First Stage Is An Hydrogenation (saturation) Patents (Class 208/57)
  • Patent number: 5968346
    Abstract: A hydroprocessing process includes two hydroprocessing reaction stages, both of which produce a liquid and a vapor effluent, and a liquid-vapor contacting stage. The first stage vapor effluent contains impurities, such as heteroatom compounds, which are removed from the vapor by contact with processed liquid effluent derived from one or both reaction stages and, optionally, also liquid recovered from processed vapor. The first and contact stage liquid effluents are passed into the second stage to finish the hydoprocessing. The contact and second stage vapor effluents are cooled to recover additional hydroprocessed product liquid.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: October 19, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Henry Jung, Ramesh Gupta, Edward S. Ellis, William E. Lewis
  • Patent number: 5955640
    Abstract: Integrated process for the production of butene-1 which comprises feeding a C.sub.4 hydrocarbon stream to a separation unit of butene-1 and recycling the remaining stream to the same unit after treatment in a bond isomerization section to convert the remaining butenes-2 into butene-1, a molecular sieve separation unit is inserted in the cycle operating with the hydrocarbons in a vapour phase, for the purge of the paraffins.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: September 21, 1999
    Assignees: Enichem S.p.A., Snamprogetti S.p.A.
    Inventors: Renato Paludetto, Alfredo Orsi, Roberto Trotta, Gianni Donati
  • Patent number: 5951848
    Abstract: This application discloses a process for catalytically dewaxing a feedstock whereby the aging of the dewaxing catalyst is minimized. A variety of feedstocks which possess moderate levels of nitrogen and sulfur may be dewaxed in this invention. The feed is treated by a catalyst system comprising two catalysts acting in synergistic combination, a hydrotreating catalyst and a dewaxing catalyst. The hydrotreating catalyst is preferably loaded with noble metals and is capable of operating at higher than usual space velocities. The dewaxing catalyst is downstream of the hydrotreating catalyst. The dewaxing catalyst further comprises a constrained intermediate pore crystalline material which is loaded with a noble metal.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: September 14, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Charles L. Baker, Jr., Richard C. Dougherty
  • Patent number: 5948239
    Abstract: Disclosed herein is a highly efficient process for producing distillate fuels using a multi-bed hydrogenation reactor. The temperature of the feed to the second and subsequent reactor beds is controlled by removing effluent from the prior bed, cooling the effluent in an external heat exchanger, injecting hydrogen gas into the effluent mixture, and inserting the cooled mixture containing hydrogen gas into the inlet of the next reaction zone.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: September 7, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Harjeet S. Virdi, Benjamin Klein, R. John McNab
  • Patent number: 5935417
    Abstract: A process for producing a lubricating oil basestock having at least 90 wt. % saturates and a VI of at least 105 by selectively hydroconverting a raffinate from a solvent extraction zone in a two step hydroconversion zone followed by a hydrofinishing zone and a dewaxing zone.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Ian A. Cody, Douglas R. Boate, William J. Murphy, Daniel P. Leta
  • Patent number: 5935413
    Abstract: An apparatus for mixing vapor and liquid reactants within a column. The apparatus forms a first mixing zone into which a first reactant (e.g., vapor) is homogenized by swirl flow and flows vertically downward. The apparatus further forms a second mixing zone into which a second reactant (e.g., liquid) is homogenized by swirl flow and flows vertically downward. Additional amounts of either the first reactant, the second reactant or both may be added into or ahead of the first mixing zone or the second mixing zone as appropriate. The first reactant is directed radially to collide in crossflow with a thin sheet of the second reactant to provide intense mixing of the first and second reactants. Due to separate mixing zones for the two reactants, the mixing conditions for each can be tailored to best mix each reactant while minimizing pressure drop and minimizing the space and volume requirements for this mixing.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: August 10, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Sherri L. Boyd, Gregory P. Muldowney
  • Patent number: 5906728
    Abstract: A process for upgrading petroleum feedstocks boiling in the distillate plus range, which feedstocks, when cracked, result in unexpected high yields of olefins. The feedstock is hydroprocessed in at least one reaction zone countercurrent to the flow of a hydrogen-containing treat gas. The hydroprocessed feedstock is then subjected to thermal cracking in a steam cracker or to catalytic cracking in a fluid catalytic cracking process. The resulting product slate will contain an increase in olefins compared with the same feedstock, but processed in by a conventional co-current hydroprocessing process.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: May 25, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Larry Lee Iaccino, Nicolas P. Coute
  • Patent number: 5904838
    Abstract: A process for the simultaneous conversion of waste lubricating oil and pyrolysis oil derived from organic waste to produce a synthetic crude oil by means of contacting the combined feed with a hot hydrogen-rich gaseous stream to increase the temperature of the combined feed to vaporize at least a portion of the distillable organic compounds contained therein which is immediately hydrogenated in a hydrogenation reaction zone. The resulting effluent from the hydrogenation reaction zone is then introduced into a hydroprocessing zone to produce higher hydrogen-content hydrocarbons and to remove heterogeneous components such as sulfur, oxygen, nitrogen and halide, for example. The resulting effluent is cooled and partially condensed to produce a gaseous stream containing hydrogen and gaseous water-soluble inorganic compounds and a liquid stream containing hydrocarbon compounds.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: May 18, 1999
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5894076
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: April 13, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 5888376
    Abstract: A process for converting a Fischer-Tropsch light oil stream to jet fuel by reacting said stream with a hydroisomerization catalyst in a reaction zone where the stream flows countercurrent to upflowing hydrogen-containing treat gas.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: March 30, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert J. Wittenbrink, Stephen Mark Davis, Larry L. Iaccino
  • Patent number: 5868921
    Abstract: A hydrocarbon distillate fraction is hydrotreated in a single stage by passing the distillate fraction downwardly over a stacked bed of two hydrotreating catalysts. The catalyst in the upper bed contains 0.1 to 15% by weight of platinum and/or palladium and also contains 2 to 40% by weight of at least one of tungsten, chromium, a Group VIIB metal, and an actinium series metal supported on an acidic refractory oxide carrier. The catalyst in the lower bed contains 1 to 15% by weight of a non-noble Group VIII metal and 1 to 25% by weight of a Group VIB metal on an amorphous, refractory oxide carrier. The liquid hydrocarbon product recovered has a reduced content of aromatics and a reduced heteroatom content.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: February 9, 1999
    Assignee: Shell Oil Company
    Inventors: Guy Barre, Johannes Petrus Van Den Berg, Pierre Grandvallet
  • Patent number: 5865985
    Abstract: A process for the production of a diesel fuel includes contacting a feedstock comprising cracked stocks in the presence of hydrogen under conditions of elevated temperature and pressure with a first catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on a substantially non-acidic carrier, and then contacting at least a portion of the effluent from the first catalyst with a second catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an acidic carrier. This process can produce diesel fuels having an improved cetane index and API gravity. The effluent from the second catalyst bed may be contacted with a third catalyst bed which contains a catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on a substantially non-acidic carrier.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: February 2, 1999
    Assignee: Akzo Nobel NV
    Inventors: Pankaj Himatlal Desai, Johannes Wilhelmus Sonnemans, Terry Allan Reid
  • Patent number: 5770044
    Abstract: Disclosed is a catalytic cracking process which includes more than one catalytic cracking reaction step. The process integrates a hydroprocessing step between the catalytic cracking reaction steps in order to maximize olefins production, distillate quality and octane level of the overall cracked product. Preferably, the hydroprocessing step is included between the reaction stages, and a portion of the hydroprocessed products, i.e., a naphtha and mid distillate fraction, is combined with cracked product for further separation and hydroprocessing. It is also preferred that the first catalytic cracking reaction step be a short contact time reaction step.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: June 23, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward S. Ellis, Ramesh Gupta, Martin G. Bienstock
  • Patent number: 5770043
    Abstract: Disclosed is a catalytic cracking process which includes more than one catalytic cracking reaction step. The process integrates a hydroprocessing process step between the catalytic cracking reaction steps in order to maximize olefins production, mid-distillate quality and naphtha octane level in the cracked products. Preferably, a first cracked hydrocarbon product is obtained from a first cracking stage and separated into a mid-distillate and gas oil containing fraction having an initial boiling point of at least 300.degree. F., the distillate and gas oil containing fraction is hydroprocessed, and a naphtha fraction and a gas oil containing bottoms fraction of the hydroprocessed material are cracked in a second cracking stage.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: June 23, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward S. Ellis, Ramesh Gupta, Martin G. Bienstock
  • Patent number: 5720872
    Abstract: A process for hydroprocessing liquid petroleum and chemical streams in two or more hydroprocessing stages, which stages are in separate reaction vessels and wherein each reaction stage contains a bed of hydroprocessing catalyst. The liquid product from the first reaction stage is sent to a stripping stage and stripped of H.sub.2 S, NH.sub.3 and other dissolved gases. The stripped product stream is then sent to the next downstream reaction stage, the product from which is also stripped of dissolved gases and sent to the next downstream reaction stage until the last reaction stage, the liquid product of which is stripped of dissolved gases and collected or passed on for further processing. The flow of treat gas is in a direction opposite the direction in which the reaction stages are staged for the flow of liquid. Each stripping stage is a separate stage, but all stages are contained in the same stripper vessel.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: February 24, 1998
    Assignee: Exxon Research and Engineering Company
    Inventor: Ramesh Gupta
  • Patent number: 5705052
    Abstract: A process for hydroprocessing liquid petroleum and chemical streams in a single reaction vessel containing two or more hydroprocessing reaction stages. The liquid product from the first reaction stage is stripped of H.sub.2 S, NH.sub.3 and other dissolved gases, then sent to the next downstream reaction stage. The product from the downstream reaction stage is also stripped of dissolved gases and sent to the next downstream reaction stage until the last reaction stage, the liquid product of which is stripped of dissolved gases and collected or passed on for further processing. The flow of treat gas is in a direction opposite the direction in which the reaction stages are staged for the flow of liquid.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: January 6, 1998
    Assignee: Exxon Research and Engineering Company
    Inventor: Ramesh Gupta
  • Patent number: 5582711
    Abstract: Disclosed is a catalytic cracking process which includes more than one catalytic cracking reaction step. The process integrates a hydroprocessing step between the catalytic cracking reaction steps in order to maximize olefins production, distillate quality and octane level of the overall cracked product. Preferably, the hydroprocessing step is included between the reaction stages, and a portion of the hydroprocessed products, i.e., a naphtha and mid distillate fraction, is combined with cracked product for further separation and hydroprocessing. It is also preferred that the first catalytic cracking reaction step be a short contact time reaction step.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: December 10, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward S. Ellis, Ramesh Gupta, Martin G. Bienstock
  • Patent number: 5578196
    Abstract: The invention concerns a process for reducing the benzene content of petrol fractions, in which hydrogenation is carried out on a feed with the following composition by weight: 40% to 80% of paraffins, 0.5% to 7% of cyclic hydrocarbons and 6% to 45% of aromatics, and with a maximum distillation temperature of between 70.degree. C. and 90.degree. C., followed by isomerisation of the effluent from the hydrogenation step, mixing said feed and/or said effluent with a C.sub.5 -C.sub.6 cut; said process being characterised in that an isomerisation catalyst is used which contains chlorine and at least one group VIII metal deposited on a support composed of a mixture of specific proportions of eta alumina and gamma alumina.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: November 26, 1996
    Assignee: Institut Francais du Petrole
    Inventors: Christine Travers, Philippe Courty, Patrick Sarrazin
  • Patent number: 5525209
    Abstract: A process for the joint production of middle distillates and oil bases (viscosity index between 95 and 150) particularly from vacuum distillates and/or deasphalted oils, comprises a first step in which the feedstock is brought into contact with an amorphous catalyst containing at least one metal or metallic compound with a hydro-dehydrogenating function, such as Ni, Mo, W or Co, at a temperature of between 350.degree. C. and 430.degree. C., a pressure of between 5 and 20 MPa, a space velocity of between 0.1 and 5 h.sup.-1 in the presence of hydrogen in a ratio H.sub.2 /HC of 150 to 2,000 by volume. The product from the first step is brought into contact in a second step with a second catalyst comprising a support, a Y zeolite, at least one group VIB element and at least one group VIII metal at a temperature of between 350.degree. C. and 430.degree. C., a pressure of between 5 and 20 MPa and a space velocity of between 0.1 and 5 h.sup.-1.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: June 11, 1996
    Assignee: Institut Francais Du Petrole
    Inventors: Alain Billon, Jean-Pierre Peries, Pierre-Henri Bigeard
  • Patent number: 5401385
    Abstract: A process combination is disclosed to selectively upgrade catalytically cracked gasoline to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock, preferably heavy naphtha, is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy synthesis naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Robert J. Schmidt, Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5393408
    Abstract: A process is disclosed for producing a hydrogenated lubricating oil base stock having improved stability. A lube oil base stock is contacted with hydrogen in a first hydrogenation zone under hydrogenation reaction conditions in the presence of a macroporous hydrogenation catalyst comprised of a particulate refractory inorganic oxide support component and a hydrogenation component. The macroporous hydrogenation catalyst has an acid site density of between about 0.015 and about 0.3 milliequivalents per gram of catalyst, a total pore volume greater than about 0.45 cm.sup.3 /g, and at least 10% of the total pore volume in macropores of diameter is greater than about 1000 Angstroms. A portion of the effluent from the first step is then contacted with hydrogen in a second hydrogenation zone under hydrogenation reaction conditions in the presence of a mesoporous hydrogenation catalyst comprised of a particulate refractory inorganic oxide support component and a hydrogenation component.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: February 28, 1995
    Assignee: Chevron Research and Technology Company
    Inventors: James N. Ziemer, John M. Rosenbaum, Kristine L. Eiden
  • Patent number: 5376258
    Abstract: There is disclosed a process for hydrogenating treatment of a heavy hydrocarbon oil comprising the successive steps of (1) hydrogenating-demetalizing treatment, (2) hydrocracking treatment and (3) hydrodesulfurizing-hydrodenitrifying treatment in the presence of respective catalysts which process comprises employing in the hydrodesulfurizing-hydrodenitrifying treatment, a catalyst having a pore size distribution restricted to a specific range as measured by nitrogen release method. According to the above-mentioned process, a product oil with a low sulfur content can be obtained in high cracking efficiency from a heavy hydrocarbon oil without equipment trouble due to sludge formation.
    Type: Grant
    Filed: September 16, 1993
    Date of Patent: December 27, 1994
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Yukihiro Sakoda
  • Patent number: 5294327
    Abstract: The production of food grade quality white mineral oils from predominantly naphthenic or cycloparaffinic crude distillates heretofore have required acid treating using sulfuric acid followed by neutralization, water wash and possibly finishing step. Herein, however, three stages of hydroprocessing without any solvent extraction or acid treatment prior step are employed to produce the desired food grade quality white mineral oil having a trace of aromatic constituents therewithin. Specific steps are defined in the application in terms of the severity of the hydrogenation in the hydrotreatiang operation at each respective step; as well as the steps of separating gaseous constituents of the hydroprocessing product.
    Type: Grant
    Filed: September 15, 1992
    Date of Patent: March 15, 1994
    Assignee: Atlantic Richfield Company
    Inventor: Gary L. Everett
  • Patent number: 5244565
    Abstract: A process for the production of distillate hydrocarbon from atmospheric fractionation residue and waste lubricants by means of contacting the waste lubricant with a hot hydrogen-rich gaseous stream to increase the temperature of this feed stream to vaporize at least a portion of the distillable hydrocarbonaceous compounds thereby producing a distillable hydrocarbonaceous stream which is immediately hydrogenated in an integrated hydrogenation zone. The vaporization of the waste oil is also conducted in the presence of a vacuum fractionation residue which is produced in the integrated process. The resulting effluent from the integrated hydrogenation zone and a distillable hydrocarbon stream recovered from the atmospheric fraction residue is catalytically converted to produce lower molecular weight hydrocarbon compounds.
    Type: Grant
    Filed: December 26, 1991
    Date of Patent: September 14, 1993
    Assignee: UOP
    Inventors: Steven P. Lankton, Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5235120
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy naphtha and isobutane. The heavy naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: August 10, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5205923
    Abstract: A hydrogenation process for the hydrogenation of macro- and microcrystalline feeds in a mixed bed is disclosed, the first bed containing a catalyst of the demetallization kind, while the second bed contains a hydrotreatment catalyst. During the operation with microcrystalline feed, after the decrease in Saybolt color index, macrocrystalline feed is substituted for microcrystalline feed, whereby is restored the bed catalytic activity which in turn allows the return to the microcrystalline feed, and successively, so that operation is continuous with high Saybolt color index levels maintained for extended periods.
    Type: Grant
    Filed: April 4, 1991
    Date of Patent: April 27, 1993
    Assignee: Petroleo Brasileiro S.A. Petrobras
    Inventors: Guilherme Lues M. De Souza, Antonio Adolfo F. Valle, Rosa Maria P. Wodtke
  • Patent number: 5183556
    Abstract: A process for producing diesel fuel from a diesel hydrocarbon feed. Hydrogen is fed cocurrently with the feed to a first hydrogenation zone in the presence of a hydrogenation catalyst. Liquid effluent from the first hydrogenation zone is then passed to a second hydrogenation zone, wherein the liquid effluent is contacted countercurrently with hydrogen in the presence of a hydrogenation catalyst. Preferred hydrogenation catalysts are those comprising non-noble metals in the first hydrogenation zone, and may comprise noble or non-noble metals in the second hydrogenation zone.
    Type: Grant
    Filed: March 13, 1991
    Date of Patent: February 2, 1993
    Assignee: ABB Lummus Crest Inc.
    Inventors: James W. Reilly, Gary Hamilton
  • Patent number: 5176816
    Abstract: An integrated process for the production of a hydrogenated distillable hydrocarbonaceous product from a temperature-sensitive hydrocarbonaceous stream containing a non-distillable component by the utilization of a hot hydrogen flash zone and a secondary separation zone to achieve a high yield of hydrogenated distillable hydrocarbonaceous product.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Steven P. Lankton, Robert B. James, Jr.
  • Patent number: 5158668
    Abstract: Recarburizer coke containing not more than 0.1 weight percent sulfur and not more than 0.1 weight percent nitrogen is prepared by the catalytic hydrogenation, thermal cracking, and delayed coking of a mixture of pyrolysis tar and petroleum distillate.
    Type: Grant
    Filed: January 6, 1992
    Date of Patent: October 27, 1992
    Assignee: Conoco Inc.
    Inventors: Bharat S. Chahar, John K. Shipley
  • Patent number: 5068025
    Abstract: In a process for the concomitant hydrogenation of aromatics and sulfur-bearing hydrocarbons in an aromatics- and sulfur-bearing, diesel boiling-range hydrocarbon feedstock, the feedstock is contacted at a temperature between about 600.degree. F. and about 750.degree. F. and a pressure between about 600 psi and about 2500 psi in the presence of added hydrogen with a first catalyst bed containing a hydrotreating catalyst containing nickel, tungsten and optionally phosphorous supported on an alumina support, and, after contact with the first catalyst bed, the hydrogen and feedstock without modification, is passed from the first catalyst bed to a second catalyst bed where it is contacted at a temperature between about 600.degree. F. and about 750.degree. F. and a pressure between about 600 psi and about 2500 psi with a hydrotreating catalyst containing cobalt and/or nickel, molybdenum and optionally phosphorous supported on an alumina support.
    Type: Grant
    Filed: June 27, 1990
    Date of Patent: November 26, 1991
    Assignee: Shell Oil Company
    Inventor: Opindar K. Bhan
  • Patent number: 5059301
    Abstract: Recarburizer coke containing not more than 0.1 weight percent sulfur and not more than 0.1 weight percent nitrogen is prepared by severe catalytic hydrotreating, followed by thermal cracking, and delayed coking of vacuum gas oil obtained from the vacuum distillation of FCC decant oil.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: October 22, 1991
    Assignee: Conoco
    Inventors: Keith M. Roussel, John K. Shigley
  • Patent number: 5045174
    Abstract: A two-step process for the production of large quantities of heartcut distillate resin precursors from steamed cracked gas oil product which involves hydrogenation of the steam cracked gas oil followed by steam cracking of the hydrogenated product to produce a greater than 15 wt. % yield of heartcut distillate resin precursors. A process for producing heartcut distillate comprising hydrogenating a hydrocarbon oil comprising two-ring aromatic molecules to form a hydrogenated hydrocarbon oil comprising partially saturated naphtheno-aromatic molecules; and subjecting a feedstock comprising hydrogenated hydrocarbon oil to steam cracking under conditions which favor producing a heartcut distillate containing an amount greater than about 4 wt. % yield of heartcut distillate resin precursors.A method for producing heartcut distillate which involves subjecting a hydrogenated hydrocarbon feedstock boiling in the range of about 200.degree. C. to 320.degree. C.
    Type: Grant
    Filed: March 21, 1990
    Date of Patent: September 3, 1991
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Dane C. Grenoble
  • Patent number: 5034116
    Abstract: The coarse-grain CTE of premium coke is reduced by increasing the nominal velocity of the volatile coking by-products in the coking drum to a higher level than the preexisting nominal velocity.
    Type: Grant
    Filed: August 15, 1990
    Date of Patent: July 23, 1991
    Assignee: Conoco Inc.
    Inventor: Bruce A. Newman
  • Patent number: 5024750
    Abstract: Heavy hydrocarbon oil, containing asphaltene, sulfur and metal contaminants, is hydrotreated in the presence of a hydrotreating catalyst having a small pore diameter in an initial process step to remove sulfur and metal contaminants. Removal of additional metal and sulfur contaminants is then accomplished in a second process step by solvent deasphalting, wherein the size of the pore diameter of the hydrotreating catalyst utilized in the initial hydrotreating step affects the metals rejection in the subsequent solvent deasphalting step. In a third process step the deasphalted oil is catalytically cracked substantially in the absence of added hydrogen to provide lower boiling hydrocarbon products.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: June 18, 1991
    Assignee: Phillips Petroleum Company
    Inventors: Edward L. Sughrue, II, Patricia A. Tooley, Brent J. Bertus, Bille S. Grayson
  • Patent number: 4973396
    Abstract: Hydrotreating at relatively low pressure and elevated temperature followed by a selective distillation results in lighter fractions substantially free of sulfur and nitrogen. Over half of the total liquid product is suitable for sweet hydroprocessing over a noble metal catalyst.
    Type: Grant
    Filed: July 10, 1989
    Date of Patent: November 27, 1990
    Assignee: Exxon Research and Engineering Company
    Inventor: Gerald E. Markley
  • Patent number: 4927520
    Abstract: A process for treating a hydrocarbonaceous stream containing a non-distillable component to produce a hydrogenated distillable hydrocarbonaceous product while minimizing thermal degradation of the hydrocarbonaceous stream which process comprises the steps of: (a) contacting the hydrocarbonaceous stream with a hot first hydrogen-rich gaseous stream having a temperture greater than the hydrocarbonaceous stream in a flash zone at flash conditions thereby increasing the temperature of the hydrocarbonaceous stream without indirect heat exchange and vaporizing at least a portion thereof to provide a hydrocarbonaceous vapor stream comprising hydrogen and a heavy stream comprising the non-distillable component; (b) contacting the hydrocarbonaceous vapor stream comprising hydrogen with a hydrogenation catalyst in a hydrogenation reaction zone at hydrogenation conditions to increase the hydrogen content of the hydrocarbonaceous compounds contained in the hydrocarbonaceous vapor stream; (c) condensing at least a portion
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: May 22, 1990
    Assignee: UOP
    Inventors: Tom N. Kalnes, Robert B. James, Jr., Darrell W. Staggs
  • Patent number: 4902404
    Abstract: Disclosed is a process for hydrotreating a hydrocarbonaceous feed wherein the feed is treated with hydrogen, at hydrotreating conditions, in a first catalyst zone containing a conventional hydrotreating catalyst. The treated feed is then further treated in a second catalyst zone containing a catalyst represented MM'.sub.a S.sub.x where M is Cr or one or more divalent promoter metals selected from Mn, Fe, Co, Ni, Cu, and Zn; M' is one or both of Mo and W; x is 0.5 to 9, and a=1 when Cr is not one of metals represented by M, and 1<a.ltoreq.1.5 when Cr is one of the metals represented by M.
    Type: Grant
    Filed: July 5, 1988
    Date of Patent: February 20, 1990
    Assignee: Exxon Research and Engineering Company
    Inventor: Teh C. Ho
  • Patent number: 4840721
    Abstract: A process for treating a temperature-sensitive hydrocarbonaceous stream containing a non-distillable component to produce a hydrogenated distillable hydrocarbonaceous product and a heavy product comprising the non-distillable component while minimizing thermal degradation of the hydrocarbonaceous stream which process comprises the steps of: (a) contacting the hydrocarbonaceous stream with a hot first hydrogen-rich gaseous stream having a temperature greater than the hydrocarbonaceous stream in a first flash zone at flash conditions including a first pressure thereby increasing the temperature of the hydrocarbonaceous stream and vaporizing at least a portion thereof to provide a first hydrocarbonaceous vapor stream comprising hydrogen and a first heavy product stream comprising the non-distillable component; (b) contacting the first heavy product stream comprising the non-distillable component with a hot second hydrogen-rich gaseous stream in a second flash zone at flash conditions including a second pressure
    Type: Grant
    Filed: March 16, 1988
    Date of Patent: June 20, 1989
    Assignee: UOP
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 4828675
    Abstract: A process for the production of high octane gasoline, or high octane gasoline blending components, from a sulfur-containing feed rich in fused two-ring aromatic hydrocarbons, inclusive of naphthalenes. The feed is hydrogenated in a first reaction zone to desulfurize the feed and saturate one ring of the fused two-ring aromatic hydrocarbons, but insufficient to saturate the second ring of said molecular species, to form tetralins. The product, as a feed, is reacted in a second reaction zone over a catalyst comprised of elemental iron and one or more alkali or alkaline-earth metals components to selectively hydrogenate and crack the previously hydrogenated fused two-ring aromatic hydrocarbons to produce lower molecular weight higher octane components suitable per se as gasoline, or gasoline blending components.
    Type: Grant
    Filed: December 4, 1987
    Date of Patent: May 9, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Willard H. Sawyer, Carl W. Hudson
  • Patent number: 4828676
    Abstract: A process for the production of high octane gasoline, or high octane gasoline blending components from a sulfur and nitrogen-containing feed composition of wide boiling range rich in fused multi-ring aromatic hydrocarbons containing two, and three or more rings in the molecule. The feed is first hydrogenated to desulfurize, denitrogenate and saturate one ring of the two-ring molecular species, but insufficient to saturate the second ring of said molecular species. The product, as a feed, is then hydrocracked to crack fused multi-ring aromatic hydrocarbons containing three or more rings to the molecule, and to produce lower molecular weight, lower boiling components. The product of the hydrocracker is then split into blends which include (i) a blend rich in fused two-ring aromatic hydrocarbons and (ii) a blend rich in fused multi-ring aromatic hydrocarbons containing three or more rings to the molecule.
    Type: Grant
    Filed: December 7, 1987
    Date of Patent: May 9, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Willard H. Sawyer, Carl W. Hudson, Robert H. Waghorne
  • Patent number: 4818368
    Abstract: A process for treating a temperature-sensitive hydrocarbonaceous stream containing a non-distillable component to produce a hydrogenated distillable hydrocarbonaceous product while minimizing thermal degradation of the hydrocarbonaceous stream which process comprises the steps of: (a) contacting the hydrocarbonaceous stream with a first hydrogen-rich gaseous stream having a temperature greater than the hydrocarbonaceous stream in a flash zone at flash conditions thereby increasing the temperature of the hydrocarbonaceous stream and vaporizing at least a portion thereof to provide a hydrocarbonaceous vapor stream comprising hydrogen and a heavy stream comprising the non-distillable component; (b) contacting the hydrocarbonaceous vapor stream comprising hydrogen with a hydrogenation catalyst in a hydrogenation reaction zone at hydrogenation conditions to increase the hydrogen content of the hydrocarbonaceous compounds contained in the hydrocarbonaceous vapor stream; (c) condensing at least a portion of the resu
    Type: Grant
    Filed: October 28, 1987
    Date of Patent: April 4, 1989
    Assignee: UOP Inc.
    Inventors: Tom N. Kalnes, Robert B. James, Jr., Darrell W. Staggs
  • Patent number: 4814063
    Abstract: Described is the method of producing the super needle coke from graphite electrodes, wherein the starting material derived from coal tar or the starting material derived from coal tar and containing less than 0.1 weight percent of the dry sludges or quinoline insolubles is subjected to hydrogenation in the present of hydrogenation catalyst to give the hydrogenated oil which is further subjected to thermal cracking under the controlled condition and non-volatile components contained in thermally cracked oil are removed to give the starting coking material from the distillate these of which is subjected to delayed coking.The thermal cracking conditions are selected from the conditions in which the pressure range is up to 3.9 MPa (40 kg/cm.sup.2 G.). The temperature is 470.degree. to 520.degree. C. and the cold residence time is to to 350 seconds, while the coking conditions are selected from the conditions in which the temperature ranged is over 450.degree. to 465.degree. C. and the pressure range is over 0.
    Type: Grant
    Filed: September 8, 1987
    Date of Patent: March 21, 1989
    Assignee: Nippon Kokan Kabushiki Kaisha
    Inventors: Tadashi Murakami, Mikio Nakaniwa, Yoshio Nakayama
  • Patent number: 4810355
    Abstract: The process of the invention relates to the production of dehazed white oil possessing long-term low temperature storage stability. The white oil is dehazed with a dehazing catalyst comprising a Group VIII metal incorporated with a shape-selective molecular sieve selected from the Group consisting of a ZSM-5 type zeolite and a crystalline borosilicate molecular sieve.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: March 7, 1989
    Assignee: Amoco Corporation
    Inventor: P. Donald Hopkins
  • Patent number: 4786402
    Abstract: Medicinal white oils and medicinal paraffins are prepared from petroleum fractions containing aromatics and nitrogen, oxygen and sulfur compounds, e.g. light and heavy atmospheric gas oils, vacuum gas oils and residues, which have been pretreated in a first stage by acid treatment or catalytic hydrogenation, by hydrogenation in a second stage over a nickel-containing catalyst under from 50 to 200 bar and at elevated temperatures, by a process in which the catalyst used in the second stage and present in the oxide form is reduced with a hydrogen-containing gas, passivated and then again activated with hydrogen, before the hydrogenation to medicinal white oils or paraffins is carried out.
    Type: Grant
    Filed: August 6, 1987
    Date of Patent: November 22, 1988
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Anstock, Walter Himmel, Matthias Schwarzmann, Heinz Dreyer, Ulrich Lebert, Ansgar Eisenbeis
  • Patent number: 4780193
    Abstract: Catalytic cracking of hydrocarbon feedstocks is improved by hydrotreating the cracking feed under conditions of relatively low temperature, typically below 390.degree. C. for start-of-cycle, and high pressure, typically above 10,000 kPa, preferably above 12,000 kPa. The use of these conditions favors aromatics saturation to produce a cracking feed of improved crackability so that higher conversion is achieved in the cracking step at constant cracking conditions with production of naphtha of good octane quality. At the same time, desulfurization is achieved to maintain cracker SO.sub.x emissions at required levels; the advantages of high pressure operation are more notable at high denitrogenation severities while still achieving a low catalyst aging rate.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: October 25, 1988
    Assignee: Mobil Oil Corporation
    Inventors: W. Rodman Derr, Jr., Robert E. Holland, Stephen J. McGovern, William J. Tracy, III
  • Patent number: 4770763
    Abstract: A process for producing a lubricant base oil with low pour point and high aromaticity from a feedstock oil which is either a distillate fraction boiling at 250.degree. C. or above that is obtained from a paraffin base or mixed base crude or a deasphalted oil obtained from a vacuum distillation residual oil of said crude, and process comprising:(a) the step of bringing said feedstock oil into contact with a hydrofining catalyst in the presence of hydrogen and recovering a hydrofined oil;(b) the step of dewaxing said hydrofined oil and recovering the dewaxed oil;(c) the step of subjecting said dewaxed oil to extraction with a solvent having selective affinity for aromatic hydrocarbons so as to separate the feed into the raffinate portion and the extract portion, and removing the solvent from said extract portion to obtain an extract oil; and(d) the step of treating said extract oil by means of contact with a solid adsorbent or sulfuric acid.
    Type: Grant
    Filed: June 23, 1987
    Date of Patent: September 13, 1988
    Assignees: Nippon Mining Co., Ltd., Kyodo Oil Technical Research Center Co., Ltd.
    Inventors: Sampo Kusayanagi, Takashi Kaimai
  • Patent number: 4762608
    Abstract: Pyrolysis tars are upgraded by hydrotreatment in the presence of a catalyst having a hydrogenation component and an acidic component. The treated pyrolysis tars are used to produce premium cokes useful in the production of graphite electrodes.
    Type: Grant
    Filed: December 20, 1984
    Date of Patent: August 9, 1988
    Assignee: Union Carbide Corporation
    Inventors: Rostislav Didchenko, Eric M. Dickinson
  • Patent number: 4755280
    Abstract: A process for improving the color and oxidation stability of feed characterized as an admixture of liquid hydrocarbon compounds, inclusive of fused multi-ring aromatic and hydroaromatic hydrocarbons. This feed, which boils within a range of from about 224.degree. C. to about 538.degree. C. and contains moderate to high concentrations of organic sulfur and organic nitrogen compounds, is (1) hydrotreated over a hydrotreating catalyst at hydrotreating conditions, or (2) hydrotreated over a hydrotreating catalyst at hydrotreating conditions and the high boiling product therefrom hydrocracked over a hydrocracking catalyst at hydrocracking conditions, to obtain a low sulfur, low nitrogen product which is contacted as a feed in the presence of hydrogen, over a catalyst comprised of elemental iron and one or more alkali or alkaline-earth metals components at hydrogen partial pressure and temperature sufficient to improve product color, or stablize the product against light and oxygen degradation, or both.
    Type: Grant
    Filed: July 31, 1985
    Date of Patent: July 5, 1988
    Assignee: Exxon Research and Engineering Company
    Inventors: Carl W. Hudson, Glen P. Hamner
  • Patent number: 4743356
    Abstract: Resid hydrotreating conversion of resid can be substantially increased by decreasing the feed gas rate and simultaneously increasing the concentration of hydrogen in the feed gases. Hydrogen purity can be increased by increasing the flow rate of lean sponge oil into the sponge oil absorbers, bleeding some of the recycled reactor tail gases, and increasing the makeup gas rate.
    Type: Grant
    Filed: September 24, 1986
    Date of Patent: May 10, 1988
    Assignee: Amoco Corporation
    Inventors: David J. Soderberg, Norman K. McDaniel, Norman R. Woods
  • Patent number: 4740291
    Abstract: Pyrolysis tars are upgraded by hydrotreatment thereof in the presence of an acidic catalyst. The treated pyrolysis tars are used to produce premium cokes useful in the production of graphite electrodes.
    Type: Grant
    Filed: December 20, 1984
    Date of Patent: April 26, 1988
    Assignee: Union Carbide Corporation
    Inventors: Rostislav Didchenko, Eric M. Dickinson