotreating catalyst in an HDN/HDS unit to remove sulfur and nitrogen from the lube oil stock and produce an HDN/HDS unit effluent. The effluent comprises hydrodesulfurized, hydrodenitrogenated lube oil stock, hydrogen sulfide and ammonia. The hydrogen sulfide and ammonia are stripped from the hydrodesulfurized, hydrodenitrogenated lube oil stock to form a liquid stream comprising stripped lube oil stock and a first gas stream comprising hydrogen sulfide, ammonia and molecular hydrogen. The stripped lube oil stock is hydrotreated over a noble-metal containing hydrotreating catalyst in an HDW unit to produce an HDW unit effluent comprising a dewaxed lube oil stock. A second gas stream comprising molecular hydrogen is separated from the dewaxed lube oil stock. The first gas stream is combined with the second gas stream to form a third gas stream.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: November 2, 1999
    Assignee: Shell Oil Company
    Inventors: John Robert Powers, Robert M Steinberg
  • Patent number: 5968347
    Abstract: A hydrotreatment process for effecting hydrotreatment of a liquid hydrocarbon feedstock containing a mixture of liquid hydrocarbons together with organic sulphurous impurities in which a desulphurised liquid first hydrocarbon fraction is contacted with a first stream of desulphurised recycle gas to produce (A) a vaporous mixture including unreacted hydrogen, hydrogen sulphide, and a second hydrocarbon fraction including relatively more volatile components of the mixture of hydrocarbons and (B) a third liquid hydrocarbon fraction including relatively less volatile components of the mixture of hydrocarbons as well as residual sulphurous impurities, the vaporous mixture and the third liquid hydrocarbon fraction being recovered as separate streams from the contact zone. The third liquid hydrocarbon fraction is contacted with a mixture of make-up hydrogen-containing gas and desulphurised recycle gas to cause hydrodesulphurisation of residual sulphurous impurities in the third liquid hydrocarbon fraction.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: October 19, 1999
    Assignee: Kvaerner Process Technology Limited
    Inventors: Richard Joseph Kolodziej, George Edwin Harrison, Donald Hugh McKinley
  • Patent number: 5968346
    Abstract: A hydroprocessing process includes two hydroprocessing reaction stages, both of which produce a liquid and a vapor effluent, and a liquid-vapor contacting stage. The first stage vapor effluent contains impurities, such as heteroatom compounds, which are removed from the vapor by contact with processed liquid effluent derived from one or both reaction stages and, optionally, also liquid recovered from processed vapor. The first and contact stage liquid effluents are passed into the second stage to finish the hydoprocessing. The contact and second stage vapor effluents are cooled to recover additional hydroprocessed product liquid.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: October 19, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Henry Jung, Ramesh Gupta, Edward S. Ellis, William E. Lewis
  • Patent number: 5954941
    Abstract: The invention concerns a jet engine fuel having the following characteristics:i) distilling range from 140 to 300.degree. C.;ii) cis-decalin/trans-decalin ratio greater than 0.2;iii) aromatics content less than 22% by volume;iv) sulfur content less than 100 ppm, andv) lower heating value per unit volume greater than 34.65 Mj/liter.Also process for making the same wherein for example a cut from catalytic cracking distilling between 140 and 300.degree.0 C. is subjected to a hydrotreatment step and then to a dearomatization step.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: September 21, 1999
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Sophie Mercier, Michel Laborde, Fran.cedilla.ois-Xavier Cormerais, Michel Thebault
  • Patent number: 5935420
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh, and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: William C. Baird, Jr., Gary B. McVicker, James J. Schorfheide, Darryl P. Klein, Sylvain Hantzer, Michel Daage, Michele S. Touvelle, Edward S. Ellis, David E.W. Vaughan, Jingguang G. Chen
  • Patent number: 5932090
    Abstract: The process for the conversion of heavy crude oils or distillation residues to distillates comprises the following steps:mixing the heavy crude oil or distillation residue with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreating reactor introducing hydrogen or a mixture of hydrogen and H.sub.2 S;sending the stream containing the hydrotreating reaction product and the catalyst in slurry phase to a distillation zone where the most volatile fractions are separated;sending the high-boiling fraction obtained in the distillation step to a deasphaltation step obtaining two streams, one consisting of deasphalted oil (DAO), the other consisting of asphaltenes, catalyst in slurry phase, possibly coke and rich in metals coming from the initial charge;recycling at least 60%, preferably at least 80% of the stream consisting of asphaltenes, catalyst in slurry phase, optionally coke and rich in metals, to the hydrotreatment zone.
    Type: Grant
    Filed: May 1, 1996
    Date of Patent: August 3, 1999
    Assignee: Snamprogetti S.p.A.
    Inventors: Mario Marchionna, Alberto DelBianco, Nicoletta Panariti
  • Patent number: 5928498
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds and the ring opening of ring compounds present in petroleum and petrochemical streams. The process is conducted in the presence of hydrogen, one or more noble metal catalysts, and a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 27, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gary B. McVicker, James J. Schorfheide, William C. Baird, Jr., Michele S. Touvelle, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E. W. Vaughan, Jingguang G. Chen, Sylvain S. Hantzer
  • Patent number: 5928497
    Abstract: The present invention relates to a process for heteroatom removal, particularly during process excursions, from petroleum and chemical hydrocarbon streams. The invention is comprised of at least two zones through which the hydrocarbon stream and a hydrogen containing treat gas flow. The first zone contains a bed of heteroatom hydroprocessing catalyst in contact with hydrogen-containing treat gas and the second zone contains heteroatom sorbent material(s) through which the hydrocarbon stream flows countercurrent to the up flowing hydrogen-containing treat gas.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 27, 1999
    Assignee: Exxon Chemical Pateuts Inc
    Inventor: Larry L. Iaccino
  • Patent number: 5928499
    Abstract: A process for hydrotreating a hydrocarbon feed containing components boiling above 1000.degree. F. and sulfur, metals and carbon residue utilizing a heterogeneous catalyst having a specified pore size distribution, median pore diameter by surface area and pore mode by volume, to give a product containing a decreased content of components boiling above 1000.degree. F. and decreased sulfur, metals and carbon residue is disclosed. The process includes contacting the hydrocarbon feed with hydrogen in the presence of the catalyst at isothermal hydroconversion conditions. The catalyst includes an porous alumina support containing less than or equal to 2.5 wt % silica on the finished catalyst basis, and bearing 2.2 to 6 wt % of a Group VIII metal oxide, 7 to 24 wt % of a Group VIB metal oxide and preferably less than 0.2 wt % of a phosphorous oxide. The catalyst may be characterized as having a Total Surface Area of 215 to 245 m.sup.2 /g, a Total Pore Volume of 0.82 to 0.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: July 27, 1999
    Assignee: Texaco Inc
    Inventors: David Edward Sherwood, Jr., Pei-Shing Eugene Dai
  • Patent number: 5925234
    Abstract: The invention concerns a petroleum product and a process for the production of a petroleum product which can form part of a blend for an internal combustion engine fuel, the process comprisinga) hydrotreating a hydrocarbon feedstock at a partial pressure of hydrogen at the reactor outlet of about 0.5 MPa to about 6 MPa,b) separating a product (P) from step a) into a product (P1) with a final boiling point of about 300.degree. C. and a product (P2) with an initial boiling point greater than the final boiling point of product (P1),c) performing a liquid-liquid extraction with a solvent (S1), to produce an extract (E1) and a raffinate (R1) from product (P2),d) recovering solvent (S1) from raffinate (R1) to produce a product (Q1), depleted in solvent (S1), which has improved qualities and contains less than 500 ppm by weight of sulphur.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: July 20, 1999
    Assignee: Institut Francais Du Petrole and Total Raffinage Distribution
    Inventors: Frederic Morel, Massimo Zuliani, Paul Mikitenko, Marc Boulet, Roben Loutaty, Jean Claude Company
  • Patent number: 5925239
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 20, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Darryl P. Klein, Michele S. Touvelle, Edward S. Ellis, Carl W. Hudson, Sylvain Hantzer, Jingguang G. Chen, David E. W. Vaughan, Michel Daage, James J. Schorfheide, William C. Baird, Jr., Gary B. McVicker
  • Patent number: 5914029
    Abstract: Economies in capital cost and operation of a hydrocarbon refining unit for desulfurization of diesel fuel are provided by a heat exchange sequence which eliminates the need for a fired heater on the product fractionation zone. The feed to the fractionation zone is heat exchanged twice against both the effluent bottoms stream of the fractionation zone and the reaction zone effluent stream.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: June 22, 1999
    Assignee: UOP LLC
    Inventor: Thomas A. Verachtert, II
  • Patent number: 5908548
    Abstract: An aromatic solvent together with methods for its preparation are described. A composition includes a paraffin fraction in an amount of from approximately 9 LV % to approximately 15 LV %; a naphthene fraction in an amount of from approximately 35 LV % to approximately 55 LV %; and an alkylbenzene fraction in an amount of from approximately 8 LV % to approximately 16 LV %. The solvent provides advantages in that the high solvency that is typical of an aromatic solvent is combined with a narrow distillation range, a high flash point and higher boiling range that is typical of an aliphatic solvent.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: June 1, 1999
    Assignee: Ergon, Incorporated
    Inventors: Christopher S. Rucker, Steven J. Wantling, H. Don Davis, Jimmy Rasco
  • Patent number: 5906730
    Abstract: A process for desulfurizing catalytically cracked gasoline containing sulfur compounds and olefin components, which comprises the steps of:1) first desulfurizing the catalytically cracked gasoline in the presence of a hydrodesulfurization catalyst at a desulfurization rate of 60 to 90%, a reaction temperature of 200 to 350.degree. C., a hydrogen partial pressure of 5 to 30 kg/cm.sup.2, a hydrogen/oil ratio of 500 to 3,000 scf/bbl, and a liquid hourly space velocity of 2 to 10 1/hr, said first desulfuriing step comprising supplying a feed having a hydrogen sulfide vapor concentration of not more than 0.1% by volume, and2) next desulfurizing the treated oil obtained in the first step in the presence of a hydrodesulfurization catalyst at a desulfurization rate of 60 to 90%, a reaction temperature of 200 to 300.degree. C., a hydrogen partial pressure of 5 to 15 kg/cm.sup.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: May 25, 1999
    Assignee: Mitsubishi Oil Co., Ltd.
    Inventors: Shigeto Hatanaka, Satoru Hikita, Osamu Sadakane, Tadao Miyama
  • Patent number: 5894076
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: April 13, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 5868921
    Abstract: A hydrocarbon distillate fraction is hydrotreated in a single stage by passing the distillate fraction downwardly over a stacked bed of two hydrotreating catalysts. The catalyst in the upper bed contains 0.1 to 15% by weight of platinum and/or palladium and also contains 2 to 40% by weight of at least one of tungsten, chromium, a Group VIIB metal, and an actinium series metal supported on an acidic refractory oxide carrier. The catalyst in the lower bed contains 1 to 15% by weight of a non-noble Group VIII metal and 1 to 25% by weight of a Group VIB metal on an amorphous, refractory oxide carrier. The liquid hydrocarbon product recovered has a reduced content of aromatics and a reduced heteroatom content.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: February 9, 1999
    Assignee: Shell Oil Company
    Inventors: Guy Barre, Johannes Petrus Van Den Berg, Pierre Grandvallet
  • Patent number: 5853569
    Abstract: A method for producing a process oil is provided in which a napthenic rich feed is enriched with an aromatic extract oil. The enriched feed is then subjected to a solvent extraction thereby providing a process oil.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: December 29, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Keith K. Aldous, Jacob Ben Angelo, Joseph Philip Boyle
  • Patent number: 5851381
    Abstract: A method of refining crude oil by distillation and desulfurization for the preparation of petroleum products can reduce cost of apparatus and cost of operation and can be operated with better stability by simplified control of operation. In the method, a naphtha fraction is separated from crude oil by distillation, the residual fraction which remained after the naphtha fraction has been removed from the crude oil is hydrodesulfurized and the hydrodesulfurized fraction is separated into further fractions by distillation. A kerosene fraction and a gas oil fraction of high quality can be obtained and yields of intermediate fractions such as kerosene and gas oil can be increased by introducing a hydrotreating process, a high pressure separation process and a residue fluid catalytic cracking process in a sophisticated way for refining of the residual fraction remained after the naphtha fraction has been removed from the crude oil.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: December 22, 1998
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Meishi Tanaka, Shuji Sugiyama
  • Patent number: 5837130
    Abstract: A process for hydrotreating petroleum fractions early in the refining process by employing catalyst prepared as components of distillation structures or as contained beds of catalyst in atmospheric distillation columns and or side draw columns. For example, a crude petroleum is hydrotreated by taking side streams from an atmospheric distillation column and the vacuum gas oil from a vacuum distillation column which are individually fed to separate desulfurizations, preferably in distillation column reactors containing a hydrodesulfurization catalyst. The overheads from each of the distillation column reactors is returned to the atmospheric column and the bottoms from each distillation column reactor is withdrawn as hydrotreated product. The process may also be used for upgrading the effluent from a fluid catalytic cracking unit, preferably operated as a catalytic distillation reactor.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: November 17, 1998
    Assignee: Catalytic Distillation Technologies
    Inventor: Clifford S. Crossland
  • Patent number: 5779992
    Abstract: A hydrotreating apparatus comprising (a') a fixed-bed reactor packed with a hydrotreating catalyst for hydrotreating a heavy oil and (b') a suspended-bed reactor packed with a hydrotreating catalyst for further hydrotreating the heavy oil hydrotreated in the fixed-bed reactor. According to the apparatus of the present invention, (a) feeding of a heavy oil to a fixed-bed reactor is disclosed packed with a hydrotreating catalyst to thereby effect hydrotreating of the heavy oil and (b) feeding of the heavy oil hydrotreated in the fixed-bed reactor to a suspended-bed reactor packed with a hydrotreating catalyst to thereby effect further hydrotreating of the heavy oil can be conducted, and therefore the period of hydrotreating of the heavy oil can be prolonged.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: July 14, 1998
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventor: Hidehiro Higashi
  • Patent number: 5741414
    Abstract: There is provided a method of manufacturing gas oil containing low-sulfur and low-aromatic-compound content, said method including a first step of putting distilled petroleum to contact with hydrogen gas in the presence of a hydrotreating catalyst to reduce the sulfur concentration to not higher than 0.05 wt % and a second step of reducing the aromatic compound concentration in the presence of a noble metal type catalyst, with at least a pair of high temperature high pressure gas liquid separators arranged between the two steps to separate the gaseous and liquid components of distilled petroleum and hydrogen gas or hydrogen containing gas is introduced into the liquid component in each of the separators.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: April 21, 1998
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Toshio Waku, Masanari Akiyama
  • Patent number: 5685972
    Abstract: Cracked naphtha feeds such as FCC naphtha and coker naphtha are upgraded to produce chemical grade BTX (benzene, toluene, xylene with ethylbenzene) while co-producing a low sulfur gasoline of relatively high octane number. The cracked, sulfur-containing naphtha is processed by hydrodesulfurization followed by treatment over an acidic catalyst, preferably a zeolite such as ZSM-5 or zeolite beta with a hydrogenation component, preferably molybdenum. The treatment over the acidic catalyst in the second step restores the octane loss which takes place as a result of the hydrogenative treatment and results in a low sulfur gasoline product to permit a low sulfur gasoline of blending quality to be obtained with the BTX. The BTX can be extracted from the second stage effluent, preferably from a C.sub.6 -C.sub.8 fraction of this effluent.
    Type: Grant
    Filed: July 14, 1995
    Date of Patent: November 11, 1997
    Inventors: Hye Kyung C. Timken, Philip J. Angevine
  • Patent number: 5643441
    Abstract: Low sulfur gasoline of relatively high octane number is produced from a thermally cracked sulfur-containing naphtha such as coker naphtha, by hydrodesulfurization followed by treatment over an acidic catalyst, preferably a zeolite such as ZSM-5 or zeolite beta with a hydrogenation component, preferably molybdenum.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: July 1, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Hye Kyung C. Timken, Sherri L. Riedinger
  • Patent number: 5603824
    Abstract: The instant invention discloses a process of upgrading a waxy hydrocarbon feed mixture containing sulfur compounds which boils in the distillate range, in order to reduce sulfur content and 85% point while preserving the high octane of naphtha by-products and maximizing distillate yield. The process employs a single, downflow reactor having at least two catalyst beds and an inter-bed redistributor between the beds. The top bed contains a hydrocracking catalyst, preferably zeolite beta, and the bottom bed contains a dewaxing catalyst, preferably ZSM-5. A desulfurization catalyst may be added to either bed depending on sulfur distribution in the feed. The feed is separated into a lighter, lower boiling stream and a heavier, higher boiling stream. The effluent of the top bed cascades without interbed separation to the inter-bed redistributor, where it is recombined with the lighter stream. The recombined stream then enters the bottom bed for dewaxing.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: February 18, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Chwan P. Kyan, Paul J. Oswald
  • Patent number: 5603913
    Abstract: A solid, porous catalyst for the selective oxidation of hydrogen sulfide to sulfur has the atomic proportions covered by the formula Fe.sub.A Mg.sub.B Zn.sub.C Cr.sub.D wherein A has a value of 0.5 to 10, B has a value of 0.1 to 1, C has a value of 0 to 1, and D has a value of 0 to 1, where B+C=1. The catalyst is used by passing a gas stream comprising hydrogen sulfide and oxygen over the catalyst at a temperature above the dew point of sulfur and up to no more than 300.degree. C.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: February 18, 1997
    Assignee: Azerbaidzhanskaya Gosudarstvennaya Neftianaya Academiya
    Inventors: Tofik G. O. Alkhazov, Roland E. Meissner, III