With Subsequent Hydrocracking Patents (Class 208/68)
  • Patent number: 11788020
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: October 17, 2023
    Assignees: LUMMUS TECHNOLOGY LLC, Saudi Arabian Technology Company, Chevron Lummus Global LLC
    Inventors: Kareemuddin Shaik, Ujjal Mukherjee, Essam Abdullah Al-Sayed, Pedro Santos, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald M. Venner
  • Patent number: 11773037
    Abstract: A process for producing light alkanes and creating a flexible distribution system for those alkanes and related systems are disclosed. The process can include supplying a butane feed stream to a butane conversion unit to produce a light alkane output stream including at least methane, ethane, propane, and hydrogen, separating at least part of the light alkane output stream into separate streams of methane, ethane, and propane and distributing the separated streams as desired. The distribution of the separated streams can include sending the separated ethane and propane streams to downstream processing units which use them as feedstock. The butane containing feed and/or unreacted butane feed can include isobutane, which can be converted to n-butane and then further processed.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: October 3, 2023
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Dustin Fickel, Ramakumar Allada, Kaushik Gandhi, Uwaidh Al-Harethi, Robert Broekhuis
  • Patent number: 11760947
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: September 19, 2023
    Assignees: LUMMUS TECHNOLOGY LLC, Saudi Aramco Technologies Company, Chevron Lummus Global LLC
    Inventors: Kareemuddin Shaik, Ujjal Mukherjee, Essam Abdullah Al-Sayed, Pedro Santos, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald M. Venner
  • Patent number: 11674095
    Abstract: A process of reforming a diesel feedstock to convert diesel to a gasoline blending component may include desulfurizing and denitrogenizing the diesel feedstock to reduce the sulfur and nitrogen content; and then hydrocracking the diesel feedstock over a metal containing zeolitic catalyst to produce an isomerate fraction. The diesel feedstock may have boiling points ranging from 200 to 360° C.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: June 13, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Omer Refa Koseoglu, Ashok Kumar Punetha
  • Patent number: 11624033
    Abstract: A process for the catalytic cracking of hydrocarbon oils includes the step of contacting a hydrocarbon oil feedstock with a catalytic cracking catalyst in a reactor having one or more fast fluidized reaction zones for reaction. At least one of the fast fluidized reaction zones of the reactor is a full dense-phase reaction zone, and the axial solid fraction ? of the catalyst is controlled within a range of about 0.1 to about 0.2 throughout the full dense-phase reaction zone. When used for catalytic cracking of hydrocarbon oils, particularly heavy feedstock oils, the process, reactor and system show a high contact efficiency between oil and catalyst, a selectivity of the catalytic reaction, an effectively reduced yield of dry gas and coke, and an improved yield of high value-added products such as ethylene and propylene.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: April 11, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jianhong Gong, Zhigang Zhang, Xiaoli Wei
  • Patent number: 11597883
    Abstract: Favorable isomerization conditions for producing normal paraffins can produce olefins. The process for separating normal paraffins from non-normal paraffins by adsorption has a limit on olefin concentration, so the olefins must be removed. We propose to remove olefins from the isomerization effluent stream that is recycled to the adsorption separation process.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: March 7, 2023
    Assignee: UOP LLC
    Inventors: Mark Lapinski, Ram Ganesh Rokkam, Gregory Funk
  • Patent number: 11421167
    Abstract: Integrated pyrolysis and hydrocracking systems and processes for efficiently cracking of hydrocarbon mixtures, such as mixtures including compounds having a normal boiling temperature of greater than 450° C., 500° C., or even greater than 550° C., such as whole crudes for example, are disclosed.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 23, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Ujjal K. Mukherjee, Kandasamy Meenakshi Sundaram, Ronald M. Venner, Stephen J. Stanley
  • Patent number: 11390817
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 19, 2022
    Assignees: LUMMUS TECHNOLOGY LLC, Saudi Aramco Technologies Company, Chevron Lummus Global LLC
    Inventors: Kareemuddin Shaik, Ujjal Mukherjee, Essam Abdullah Al-Sayed, Pedro Santos, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald Venner
  • Patent number: 10808188
    Abstract: A catalytic cracking process includes the following steps: i) subjecting a heavy feedstock oil to flail catalytic cracking; ii) separating the catalytic cracking reaction product obtained from step i) to obtain a catalytic cracking gasoline and a catalytic cracking light cycle oil; iii) splitting the catalytic cracking gasoline to obtain a light gasoline fraction, a medium gasoline fraction and a heavy gasoline fraction; iv) subjecting the catalytic cracking light cycle oil to hydrogenation to obtain a hydrogenated light cycle oil); v) mixing a portion of the light gasoline fraction with at least a portion of the hydrogenated light cycle oil to obtain a mixed fraction; vi) subjecting the mixed fraction to catalytic cracking; and vii) subjecting a portion of the medium gasoline fraction to flail catalytic cracking. The process is capable of producing more catalytic cracking gasoline, reducing the olefin content of the catalytic cracking gasoline, and increasing its octane number.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: October 20, 2020
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jianhong Gong, Zekun Li, Jinlian Tang, Anguo Mao, Jiushun Zhang, Yuying Zhang, Jun Long
  • Patent number: 9523668
    Abstract: A fuel property determination method includes a reaction mechanism analysis process (S1) of analyzing elementary reactions that compose chemical reactions between a plurality of types of initial materials including the materials that compose the fuel and obtaining the elementary reactions as fuel elementary reactions, and an octane number determination process (S2) of calculating the combustion characteristics of the fuel by performing a simulation based on the fuel elementary reactions and determining the octane number based on the combustion characteristics of the fuel.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: December 20, 2016
    Assignees: TOHOKU UNIVERSITY, IHI CORPORATION
    Inventors: Kaoru Maruta, Hisashi Nakamura, Soichiro Kato
  • Patent number: 9157037
    Abstract: A process and apparatus for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with catalyst to form a cracked stream and spent catalyst, hydrotreating a portion of the cracked stream and then mixing the hydrotreated stream with an unprocessed second crude stream.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 13, 2015
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Daniel B. Gillis
  • Patent number: 8888991
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive comprises cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive can be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention can also provide methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 18, 2014
    Inventor: Roger G. Etter
  • Patent number: 8709233
    Abstract: In the invention, tar is upgraded by deasphalting and then hydrocracking to produce valuable products such as low sulfur diesel fuel and mogas. The invention is also directed to a system integrating a pyrolysis furnace operation with refinery operations.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 29, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen
  • Patent number: 8691076
    Abstract: Disclosed is a method of manufacturing high-quality naphthenic base oil by subjecting, as a feedstock, light cycle oil (LCO) and slurry oil (SLO) obtained through fluidized catalytic cracking (FCC) to hydrotreating and dewaxing.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: April 8, 2014
    Assignee: SK Lubricants Co., Ltd.
    Inventors: Chang Kuk Kim, Jee Sun Shin, Ju Hyun Lee, Sam Ryong Park, Gyung Rok Kim, Yoon Mang Hwang
  • Patent number: 8674153
    Abstract: A method for converting lignocellulosic biomass to a useful fuel is disclosed in a process sequence resulting in low levels of depositable tars in an output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones extends beyond the time required for methane formation. This sequence results in low tar deposit levels. The catalyst promotes preferential formation of methane and non-deposit forming hydrocarbons, and coke re-gasification.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 18, 2014
    Assignee: G4 Insights Inc.
    Inventors: Brian G. Sellars, Matthew L. Babicki, Bowie G. Keefer, Edson Ng
  • Publication number: 20130292298
    Abstract: Disclosed are a catalytic cracking method and an apparatus for implementing the method.
    Type: Application
    Filed: November 2, 2011
    Publication date: November 7, 2013
    Inventor: Baozhen Shi
  • Publication number: 20130261340
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Inventor: Marshall Medoff
  • Publication number: 20130233764
    Abstract: The invention relates to upgraded pyrolysis products, processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes, and the use of upgraded pyrolysis products.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 12, 2013
    Inventors: Stephen H. Brown, S. Mark Davis, Teng Xu, Keith G. Reed, Ananthakrishnan Bhasker
  • Publication number: 20130087483
    Abstract: A process for maximizing p-xylene production includes producing a naphtha fraction and a light cycle oil fraction from a fluid catalytic cracking zone. These fractions are combined and hydrotreated. Fractionation of the hydrotreated product makes a hydrocracker feed that is sent to a hydrocracking zone to make a naphtha cut and a hydrocracker product. The hydrocracker product is recycled back to the fractionation zone, and the naphtha cut is dehydrogenated in a dehydrogenation zone to make aromatics. Reforming catalyst from a catalyst regenerator moves downward through the dehydrogenation zone. Straight run naphtha and raffinate from the aromatics unit are introduced to an additional series of reforming zones. The reforming catalyst moves in parallel through the first reforming zone and the dehydrogenation zones, then is combined for entry to the second and subsequent reforming zones prior to regeneration.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Applicant: UOP LLC
    Inventors: Robert Haizmann, Laura E. Leonard
  • Patent number: 8383871
    Abstract: Embodiments of a thermochemical method to convert lignocellulosic biomass to a useful fuel are disclosed in a process sequence resulting in low levels of depositable tars in the output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. and under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones is extended well beyond the time required for methane formation. This sequence results in low depositable tars in the output gas stream.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 26, 2013
    Inventors: Brian G. Sellars, Matthew L. Babicki, Bowie G. Keefer, Edson Ng
  • Patent number: 8372265
    Abstract: Undesirable gas oil components are selectively cracked or coked in a coking vessel by injecting an additive into the vapors of traditional coking processes in the coking vessel prior to fractionation. The additive contains catalyst(s), seeding agent(s), excess reactant(s), quenching agent(s), carrier(s), or any combination thereof to modify reaction kinetics to preferentially crack or coke these undesirable components that typically have a high propensity to coke. Exemplary embodiments of the present invention also provide methods to control the (1) coke crystalline structure and (2) the quantity and quality of volatile combustible materials (VCMs) in the resulting coke. That is, by varying the quantity and quality of the catalyst, seeding agent, and/or excess reactant the process may affect the quality and quantity of the coke produced, particularly with respect to the crystalline structure (or morphology) of the coke and the quantity & quality of the VCMs in the coke.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 12, 2013
    Inventor: Roger G. Etter
  • Publication number: 20130026065
    Abstract: An integrated process and system for conversion of a heavy crude oil to produce transportation fuels is provided. The process includes separating the hydrocarbon feed into an aromatic-lean fraction and an aromatic-rich fraction. The aromatic-rich fraction is hydrocracked under relatively high pressure to convert at least a portion of refractory aromatic organosulfur and organonitrogen compounds and to produce a hydrocracked product stream. Unconverted bottoms effluent is recycled to the aromatic separation step. The aromatic-lean fraction is cracked in a fluidized catalytic cracking reaction zone to produce a cracked product stream, a light cycle oil stream and a heavy cycle oil stream. In certain embodiments the aromatic-lean fraction can be hydrotreated prior to fluidized catalytic cracking.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Inventor: Omer Refa Koseoglu
  • Publication number: 20130001129
    Abstract: A catalytic conversion process for increasing the cetane number barrel of diesel, in which contacting the feedstock oil with a catalytic cracking catalyst having a relatively homogeneous activity containing mainly the large pore zeolites in a catalytic conversion reactor, wherein the reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil and containing a diesel; the reaction temperature ranges from about 420° C. to about 550° C.; the residence time of oil vapors ranges from about 0.1 to about 5 seconds; the weight ratio of the catalytic cracking catalyst/feedstock oil is about 1-about 10. The fluid catalytic cracking gas oil is fed into other unit for further treatment or is fed back to the initial catalytic conversion reactor.
    Type: Application
    Filed: October 20, 2010
    Publication date: January 3, 2013
    Applicants: Research Institute of Petroleum Processing, Sinopec, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Publication number: 20120222991
    Abstract: Novel catalytic compositions for cracking of crude oil fractions are disclosed. The catalytic compositions comprise a basic material. When used in a cracking process, preferably a FCC process, the resulting LCO and HCO fractions have desirably low aromatics levels. Further disclosed is a one-stage FCC process using the catalytic composition of the invention. Also disclosed is a two-stage FCC process for maximizing the LCO yield.
    Type: Application
    Filed: April 2, 2012
    Publication date: September 6, 2012
    Applicant: ALBEMARLE NETHERLANDS B.V.
    Inventors: PAUL O'CONNOR, KING YEN YUNG, AVELINO CORMA CANOS, ELBERT ARJAN DE GRAAF, ERJA PÄIVI HELENA RAUTIAINEN
  • Patent number: 8206574
    Abstract: A reactor process added to a coking process to modify the quantity or yield of a coking process product and/or modify certain characteristics or properties of coking process products.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: June 26, 2012
    Inventor: Roger G. Etter
  • Publication number: 20110180456
    Abstract: This invention relates to a process for cracking hydrocarbon feedstock containing resid comprising: (a) heating a hydrocarbon feedstock containing resid; (b) adding molecular hydrogen to said heated feedstock to form a mixture stream; (c) adding a catalyst containing metal-sulfide particles to said heated feedstock and/or said mixture stream; (d) reacting said mixture in a catalytic hydrovisbreaking reactor under conditions of temperature, pressure and residence time sufficient to catalytically hydrovisbreak at least a portion of said resid into hydrovisbroken hydrocarbon components; (e) passing said reacted mixture stream into a high pressure separator and separating hydrogen from said reacted mixture; (f) passing said reacted mixture through a knockout drum to remove catalyst and unreacted or uncracked resid as a bottoms stream; and (g) passing said catalytically hydrovisbroken hydrocarbon components into a steam cracking furnace and thermally cracking said hydrocarbon components to form light olefins, a
    Type: Application
    Filed: January 22, 2010
    Publication date: July 28, 2011
    Inventors: Stephen Mark Davis, Paul F. Keusenkothen, Jonathan Martin Mcconnachie, Larry L. Iaccino, Richard C. Stell
  • Publication number: 20110174682
    Abstract: The present invention is directed to a process for hydroprocessing of a liquid hydrocarbon feedstock, comprising: (a) mixing liquid, partially vaporized and/or vaporized hydrocarbon feedstock with molecular hydrogen; (b) feeding said mixture into a compression reactor; (c) compressing said mixture to a pressure, a temperature and for a residence time sufficient to: i) thermally crack at least a portion of hydrocarbon molecules in said hydrocarbon feedstock, and ii) react hydrogen in the presence of a hydrogenation catalyst with unstable portions of the cracked molecules, forming a hydroprocessed product; and (d) expanding said mixture to reduce the pressure and temperature thereby reducing subsequent undesirable reactions.
    Type: Application
    Filed: January 18, 2010
    Publication date: July 21, 2011
    Inventor: Larry L. Iaccino
  • Publication number: 20110073523
    Abstract: The present invention relates to a catalytic conversion process for producing more diesel and propylene, comprising contacting the feedstock oil with a catalyst having a relatively homogeneous activity in a reactor, wherein the reaction temperature, weight hourly space velocity and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from 12 to 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil; the fluid catalytic cracking gas oil is fed into the fluid catalytic cracking gas oil treatment device for further processing. Catalytic cracking, hydrogenation, solvent extraction, hydrocracking and process for producing more diesel are organically combined together, and hydrocarbons such as alkanes, alkyl side chains in the feedstocks for catalysis are selectively cracked and isomerized.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Shouye CUI, Youhao XU, Zhihai HU, Jianhong GONG, Chaogang XIE, Yun CHEN, Zhigang ZHANG, Jianwei DONG
  • Patent number: 7815791
    Abstract: A process and apparatus are provided for steam cracking heavy feeds, including steam cracked tars. The invention heats a steam cracked tar feed to provide a depolymerized steam cracked tar containing lower boiling molecules than the steam cracked tar feed, hydrogenates the depolymerized steam cracked tar using a hydrogenating catalyst, e.g., a downward flow fixed bed hydrotreater, to provide a hydrogenated steam cracked tar. At least a portion of the hydrogenated steam cracked tar is steam cracked in a steam cracking furnace comprising a convection zone and a radiant zone.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 7815789
    Abstract: A process to prepare a base oil having a viscosity index of above 80 and a saturates content of above 90 wt % from a crude derived feedstock by (a) contacting a crude derived feedstock in the presence of hydrogen with a catalyst having at least one Group VIB metal component and at least one non-noble Group VIII metal component supported on a refractory oxide carrier; (b) adding to the effluent of step (a) or part of the effluent of step (a) a Fischer-Tropsch derived fraction boiling at least partly in the base oil range in an amount effective to achieve the target viscosity index of the final base oil; and (c) dewaxing the mixture as obtained in step (b).
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: October 19, 2010
    Assignee: Shell Oil Company
    Inventors: Peter James Wardle, William Leonard Alexander King
  • Patent number: 7803265
    Abstract: A process is disclosed for converting distillate to gasoline-range hydrocarbons using a two-stage catalyst system including a first catalyst containing platinum, palladium, or platinum and palladium, and an acidic support, and a second catalyst containing iridium and an inorganic oxide support, and optionally nickel.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: September 28, 2010
    Assignee: ConocoPhillips Company
    Inventors: Tushar V. Choudhary, Paul F. Meier, Edward L. Sughrue, II, Walter E. Alvarez
  • Publication number: 20100155295
    Abstract: A process and apparatus for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with catalyst to form a cracked stream and spent catalyst, hydrotreating a portion of the cracked stream and then mixing the hydrotreated stream with an unprocessed second crude stream.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Inventors: Brian W. Hedrick, Daniel B. Gillis
  • Publication number: 20090288987
    Abstract: Contact of a crude feed with one or more catalysts comprising one or more metals from Column 6 of the Periodic Table produces a total product that includes a crude product. The crude feed contains oxygen and sulfur. The crude product is a liquid mixture at 25° C. and 0.101 MPa and contains at most 90% of the oxygen content of the crude feed and from 70% to 130% of the sulfur content of the crude feed.
    Type: Application
    Filed: July 30, 2009
    Publication date: November 26, 2009
    Inventors: Opinder Kishan BHAN, Scott Lee Wellington
  • Patent number: 7563357
    Abstract: A process for steam cracking liquid hydrocarbon feedstocks containing synthetic crude oil comprises i) hydroprocessing a wide boiling range aliquot containing a) normally liquid hydrocarbon portion substantially free of resids and b) thermally cracked hydrocarbon liquid, boiling in a range from about 600° to about 1050° F., to provide a synthetic crude oil substantially free of resids; ii) adding to the synthetic crude oil a normally liquid hydrocarbon component boiling in a range from about 100° to about 1050° F.; and iii) cracking the mixture resulting from ii) in a cracker furnace comprising a radiant coil outlet to provide a cracked effluent, wherein the cracking is carried out under conditions sufficient to effect a radiant coil outlet temperature which is greater than the optimum radiant coil outlet temperature for cracking the synthetic crude oil separately. A method for upgrading synthetic crude for use in cracking is also provided, as well as a feedstock for cracking.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 21, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F Keusenkothen, James N McCoy, James Earl Graham, Chad David Reimann
  • Publication number: 20090050523
    Abstract: A method for thermally cracking a feed composed of whole crude oil and/or natural gas condensate using a vaporizer to vaporize the feed before cracking same, recovering pyrolysis gas oil from the cracked feed, subjecting the recovered pyrolysis gas oil to hydrocracking to form a paraffinic hydrocracked product, and passing at least part of the hydrocracked product to the vaporizer as additional thermal cracking feed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Inventor: Richard B. Halsey
  • Patent number: 7431823
    Abstract: The instant invention is directed to a new residuum full hydroconversion slurry reactor system that allows the catalyst, unconverted oil and converted oil to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is partially separated in between the reactors to remove only the products and hydrogen, while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor where a portion of the unconverted oil is converted to lower boiling point hydrocarbons, once again creating a mixture of unconverted oil, converted oil, and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a highly concentrated catalyst in unconverted oil which can be recycled directly to the first reactor.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, Bruce Reynolds
  • Patent number: 7431822
    Abstract: Applicants have developed a new residuum full hydroconversion slurry reactor system that allows the catalyst, unconverted oil, hydrogen, and converted oil to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is separated internally, within one of more of the reactors, to separate only the converted oil and hydrogen into a vapor product while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor as a liquid product. A portion of the unconverted oil is then converted to lower boiling point hydrocarbons in the next reactor, once again creating a mixture of unconverted oil, hydrogen, converted oil, and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a concentrated catalyst in unconverted oil which can be recycled directly to the first reactor.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, James Murphy, Bruce Reynolds
  • Patent number: 7431831
    Abstract: A new residuum full hydroconversion slurry reactor system has been developed that allows the catalyst, unconverted oil, products and hydrogen to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is partially separated in between the reactors to remove only the products and hydrogen while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor. In the next reactor, a portion of the unconverted oil is converted to lower boiling point hydrocarbons, once again creating a mixture of unconverted oil, products, hydrogen and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a highly concentrated catalyst in unconverted oil which can be recycled directly to the first reactor. The slurry reactor system is, in this invention, preceded by an in-line pretreating step, such as hydrotreating or deasphalting.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, Bruce Reynolds
  • Patent number: 7326332
    Abstract: A multi component catalyst and catalytic cracking process for selectively producing C3 olefins. The catalyst comprises a first molecular sieve having an intermediate pore size, a second molecular sieve and, optionally a third molecular sieve having a large pore size. At least one of the channels of the second molecular sieve has a pore size index that is less than the pore size index of at least one channel of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 5 carbon atoms is contacted, under catalytic cracking conditions, with the multi component catalyst. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, John Scott Buchanan, Brian Erik Henry, Paul F. Keusenkothen, Philip A. Ruziska, David L. Stern
  • Patent number: 7318845
    Abstract: A distillate fuel steam reformer system in which a fuel feed stream is first separated into two process streams: an aliphatics-rich, sulfur-depleted gas stream, and an aromatics- and sulfur-rich liquid residue stream. The aliphatics-rich gas stream is desulfurized, mixed with steam, and converted in a reforming reactor to a hydrogen-rich product stream. The aromatics-rich residue stream is mixed with air and combusted to provide heat necessary for endothermic process operations. Reducing the amounts of sulfur and aromatic hydrocarbons directed to desulfurzation and reforming operations minimizes the size and weight of the overall apparatus. The process of the invention is well suited to the use of microchannel apparatuses for heat exchangers, reactors, and other system components, which may be assembled in slab configuration, further reducing system size and weight.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: January 15, 2008
    Assignee: Applied Research Associates, Inc.
    Inventors: Aly H. Shaaban, Timothy J. Campbell
  • Patent number: 6797153
    Abstract: A catalyst for the hydrocracking of heavy oils contains iron and active carbon having an MCH conversion rate of 40-80%, a specific surface area of 600-1000 m2/g of, a pore volume of 0.5 to 1.4 cm3/g, 2-50 nanometers' mesopore volume of not less than 60% and an average pore diameter of 3-6 nanometers, the iron being carried on the active carbon in an amount of 1 to 20 wt. % to the active carbon. The hydrocracking process using the catalyst includes a first step of conducting hydrocracking at a temperature within the range of 360-450° C. at a hydrogen partial pressure of 2-14 MPaG and a second step of conducting hydrocracking at a temperature within the range of 400-480° C. at a hydrogen partial pressure of 2-18 MPaG, which can suppress the generation of coke and remove, in a high efficiency, heavy metals such as Ni and V, asphaltene, residual carbon, sulfur and nitrogen from the heavy oils.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: September 28, 2004
    Assignees: Petroleum Energy Center, Toyo Engineering Corporation
    Inventors: Hidetsugu Fukuyama, Koji Ohtsuka, Satoshi Terai, Shuhei Sawamoto
  • Patent number: 6755962
    Abstract: A slurry phase reactor is designed to treat extra heavy petroleum crude in a combination of thermal-zone and catalytic-zone in a counterflow system where liquid feed is added to the top and hydrogen at the bottom. Feed enters the gas-phase thermal zone, where it passes to a liquid-phase thermal zone. In the liquid-phase thermal zone, the hydrocarbon is thermally cracked and the unreacted liquid is further passed to a catalytic-zone below in communication with the thermal-zone. Catalyst can be added or removed as required in a continuous mode without shutting down the system. The heat generated inside the catalytic cracking zone is distributed to the entire reactor as the gaseous product flows upward. Feed is brought to the reaction conditions by the heat recovered from the gas-phase zone. Reaction temperature could be controlled by feed temperature.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: June 29, 2004
    Assignee: ConocoPhillips Company
    Inventor: Dwijen K. Banerjee
  • Publication number: 20030150775
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: October 2, 2002
    Publication date: August 14, 2003
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20030132137
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: October 2, 2002
    Publication date: July 17, 2003
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20030100807
    Abstract: The invention includes a process for converting biomass into C7-C10 alkylbenzenes useful as blending components for petroleum or petroleum derived fuels. The process includes a base catalyzed depolymerization of lignin within the biomass, followed by hydroprocessing of the depolymerized lignin to C7-C10 alkylbenzenes. The C7-C10 alkylbenzenes are useful for enhancing the octane level of petroleum or petroleum-derived fuels, such as gasoline. In addition, the C7-C10 alkylbenzenes are useful as intermediates in the production of numerous organic chemicals.
    Type: Application
    Filed: October 5, 2001
    Publication date: May 29, 2003
    Inventors: Joseph S. Shabtai, Wlodzimierz W. Zmierczak, Esteban Chornet, David Johnson
  • Publication number: 20020166797
    Abstract: A slurry phase reactor is designed to treat extra heavy petroleum crude in a combination of thermal-zone and catalytic-zone in a counterflow system where liquid feed is added to the top and hydrogen at the bottom. Feed enters the gas-phase thermal zone, where it passes to a liquid-phase thermal zone. In the liquid-phase thermal zone, the hydrocarbon is thermally cracked and the unreacted liquid is further passed to a catalytic-zone below in communication with the thermal-zone. Catalyst can be added or removed as required in a continuous mode without shutting down the system. The heat generated inside the catalytic cracking zone is distributed to the entire reactor as the gaseous product flows upward. Feed is brought to the reaction conditions by the heat recovered from the gas-phase zone. Reaction temperature could be controlled by feed temperature.
    Type: Application
    Filed: May 9, 2001
    Publication date: November 14, 2002
    Inventor: Dwijen K. Banerjee
  • Publication number: 20010042701
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20010042700
    Abstract: The invention relates to a process for converting naphtha and cycle oils produced in catalytic cracking reactions into light olefins. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it along with naphtha in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: George A. Swan,, William E. Winter
  • Publication number: 20010042702
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6315890
    Abstract: The invention is related to a two step process wherein the first step comprises cracking an olefinic naphtha resulting in a cracked product having a diminished total concentration of olefinic species. The second step comprises hydroprocessing at least a portion of the cracked product, especially a naphtha fraction, to provide a hydroprocessed cracked product having a reduced concentration of contaminant species but without a substantial octane reduction.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, Gordon F. Stuntz, Garland B. Brignac, Thomas R. Halbert