First Stage Is Thermal Or Catalytic Cracking Patents (Class 208/67)
  • Patent number: 11384292
    Abstract: A method for producing a mixture hydrocarbons; a blend for producing a mixture of hydrocarbons; a mixture of hydrocarbons; and use of the mixture of hydrocarbons for producing chemicals and/or polymers.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: July 12, 2022
    Assignee: NESTE OYJ
    Inventors: Virpi Rämö, Antti Ojala, Risto Vapola
  • Patent number: 11274039
    Abstract: The invention relates to a process and an apparatus for producing an olefin-containing feed stream for a steam reforming plant. According to certain embodiments of the invention, the olefin-containing hydrocarbon starting material is for this purpose vaporized and catalytically hydrogenated. The hydrogenation product stream obtained is separated into a gaseous reforming feed stream, which is fed to a steam reforming plant, and a gaseous recycle stream. As a result of the cooling according to the invention of the gaseous recycle stream down to at least partial condensation thereof and the separate recirculation of the gaseous partial recycle stream and of the liquid partial recycle stream, the procurement of a large and complicated circulation compressor is avoided and electric energy for operating this compressor is saved.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: March 15, 2022
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Yue Chen, Swatantra Kumar Shrivastava, Mrityunjoy Samaddar
  • Patent number: 11130919
    Abstract: Methods and systems of producing chemical feedstocks from crude oil can include: introducing a fraction of crude oil into a catalytic hydrovisbreaker reactor, wherein the crude oil fraction is dealkylated after introduction; introducing a product stream from the catalytic hydrovisbreaker reactor and a solvent into a solvent de-asphalter unit; and introducing de-asphalted oil from the unit into a two-stage hydrocracker to produce the chemical feedstocks. The crude oil fraction can be atmospheric residue or vacuum residue. The chemical feedstocks can include C3? gases, C4-C5 gases, naphtha, BTX, and gas oil. The chemical feedstocks can be used to produce olefins and polymers.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: September 28, 2021
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Robert C. Schucker, Sanjeev Rao
  • Patent number: 10913908
    Abstract: Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and fluid catalytic cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: February 9, 2021
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Mohammed Saeed Al-Ghamdi, Bader BaHammam, Naif Al Osaimi, Sami Barnawi
  • Patent number: 10894926
    Abstract: Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking, fluid catalytic cracking and conversion of naphtha to chemical rich reformate. Feeds to the mixed feed steam cracker include light products from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits. Chemical reformate from straight run naphtha streams is used as an additional feed to the aromatics extraction zone and or the mixed feed steam cracker.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: January 19, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohammed Saeed Al-Ghamdi, Bader BaHammam, Naif Al Osaimi, Sami Barnawi
  • Patent number: 10392570
    Abstract: A description is given of a process for hydrotreatment of at least one hydrocarbon feedstock having a weighted average temperature (WAT) of more than 380° C. using at least one catalyst containing at least one metal from Group VIB and/or at least one metal from Group VIII of the periodic table and a support containing an amorphous mesoporous alumina having a connectivity (Z) of more than 2.7, said hydrotreatment process operating at a temperature of between 250° C. and 430° C., at a total pressure of between 4 MPa and 20 MPa with a ratio of volume of hydrogen to volume of hydrocarbon feedstock of between 200 and 2 000 liters per liter and at an Hourly Volume Velocity (HVV) defined by the ratio of the volume flow of liquid hydrocarbon feedstock to the volume of catalyst fed into the reactor of between 0.5 and 5 h?1.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: August 27, 2019
    Assignee: IFP Energies Nouvelles
    Inventors: Malika Boualleg, Antoine Hugon
  • Patent number: 9376626
    Abstract: A process for producing mesophase pitch using a long tube reactor is disclosed. An aromatic rich feed, preferably a petroleum pitch having a softening point above 100° C., is preheated to a temperature above its softening point and mixed with a vapor, preferably steam, in a long tubular reactor under intense mixing conditions, preferably fully developed turbulent flow such as mist annular flow, with a residence time at least an order of magnitude less than prior art processes and preferably less than 10 seconds. Preferably the reactor is heated by electric resistance or induction heating or by immersion in a heated fluid or in a fired heater. Mesophase pitch with a high coking value and a surprisingly low quinolone insoluble content is produced. The byproducts of thermal polymerization and thermal dealkylation have less than 50% as much olefin and diene content as compared to similar byproducts from prior art processes.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 28, 2016
    Assignee: ADVANCED CARBON PRODUCTS, LLC
    Inventors: Donald P. Malone, Donald M. Lee
  • Patent number: 9039890
    Abstract: A process for the production of high yields of high quality products from heavy hydrocarbonaceous feedstock comprising a two-stage, close-coupled process, wherein the first stage comprises a thermal-catalytic zone into which is introduced a mixture comprising the feedstock, coal, dispersed catalyst, and hydrogen; and the second, close-coupled stage comprises a catalytic-hydrotreating zone into which substantially all the effluent from the first stage is directly passed and processed under hydrotreating conditions.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis R. Cash, Graham J. Forder, David S. Mitchell, Joel W. Rosenthal
  • Patent number: 8968554
    Abstract: The present invention describes a process for the conversion of a heavy feedstock for improving the production and selectivity for middle distillate, said process using a catalytic cracking unit followed by a unit for selective hydrogenation of the heavy distillate cut (HCO) or any other cut rich in triaromatic compounds before recycling it to the FCC reaction zone in order to maximize the middle distillate cut.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 3, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Frederic Feugnet, Damien Hudebine, Romain Roux
  • Patent number: 8940950
    Abstract: The process relates to the use of any naphtha-range stream containing a portion of C8+ aromatics combined with benzene, toluene, and other non-aromatics in the same boiling range to produce toluene. By feeding the A8+ containing stream to a dealkylation/transalkylation/cracking reactor to increase the concentration of toluene in the stream, a more suitable feedstock for the methylation reaction can be produced. This stream can be obtained from a variety of sources, including the pygas stream from a steam cracker, “cat naphtha” from a fluid catalytic cracker, or the heavier portion of reformate.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Justin M. Ellrich, Robert D. Strack, John W. Rebeck, Allen S. Gawlik, Larry L. Iaccino, Glenn C. Wood, Stephen H. Brown, Timothy Paul Bender
  • Patent number: 8932457
    Abstract: A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 13, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8921633
    Abstract: In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12+ olefinic and aromatic hydrocarbons is recovered from the first stream and blended said second stream with a residual fraction from a steam cracker or an atmospheric or vacuum distillation unit to produce a third stream. The third stream is then catalytically pyrolyzed in a reactor under conditions effective to produce a fourth stream having an increased benzene and/or toluene content compared with said second stream and a C3-olefin by-product. The C3-olefin by-product is recovered and benzene and/or toluene are recovered from the fourth stream.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Stephen M. Davis, Steven E. Silverberg
  • Patent number: 8911613
    Abstract: Disclosed is a method of simultaneously manufacturing high quality naphthenic base oil and heavy base oil using a single catalyst system, by subjecting an oil fraction (slurry oil or light cycle oil) produced by fluid catalytic cracking and an oil fraction (deasphalted oil) produced by solvent deasphalting to hydrotreating, catalytic dewaxing and hydrofinishing of the single catalyst system, thereby obtaining not only products having low viscosity but also heavy base oil products (150BS) having high viscosity which was impossible to obtain using a conventional catalytic reaction process, and also thereby producing base oil products having different properties using the single catalyst system, thus generating economic benefits and exhibiting superior efficiency.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 16, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Kyung Seok Noh, Jae Wook Ryu, Do Hyoun Kim, Gyung Rok Kim, Seung Woo Lee, Do Woan Kim, Sun Choi, Seung Hoon Oh, Byung Won Yoon, Bum Suk Chun
  • Patent number: 8888991
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive comprises cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive can be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention can also provide methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 18, 2014
    Inventor: Roger G. Etter
  • Patent number: 8846995
    Abstract: A method for producing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and a 90 volume % distillation temperature of not more than 380° C., the method including: a cracking and reforming reaction step of obtaining a product containing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from the feedstock oil, a refining and collection step of refining and collecting monocyclic aromatic hydrocarbons of 6 to 8 carbon number that have been separated from the product, a hydrogenation reaction step of hydrogenating a heavy fraction of 9 or more carbon number separated from the product, and a recycling step of returning the heavy fraction hydrogenation reaction product obtained in the hydrogenation reaction step to the cracking and reforming reaction step.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: September 30, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi
  • Patent number: 8840778
    Abstract: A method for thermally cracking a carboxylic acid containing hydrocarbonaceous feed wherein the feed is first processed in a vaporization step that contains at least one catalyst effective to convert carboxylic acid species to carbon dioxide and hydrocarbon and/or lower molecular weight acids and hydrocarbon.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: September 23, 2014
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Kenneth M. Webber
  • Patent number: 8815080
    Abstract: Processes for production of olefins from hydrocarbon feedstocks are provided. In one aspect, the processes of the present invention utilize coils passing through a pyrolysis furnace to partially convert a hydrocarbon feedstock to olefins, followed by further conversion of the hydrocarbon feedstock in an adiabatic reactor. A portion of the coils in the pyrolysis furnace carry the hydrocarbon feedstock and the remainder carry steam only. After a selected period of time, the material flowing through the coils is switched. By flowing steam through the coils that had previously contained the hydrocarbon feedstock, on-line decoking can occur. In another aspect, a high temperature reactor is used to convert methane or natural gas to olefins.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 26, 2014
    Assignee: Lummus Technology Inc.
    Inventor: Kandasamy Meenakshi Sundaram
  • Patent number: 8709233
    Abstract: In the invention, tar is upgraded by deasphalting and then hydrocracking to produce valuable products such as low sulfur diesel fuel and mogas. The invention is also directed to a system integrating a pyrolysis furnace operation with refinery operations.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 29, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen
  • Patent number: 8674153
    Abstract: A method for converting lignocellulosic biomass to a useful fuel is disclosed in a process sequence resulting in low levels of depositable tars in an output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones extends beyond the time required for methane formation. This sequence results in low tar deposit levels. The catalyst promotes preferential formation of methane and non-deposit forming hydrocarbons, and coke re-gasification.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 18, 2014
    Assignee: G4 Insights Inc.
    Inventors: Brian G. Sellars, Matthew L. Babicki, Bowie G. Keefer, Edson Ng
  • Patent number: 8658022
    Abstract: A process for cracking a heavy hydrocarbon feed comprising a vaporization step, a hydroprocessing step, and a steam cracking step is disclosed. The heavy hydrocarbon feed is passed to a first zone of a vaporization unit to separate a first vapor stream and a first liquid stream. The first liquid stream is passed to a second zone of the vaporization unit and contacted intimately with a counter-current steam to produce a second vapor stream and a second liquid stream. The first vapor stream and the second vapor stream are cracked in the radiant section of the steam cracker to produce a cracked effluent. The second liquid stream is reacted with hydrogen in the presence of a catalyst to produce a hydroprocessed product. A liquid hydroprocessed product is fed to the vaporization unit.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 25, 2014
    Assignee: Equistar Chemicals, LP
    Inventors: Robert S. Bridges, Sellamuthu G. Chellappan
  • Patent number: 8551324
    Abstract: The present invention describes a process for the production of gasoline in a fluid catalytic cracking unit having at least one principal reactor operating using feeds with a low Conradson Carbon and a high hydrogen content, said process comprising recycling a coking cut either to a side chamber branching off the stripper or within the stripper itself by means of a tubular vessel within said stripper.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Frederic Feugnet, Romain Roux
  • Publication number: 20130248419
    Abstract: An integrated hydrotreating, steam pyrolysis and catalytic cracking process for the production of olefins and aromatic petrochemicals from a crude oil feedstock is provided. Crude oil and hydrogen are charged to a hydroprocessing zone under conditions effective to produce a hydroprocessed effluent, which is thermally cracked in the presence of steam in a steam pyrolysis zone to produce a mixed product stream. Heavy components are catalytically cracked, which are derived from one or more of the hydroprocessed effluent, a heated stream within the steam pyrolysis zone, or the mixed product stream catalytically cracking. Catalytically cracked products are produced, which are combined with the mixed product stream and the combined stream is separated, and olefins and aromatics are recovered as product streams.
    Type: Application
    Filed: March 20, 2013
    Publication date: September 26, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Ibrahim A. ABBA, Raheel SHAFI, Abdennour BOURANE, Essam SAYED, Abdul Rahman Zafer AKHRAS
  • Patent number: 8518239
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 27, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Patent number: 8491781
    Abstract: The present invention describes a reaction zone comprising at least two fluidized reactors, a principal reactor for cracking a heavy hydrocarbon cut, the other, additional, reactor for cracking one or more light cuts, the effluents from the two reactors being treated in a common gas-solid separation and quench zone. Performance is enhanced because the thermal degradation reactions in the reaction zone are controlled in an optimum manner.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 23, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Gauthier, Vincent Coupard, Jan Verstraete, Romain Roux
  • Patent number: 8440070
    Abstract: A process and apparatus process for preparing a resid-containing hydrocarbon feedstock for use in a regenerative pyrolysis reactor, comprising (a) feeding a resid-containing hydrocarbon feedstock to a thermal cracking unit; (b) thermally cracking at least about 60 wt. % of said resid having a boiling point of at least 565° C. in said hydrocarbon feedstock to form a vapor phase containing cracked hydrocarbons; (c) separating said vapor phase from remaining non-volatiles; and (d) converting the separated vapor phase in a regenerative pyrolysis reactor system.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 14, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 8407916
    Abstract: An apparatus for solvent recovery from a solvent/gas mixture from the exhaust air of systems processing printing, painting or other solvents, wherein the solvent/gas mixture from at least one oil-containing solvent/gas mixture is cooled down to a temperature below the lower condensation temperature of the oil of the solvent mixture using a heat exchanger, wherein a further, second heat exchanger is connected upstream of the heat exchanger, said second heat exchanger cooling the solvent/gas mixture specifically to the condensation temperature of an oil present in the mixture and both heat exchangers produce a recovery unit.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: April 2, 2013
    Assignee: Prinotech GmbH
    Inventors: Rainer Haerle, Stephan Krauss
  • Patent number: 8399729
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. DiNicolantonio, John J. Waldrop
  • Patent number: 8383871
    Abstract: Embodiments of a thermochemical method to convert lignocellulosic biomass to a useful fuel are disclosed in a process sequence resulting in low levels of depositable tars in the output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. and under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones is extended well beyond the time required for methane formation. This sequence results in low depositable tars in the output gas stream.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 26, 2013
    Inventors: Brian G. Sellars, Matthew L. Babicki, Bowie G. Keefer, Edson Ng
  • Patent number: 8373013
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Patent number: 8372265
    Abstract: Undesirable gas oil components are selectively cracked or coked in a coking vessel by injecting an additive into the vapors of traditional coking processes in the coking vessel prior to fractionation. The additive contains catalyst(s), seeding agent(s), excess reactant(s), quenching agent(s), carrier(s), or any combination thereof to modify reaction kinetics to preferentially crack or coke these undesirable components that typically have a high propensity to coke. Exemplary embodiments of the present invention also provide methods to control the (1) coke crystalline structure and (2) the quantity and quality of volatile combustible materials (VCMs) in the resulting coke. That is, by varying the quantity and quality of the catalyst, seeding agent, and/or excess reactant the process may affect the quality and quantity of the coke produced, particularly with respect to the crystalline structure (or morphology) of the coke and the quantity & quality of the VCMs in the coke.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 12, 2013
    Inventor: Roger G. Etter
  • Patent number: 8354018
    Abstract: A process is disclosed for catalytically converting two feed streams. The feed to a first catalytic reactor may be contacted with product from a second catalytic reactor to effect heat exchange between the two streams and to transfer catalyst from the product stream to the feed stream. The feed to the second catalytic reactor may be a portion of the product from the first catalytic reactor.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: January 15, 2013
    Assignee: UOP LLC
    Inventors: Laura E. Leonard, Jibreel A. Qafisheh, Robert L. Mehlberg
  • Publication number: 20130001129
    Abstract: A catalytic conversion process for increasing the cetane number barrel of diesel, in which contacting the feedstock oil with a catalytic cracking catalyst having a relatively homogeneous activity containing mainly the large pore zeolites in a catalytic conversion reactor, wherein the reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil and containing a diesel; the reaction temperature ranges from about 420° C. to about 550° C.; the residence time of oil vapors ranges from about 0.1 to about 5 seconds; the weight ratio of the catalytic cracking catalyst/feedstock oil is about 1-about 10. The fluid catalytic cracking gas oil is fed into other unit for further treatment or is fed back to the initial catalytic conversion reactor.
    Type: Application
    Filed: October 20, 2010
    Publication date: January 3, 2013
    Applicants: Research Institute of Petroleum Processing, Sinopec, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8293961
    Abstract: Disclosed is a catalytic cracking process for the production of light olefins from a hydrocarbon feedstock using fast fluidization, which is a preferred process for more efficiently increasing the production of light olefin hydrocarbons. According to this invention, a fast fluidization regime is applied to a fluidized bed catalytic cracking process of producing light olefins using zeolite, such that a volume fraction and distribution of the catalyst sufficient to induce the catalytic cracking reaction can be provided, thus effectively enhancing the production of light olefin hydrocarbons, in particular, ethylene and propylene, at high selectivity.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: October 23, 2012
    Assignee: SK Innovation Co., Ltd.
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Ji Min Kim, Hong Chan Kim, Seung Hoon Oh, Tae-Jin Kim, Dae Hyun Choo
  • Patent number: 8273930
    Abstract: A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 25, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zhiguo Wu, Wenhua Xie, Chaogang Xie, Qiang Liu, Xuhong Mu, Jiushun Zhang, Yibin Luo, Xingtian Shu, Chenghan Yan
  • Patent number: 8263008
    Abstract: A process and apparatus for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with catalyst to form a cracked stream and spent catalyst, hydrotreating a portion of the cracked stream and then mixing the hydrotreated stream with an unprocessed second crude stream.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Daniel B. Gillis
  • Patent number: 8206574
    Abstract: A reactor process added to a coking process to modify the quantity or yield of a coking process product and/or modify certain characteristics or properties of coking process products.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: June 26, 2012
    Inventor: Roger G. Etter
  • Patent number: 8197668
    Abstract: A process and apparatus are provided for upgrading steam cracker tars from steam crackers. The invention also relates to a steam cracking process and apparatus for reducing yields of tars produced from steam cracking while increasing yields of higher value products by heating steam cracker tar, in the presence of hydrogen donor compounds, e.g., tetralin. The hydrogen donor compounds can be provided in a hydrogen donor-rich hydrocarbon stream, e.g., light cycle oils, or low sulfur vacuum tower bottoms. The treated tar can be separated into gas oil, fuel oil and tar streams.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 12, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Glenn A. Heeter, Paul F. Keusenkothen, James N. McCoy, Judith Hey, legal representative
  • Patent number: 8168061
    Abstract: This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 1, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Patent number: 8163168
    Abstract: The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: April 24, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Martin L. Gorbaty, Bruce R. Cook, David T. Ferrughelli, Jason B. English, Steven S. Lowenthal
  • Publication number: 20120067775
    Abstract: A process for the production of high yields of high quality products from heavy hydrocarbonaceous feedstock is provided comprising a two-stage, close-coupled process, wherein the first stage comprises a thermal-catalytic zone into which is introduced a mixture comprising the feedstock, coal, dispersed catalyst, and hydrogen; and the second, close-coupled stage comprises a catalytic-hydrotreating zone into which substantially all the effluent from the first stage is directly passed and processed under hydrotreating conditions.
    Type: Application
    Filed: June 10, 2011
    Publication date: March 22, 2012
    Applicant: 4CRGroup LLC
    Inventors: Dennis R. Cash, Graham J. Forder, David S. Mitchell, Joe W. Rosenthal
  • Publication number: 20120061291
    Abstract: A hydrocarbon feedstock upgrading method is provided. The method includes supplying the hydrocarbon feedstock, water and a pre-heated hydrogen donating composition to a hydrothermal reactor where the mixed stream is maintained at a temperature and pressure greater than the critical temperatures and pressure of water in the absence of catalyst for a residence time sufficient to convert the mixed stream into a modified stream. The hydrogen donating composition is pre-heated and maintained at a temperature of greater than about 50° C. for a period of at least about 10 minutes. The modified stream includes upgraded hydrocarbons relative to the hydrocarbon feedstock. The modified stream is then separated into a gas stream and a liquid stream and the liquid stream is separated into a water stream and an upgraded hydrocarbon product stream.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Ashok K. Punetha, Mohammed R. Al-Dossary, Mohammad F. Aljishi
  • Patent number: 8083931
    Abstract: The invention is directed to a process wherein a feedstock or stream comprising steam cracker tar is passed to a vacuum pipestill. A deasphalted cut of tar is obtained as an overhead (or sidestream) and a heavy tar asphaltenic product is obtained as bottoms. In preferred embodiments, at least a portion of the bottoms product is sent to a partial oxidation unit (POX) wherein syn gas may be obtained as a product, and/or at least a portion of the bottoms product is used to produce a light product stream in a coker unit, such as coker naphtha and/or or coker gas oil. In another preferred embodiment at least a portion of the overheads product is added to refinery fuel oil pools and in yet another preferred embodiment at least a portion of the overheads product is mixed with locally combusted materials to lower soot make. Two or more of the aforementioned preferred embodiments may be combined.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: December 27, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen, Alok Srivastava, James E Graham
  • Publication number: 20110284425
    Abstract: A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.
    Type: Application
    Filed: June 6, 2011
    Publication date: November 24, 2011
    Applicant: The University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventors: Lee E. Brecher, Phyllis J. Brecher, Charles G. Mones, Frank D. Guffey
  • Patent number: 7976695
    Abstract: Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: July 12, 2011
    Assignee: University of Wyoming Research Corporation
    Inventor: Lee E. Brecher
  • Publication number: 20110155634
    Abstract: A process is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Applicant: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 7964090
    Abstract: Systems and methods for processing hydrocarbons are provided. A hydrocarbon containing one or more asphaltenes and one or more non-asphaltenes can be mixed with a solvent. The ratio of the solvent to the hydrocarbon can be about 2:1 to about 10:1. The asphaltenes can be selectively separated from the non-asphaltenes. A portion of the asphaltenes can be vaporized in the presence of gasified hydrocarbons and combustion gas. A portion of the asphaltenes can be cracked at a temperature sufficient to provide a cracked gas. Liquid asphaltenes, solid asphaltenes, or both can be deposited onto one or more solids to provide one or more hydrocarbon containing solids. The cracked gas can be selectively separated from the hydrocarbon containing solids. A portion of the hydrocarbon containing solids can be combusted to provide the combustion gas. The hydrocarbon containing solids can be gasified to provide the gasified hydrocarbons and to regenerate the solids.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 21, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Rashid Iqbal
  • Patent number: 7923595
    Abstract: Process for treating a product stream typically from an autothermal cracking process, the product stream comprising one or more olefins, hydrogen, carbon monoxide, carbon dioxide and one or more oxygenates, by contacting the product stream with at least one compound selected from (1) H2N—OR1, and (2) H2N—NR2R3, where R1, R2 and R3 may each be independently selected from H and carbon-containing substituents.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Ineos Europe Limited
    Inventor: Vaughan Clifford Williams
  • Patent number: 7892500
    Abstract: A system and method for recycling plastics. The system and method recover materials such as hydrocarbon gases, liquid hydrocarbon distillates, various polymers and/or monomers used to produce the original plastics. The system and method allow about one unit of input of energy input to the plastic recycler to be used to create one or more gaseous components and one or more liquid distillate components from a plastic that is being recycled. The one or more gaseous components and one or more liquid distillate components produce about one corresponding unit of useable output energy recovered from the recycling of the plastic.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: February 22, 2011
    Inventor: William E. Carner
  • Patent number: 7883618
    Abstract: Systems and processes for producing one or more olefins. A feed containing 90% by weight or more C4 and higher hydrocarbons can be cracked at conditions sufficient to provide an olefinic mixture and an aromatic mixture. The olefinic mixture can comprise 90% by weight or more C1 to C3 hydrocarbons. The aromatic mixture can comprise 90% by weight or more C4 and higher hydrocarbons and one or more aromatics. The aromatic mixture can be contacted with one or more solvents to selectively separate at least a portion of the one or more aromatics therefrom to provide an aromatic-rich mixture and an aromatic-lean mixture. At least a portion of the aromatic-lean mixture can be recycled to the feed prior to cracking.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 8, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Alan Claude, Anand Subramanian
  • Patent number: 7868214
    Abstract: A process for producing olefins from a feedstock comprising a petroleum and non-petroleum fraction has been developed. The process comprises first pretreating the feedstock to remove contaminants such as alkali metals and then cracking the purified feedstock in a fluidized catalytic cracking (FCC) zone operated at conditions to provide C2-C5 olefins. Alternatively, the non-petroleum fraction can first be treated and then mixed with petroleum fraction to provide the feedstock which is then catalytically cracked.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 11, 2011
    Assignee: UOP LLC
    Inventor: Terry L. Marker