With Cracking Of Total Product From First Stage Patents (Class 208/75)
  • Patent number: 11807816
    Abstract: Systems and methods for the catalytic cracking of light hydrocarbons, such as naphtha, to form light olefins and aromatics is disclosed. The systems and methods may include a catalytic cracking process that involves mixing catalyst with a gas and then this mixture is used to contact a hydrocarbon feed, e.g., light straight run naphtha or heavy straight run naphtha. The hydrocarbon feed may be mixed with dry gas such as methane and/or hydrogen to dilute the hydrocarbon feed, before the hydrocarbon feed is contacted with the catalyst/gas mixture.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: November 7, 2023
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Khalid A. Al-Majnouni, Nabil Al-Yassir, Naif Aldalaan, Ahmed Al-Zenaidi, Khalid Almusaiteer
  • Patent number: 10870803
    Abstract: A method for upgrading a hydrocarbon feed is disclosed. The method may be carried out in a pyrolysis furnace that may have at least two coils and at least two thermal zones. The method may include two operating or run modes that may be repeated in a cycle. In one run, upgrading may be carried out in one coil while decoking may be carried out in the other coil. After a predetermined amount of time, the streams of the two coils may be switched for a second run, such that decoking may be carried out in the coil in which upgrading was done in the first run and upgrading may be carried out in the coil in which decoking was done in the first run. The first and the second run are cyclically repeated one after the other.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: December 22, 2020
    Inventor: Ramin Karimzadeh
  • Patent number: 10344220
    Abstract: Methods and apparatus for fluid catalytic cracking (FCC) of a hydrocarbon feedstock includes a first reactor (1), a second reactor (2), and a regenerator assembly (3) shared and connected with the two reactors. The regenerator assembly (3) includes a regenerator vessel which has a partition (17) dividing the regenerator vessel into a first subunit (18) and a second subunit (19); a plurality of regenerator inlets for receiving a first spent catalyst and second spent catalyst by the first subunit (18) and the second subunit (19); a plurality of regenerator inlet for receiving a first spent catalyst and a second spent catalyst by the first subunit (18) and the second subunit (10) respectively; an air controller (15) to allow for has flow to an air distributor (16) for supply of the gas to the first subunit (18) and the second subunit (19) to combust coke deposited on the first and the second spent catalyst, separately, to a desired degree to generate a fully and a partially regenerated catalyst.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: July 9, 2019
    Assignee: Hindustan Petroleum Corporation Ltd.
    Inventors: Somanath Kukade, Pramod Kumar, Venkata Chalapathi Rao Peddy, Venkateswarlu Choudary Nettem
  • Patent number: 9062525
    Abstract: A system is provided for the production of heavy crude oil from an undersea reservoir, and for the treatment of the crude oil to facilitate its transport. A floating body (12) which produces the heavy crude oil, carries a hydrocarbon cracking station (32) that cracks the heavy crude into light liquid and gaseous hydrocarbons, and that uses heat resulting from the cracking to produce pressured steam. The pressured steam is used to drive a steam-powered engine (72) (with pistons or a turbine) that drives an electrical generator (74) whose electricity powers the system.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: June 23, 2015
    Assignee: SINGLE BUOY MOORINGS, INC.
    Inventors: Donald Maclean, Johannes Christiaan Lanfermeijer, Michael Silverman, Michael Hillerman, Jimmy Pelham
  • Patent number: 8888991
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive comprises cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive can be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention can also provide methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 18, 2014
    Inventor: Roger G. Etter
  • Patent number: 8815080
    Abstract: Processes for production of olefins from hydrocarbon feedstocks are provided. In one aspect, the processes of the present invention utilize coils passing through a pyrolysis furnace to partially convert a hydrocarbon feedstock to olefins, followed by further conversion of the hydrocarbon feedstock in an adiabatic reactor. A portion of the coils in the pyrolysis furnace carry the hydrocarbon feedstock and the remainder carry steam only. After a selected period of time, the material flowing through the coils is switched. By flowing steam through the coils that had previously contained the hydrocarbon feedstock, on-line decoking can occur. In another aspect, a high temperature reactor is used to convert methane or natural gas to olefins.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 26, 2014
    Assignee: Lummus Technology Inc.
    Inventor: Kandasamy Meenakshi Sundaram
  • Patent number: 8778170
    Abstract: A process for producing light olefins and aromatics, which comprises reacting a feedstock with a catalytic cracking catalyst in at least two reaction zones, wherein the reaction temperature of at least one reaction zone downstream of the first reaction zone is higher than that of the first reaction zone and its weight hourly space velocity is lower than that of the first reaction zone. The spent catalyst is separated, from the reaction product vapor, regenerated, and then returned to the reactor. The reaction product vapor is separated to obtain the desired products, light olefins and aromatics. This process efficiently produces light olefins such as propylene, ethylene, etc from heavy feedstocks, wherein the yield of propylene exceeds 20% by weight, and produces aromatics such as toluene, xylene, etc at the same time.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: July 15, 2014
    Assignees: China Petroleum Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Jun Long, Zhijian Da, Dadong Li, Xieqing Wang, Xingtian Shu, Jiushun Zhang, Hong Nie, Chaogang Xie, Zhigang Zhang, Wei Wang
  • Publication number: 20130261340
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Inventor: Marshall Medoff
  • Patent number: 8377287
    Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, collecting a gaseous and liquid product mixture comprising a mixture of a light fraction and a heavy fraction from the product stream, and using a vacuum tower to separate the light fraction as a substantially bottomless product and the heavy fraction from the product mixture.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 19, 2013
    Assignee: Ivanhoe Energy, Inc.
    Inventors: Robert Graham, Barry Freel
  • Patent number: 8372265
    Abstract: Undesirable gas oil components are selectively cracked or coked in a coking vessel by injecting an additive into the vapors of traditional coking processes in the coking vessel prior to fractionation. The additive contains catalyst(s), seeding agent(s), excess reactant(s), quenching agent(s), carrier(s), or any combination thereof to modify reaction kinetics to preferentially crack or coke these undesirable components that typically have a high propensity to coke. Exemplary embodiments of the present invention also provide methods to control the (1) coke crystalline structure and (2) the quantity and quality of volatile combustible materials (VCMs) in the resulting coke. That is, by varying the quantity and quality of the catalyst, seeding agent, and/or excess reactant the process may affect the quality and quantity of the coke produced, particularly with respect to the crystalline structure (or morphology) of the coke and the quantity & quality of the VCMs in the coke.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 12, 2013
    Inventor: Roger G. Etter
  • Patent number: 8206574
    Abstract: A reactor process added to a coking process to modify the quantity or yield of a coking process product and/or modify certain characteristics or properties of coking process products.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: June 26, 2012
    Inventor: Roger G. Etter
  • Patent number: 8163247
    Abstract: A process is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: April 24, 2012
    Assignee: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 8052946
    Abstract: A system and process for upgrading hydrocarbons such as heavy oils includes a high temperature plasma reactor apparatus, in one or more vessels, into which the oils are introduced along with water, such as steam, to produce lighter hydrocarbon fractions, along with carbon monoxide and hydrogen, that flows to an additional stage where more hydrocarbons and water are introduced for further fractionating reactions facilitated by reaction of carbon monoxide and water to produce carbon dioxide and nascent, or prompt, free radicals of hydrogen. Heavy hydrocarbons upgraded can include heavy oils in the form of tar sands, oil shale, and oil residuals. The vessel or vessels can each contain a carbonaceous bed facilitating the described reactions and example embodiments include one vessel with the reactions performed in a single bed and, also, two vessels with the reactions performed in a carbonaceous bed portion in each vessel.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: November 8, 2011
    Assignee: Westinghouse Plasma Corporation
    Inventors: Shyam V. Dighe, Mark Anthony Montemurro, Richard Dale Bower, Aleksandr Gorodetsky, Mark F. Darr, Ivan A. Martorell
  • Patent number: 7803265
    Abstract: A process is disclosed for converting distillate to gasoline-range hydrocarbons using a two-stage catalyst system including a first catalyst containing platinum, palladium, or platinum and palladium, and an acidic support, and a second catalyst containing iridium and an inorganic oxide support, and optionally nickel.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: September 28, 2010
    Assignee: ConocoPhillips Company
    Inventors: Tushar V. Choudhary, Paul F. Meier, Edward L. Sughrue, II, Walter E. Alvarez
  • Patent number: 7736491
    Abstract: A process for the fluid catalytic cracking of mixed hydrocarbon feeds from different sources is described, such as feeds A and B of different crackability, the process being especially directed to obtaining light fractions such as LPG and comprising injecting feed A in the base of the riser reactive section and feed B, of lower crackability, at a height between 10% and 80% of the riser, with feed B comprising between 5% and 50% of the total processed feed. The process requires that the feeds present differences in the contaminant content, improved dispersion of feeds A and B and feed B injection temperature same or higher than that of feed A.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: June 15, 2010
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Claudia Maria de Lacerda Alvarenga Baptista, Henrique Soares Cerqueira, Emanuel Freire Sandes
  • Patent number: 7718052
    Abstract: A process for independently and concurrently cracking at least two different hydrocarbon feedstocks to olefins. The process is carried out in a furnace for cracking hydrocarbon feed which has at least a first and second independent radiant cracking zone to produce a first cracked product and second cracked product that are separately withdrawn from the furnace.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: May 18, 2010
    Assignee: Stone & Webster Technology, Inc.
    Inventors: John Brewer, David Brown, Svend Rumbold
  • Patent number: 7692057
    Abstract: The present invention provides a process for producing lower olefins by catalytic cracking a feedstock comprising an olefins-enriched mixture containing C4 or higher olefins and optionally an organic oxygenate compound. The technical problem mainly addressed in the present invention is to overcome the defects presented in the prior art including low yield and selectivity of lower olefins as the target products, and short regeneration period of catalyst.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: April 6, 2010
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Weimin Yang, Siqing Zhong, Yanhui Yuan, Huiming Zhang
  • Patent number: 7632394
    Abstract: A system and process for upgrading hydrocarbons such as heavy oils includes high temperature plasma reactor apparatus, in one or more vessels, into which the oils are introduced along with water, such as steam, to produce lighter hydrocarbon fractions, along with carbon monoxide and hydrogen, that flows to an additional stage where more hydrocarbons and water are introduced for further fractionating reactions facilitated by reaction of carbon monoxide and water to produce carbon dioxide and nascent, or prompt, free radicals of hydrogen. Heavy hydrocarbons upgraded can include heavy oils in the form of tar sands, oil shale, and oil residuals. The vessel or vessels can each contain a carbonaceous bed facilitating the described reactions and example embodiments include one vessel with the reactions performed in a single bed and, also, two vessels with the reactions performed in a carbonaceous bed portion in each vessel.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: December 15, 2009
    Assignee: Westinghouse Plasma Corporation
    Inventors: Shyam V. Dighe, Mark Anthony Montemurro, Richard Dale Bower, Aleksandr Gorodetsky, Mark F. Darr, Ivan A. Martorell
  • Patent number: 7572365
    Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: August 11, 2009
    Assignee: Ivanhoe Energy, Inc.
    Inventors: Barry Freel, Jerry F. Kriz, Doug Clarke
  • Patent number: 7572362
    Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: August 11, 2009
    Assignee: Ivanhoe Energy, Inc.
    Inventors: Barry Freel, Jerry F. Kriz, Doug Clarke
  • Patent number: 7462275
    Abstract: The present invention relates to a process for the conversion of hydrocarbon streams with 95% true boiling point less than 400° C. to very high yield of liquefied petroleum gas in the range of 45-65 wt % of feed and high octane gasoline, the said process comprises catalytic cracking of the hydrocarbons using a solid fluidizable catalyst comprising a medium pore crystalline alumino-silicates with or without Y-zeolite, non crystalline acidic materials or combinations thereof in a fluidized dense bed reactor operating at a temperature range of 400 to 550° C., pressure range of 2 to 20 kg/cm2 (g) and weight hourly space velocity in range of 0.1 to 20 hour?1, wherein the said dense bed reactor is in flow communication to a catalyst stripper and a regenerator for continuous regeneration of the coked catalyst in presence of air and or oxygen containing gases, the catalyst being continuously circulated between the reactor-regenerator system.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: December 9, 2008
    Assignee: Indian Oil Corporation Limited
    Inventors: Asit Kumar Das, Debasis Bhattacharyya, Gadari Saidulu, Satayen Kumar Das, Bandaru Venkata Hari P. Gupta, Ramakrishnan Ramanarayanan, Latoor Lal Saroya, Konduri Lakshminarayana, Marri Rama Rao, Vinod Ramchandra Upadhyay, Sukumar Mandal, Deepa Meghavathu, Arumugam Velayutham Karthikeyani, Wadharwa Ram Kalsi, Arvind Pratap Singh, Veena Bansal, Ashok Kumar Tiwari, Venkatachalam Krishnan, Satish Makhija, Sobhan Ghosh, Niranjan Raghunath Raje
  • Patent number: 7316773
    Abstract: The present invention relates to a catalytic cracking process and a device used in the process in particular, the present invention provides a catalytic cracking process, which comprises which comprises: 1) catalytic cracking a feedstock in the first riser for less than about 1.5 second and sending the resultant stream into the first separating device,; 2) catalytic cracking the recycle oil obtained from the first separating device in the second riser for less than about 1.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: January 8, 2008
    Assignees: Petrochina Company Limited, University of Petroleum China
    Inventors: Jianfang Zhang, An Ma, Honghong Shan, Chaohe Yang, Genlin Niu, Yongshan Tu, Feng Du, Yudong Sun, Zheng Li, Chunyi Li, Zhongxiang Han
  • Patent number: 7270739
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream by fractionating the naphtha feed to obtain at least a C6 rich fraction and feeding the C6 rich fraction into a reaction stage at a point wherein the residence time of the C6 rich fraction is minimized.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 18, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska
  • Patent number: 7267759
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream by fractionating the naphtha feed to obtain a C6 fraction and feeding the C6 fraction either in the riser downstream of the injection point for the reminder of the naphtha feed, in the stripper, and/or in the dilute phase immediately downstream or above the stripper of a process unit.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska
  • Patent number: 7029571
    Abstract: According to this invention, there is provided a process and apparatus for catalytic cracking of various petroleum based heavy feed stocks in the presence of solid zeolite catalyst and high pore size acidic components for selective bottom cracking and mixtures thereof, in multiple riser type continuously circulating fluidized bed reactors operated at different severities to produce high yield of middle distillates, in the range of 50–65 wt % of fresh feed.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: April 18, 2006
    Assignee: Indian Oil Corporation Limited
    Inventors: Debasis Bhattacharyya, Asit Kumar Das, Arumugam Velayutham Karthikeyani, Satyen Kumar Das, Pankaj Kasliwal, Manoranjan Santra, Latoor Lal Saroya, Jagdev Kumar Dixit, Ganga Sanker Mishra, Jai Prakash Singh, Satish Makhija, Sobhan Ghosh
  • Patent number: 6905591
    Abstract: The present invention provides a catalytic cracking reactor system and process in which a riser reactor is configured to have two sections of different radii in order to produced improved selectivity to propene and butenes as products.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 14, 2005
    Assignee: Stone & Webster Process Technology, Inc.
    Inventor: Warren S. Letzsch
  • Patent number: 6869521
    Abstract: A process and apparatus are disclosed contacting hydrocarbon feed with catalyst in a reactor vessel under conditions more vigorous than bubbling bed conditions and preferably fast fluidized flow conditions. The vigorous conditions assure thorough mixing of catalyst and feed to suppress formation of dry gas and the promotion of hydrogen transfer reactions.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 22, 2005
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 6866771
    Abstract: A process and apparatus is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 15, 2005
    Assignee: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 6837989
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 4, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6811682
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20040178120
    Abstract: The present invention relates to a catalytic cracking process and a device used in the process in particular, the present invention provides a catalytic cracking process, which comprises which comprises:
    Type: Application
    Filed: March 15, 2004
    Publication date: September 16, 2004
    Inventors: Jianfang Zhang, An Ma, Honghong Shan, Chaohe Yang, Genlin Niu, Yongshan Tu, Feng Du, Yudong Sun, Zheng Li, Chunyi Li, Zhongxiang Han
  • Patent number: 6767451
    Abstract: A process for cracking, in a fluidized bed, a hydrocarbon charge wherein the cooling particles, which may optionally also be catalytic particles, circulate in two successive reaction chambers (1; 16), in each of which they are brought into contact with at least one cut of hydrocarbons, and the reaction effluents from each of the chambers are directed towards one and the same fractionating unit. The effluents from each of the reaction chambers (1; 16) are fractionated in part separately in one and the same partially partitioned fractionating unit, and at least one cut (12) obtained by separately fractionating the effluents from one of the two reaction chambers (1; 16) is, as a whole or in part, reinjected into the other chamber.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: July 27, 2004
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marcellin Espeillac, Pierre Crespin
  • Patent number: 6641715
    Abstract: An entrained bed or fluidised bed process for catalytic cracking of a hydrocarbon feed in two reaction zones is described, one zone (1) being in catalyst dropper mode, the other (2) being in catalyst riser mode. A feed (102) and catalyst from at least one regeneration zone (302) are introduced into the upper portion of the dropper zone, the feed and catalyst are circulated in accordance with a catalyst to feed weight ratio, C/O, of 5 to 20, the cracked gases are separated from the coked catalyst in a first separation zone (105), the cracked gases are recovered (107), the coked catalyst is introduced (110) into the lower portion of the riser zone (2), the coked catalyst and said feed are circulated in a C/O weight ratio of 4 to 8, the used catalyst is separated from the effluent produced in a second separation zone (203), the catalyst is stripped in a stripping zone (212), the effluent and stripping gases are recovered (206) and the used catalyst is recycled (7) to the regeneration zone.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 4, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Thierry Gauthier
  • Publication number: 20030127358
    Abstract: The present invention provides a catalytic cracking reactor system and process in which a riser reactor is configured to have two sections of different radii in order to produced improved selectivity to propene and butenes as products.
    Type: Application
    Filed: January 10, 2002
    Publication date: July 10, 2003
    Inventor: Warren S. Letzsch
  • Patent number: 6352638
    Abstract: A two-stage process for converting petroleum residua and other low value oils to high valued gasoline blendstocks and light olefins. The first stage is comprised of a thermal process unit containing a reaction zone comprised of a horizontal moving bed of fluidized hot particles operated at temperatures from about 500 to 600° C. and having a short vapor residence time, and the second stage is comprised of a catalytic conversion zone operated at a temperature of about 525° C. to about 650° C., and also having a short vapor residence time, preferably shorter than that of the first stage reaction zone.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: March 5, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: Mitchell Jacobson, Willibald Serrand
  • Patent number: 6339181
    Abstract: This invention relates to a process to produce propylene from a hydrocarbon feed stream, preferably a naphtha feed stream, comprising C5 and C6 components wherein a light portion having a boiling point range of 120° C. or less is introduced into a reactor separately from the other components of the feed stream.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Tan-Jen Chen, Philip A. Ruziska, Gordon F. Stuntz, Paul K. Ladwig
  • Publication number: 20010035369
    Abstract: The present invention is a fluidized catalytic cracking process that incorporates a zoned riser reactor. The process provides an in-situ method for feed upgrading in a riser reactor. The process assists in the removal of undesirable contaminants, such as nitrogen, from FCC feedstocks.
    Type: Application
    Filed: March 6, 2001
    Publication date: November 1, 2001
    Inventors: Eduardo Mon, George A. Swan
  • Publication number: 20010000399
    Abstract: A two-stage process for converting petroleum residua and other low value oils to high valued gasoline blendstocks and light olefins. The first stage is comprised of a thermal process unit containing a reaction zone comprised of a horizontal moving bed of fluidized hot particles operated at temperatures from about 500 to 600° C. and having a short vapor residence time, and the second stage is comprised of a catalytic conversion zone operated at a temperature of about 525° C. to about 650° C., and also having a short vapor residence time, preferably shorter than that of the first stage reaction zone.
    Type: Application
    Filed: December 13, 2000
    Publication date: April 26, 2001
    Inventors: Mitchell Jacobson, Willibald Serrand
  • Patent number: 6113776
    Abstract: A high efficiency FCC process obtains the necessary regenerated catalyst temperature for a principally thermal cracking stage by cracking a light feedstock such as naphtha or a middle distillate in a first riser that principally performs thermal cracking and then cracks a heavy FCC feed in a second riser with a blend of catalyst from the principally thermal cracking step and recycle catalyst from the heavy feed to provide the necessary coke content on the catalyst that will produce high regenerated catalyst temperatures. The high temperature of the regenerated catalyst in the first riser provides a convenient means of cracking naphtha under high severity conditions and then using the remaining activity of the contacted catalyst for the principally catalytic reaction of the heavier feed. A separate thermal cracked product may be recovered from an intermediate blending vessel downstream of the first riser.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: September 5, 2000
    Assignee: UOP LLC
    Inventor: Lawrence L. Upson
  • Patent number: 5976352
    Abstract: A continuous pyrolysis and decoking process and apparatus is described for the production of acetylenic compounds, in which hydrocarbons and steam are circulated in at least one tube (31) of a steam cracking reactor (30) and steam is circulated in at least one tube (32) of that reactor. The hydrocarbon effluent and steam then circulate in at least one row (1) of a pyrolysis reactor (40) and the decoking effluent comprising steam circulate in at least one other row (2) of that reactor (4) to effect decoking. A set of valves V1, V2, V11, V12 is used to alternate the pyrolysis step path and the decoking step path. The temperature in the steam cracking furnaces is lower than that in the pyrolysis reactor.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: November 2, 1999
    Assignees: Institut Francais du Petrole, Gaz de France
    Inventors: Christian Busson, Jean-Pierre Burzynski, Pierrr Marache, Christian Dubois
  • Patent number: 5925236
    Abstract: In a process and apparatus for visbreaking a heavy hydrocarbon feedstock in the liquid state, whereby the feedstock is brought to an appropriate temperature to cause cracking of at least part of the hydrocarbons present, and is then introduced into the bottom of a soaker (3) wherein it travels from bottom to top, and is then discharged from the top of said soaker (3) and directed to a fractionation unit, the improvement wherein a preferably inert gas is injected into the hydrocarbon feedstock inside the soaker (3), in the vicinity of the soaker side walls, at least at the bottom of the soaker (3) and the gas is injected upward along the side walls of the soaker (3) and flows from bottom to top along said walls co-currently with the hydrocarbon feedstock.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: July 20, 1999
    Assignee: Total Rafinage Distribution S.A.
    Inventors: Marc Fersing, Luc Gouzien, Elisabeth Mouchot, Geraud Bourley
  • Patent number: 5846403
    Abstract: A process for increasing the yield of C.sub.3 and C.sub.4 olefins by injecting light cat naphtha together with steam into an upstream reaction zone of a FCC riser reactor. The products of the upstream reaction zone are conducted to a downstream reaction zone and combined with fresh feed in the downstream reaction zone.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: December 8, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: George A. Swan, Stephen D. Challis
  • Patent number: 5817226
    Abstract: There is provided a process and a device with a convection zone (A) and a radiation zone (B) in a furnace (10), whereby the process includes: a first stage of precracking a feedstock of light hydrocarbons (1) and a second stage of final co-cracking of the mixture that is composed of this precracked light feedstock (7) and a feedstock of heavy hydrocarbons (2). The process further includes: separate heating of the two feedstock streams (1 and 2) in the convection zone (A), in which the preheating temperature of each feedstock stream remains below the initial cracking temperature in each case; precracking (5) of the preheated light hydrocarbons; mixing of precracked light hydrocarbon stream (8) while a mixed stream (9) is formed; intense heating of mixed stream (9) to a temperature that is higher than the initial cracking temperature by virtue of the fact that the mixture is introduced into the radiation zone (B) of the furnace (10); and cooling (15) of cracked gases outside the furnace (10).
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: October 6, 1998
    Assignees: Linde Aktiengesellschaft, Procedes Petroliers Petrochimiques et SARL
    Inventor: Eric Lenglet
  • Patent number: 5498326
    Abstract: The invention relates to a process for catalytic cracking and the associated apparatus in which the cracking reaction takes place in two substantially vertical and successive reaction zones, the loads being introduced into the first zone where it circulates from the top downwards, then at least a part of the product obtained is introduced into a second reaction zone in which it circulates in an ascending fashion. A supplementary hydrocarbonated phase is advantageously introduced into the product entering the second zone. The invention applies particularly to heavy loads, with a U-shaped apparatus.
    Type: Grant
    Filed: May 7, 1993
    Date of Patent: March 12, 1996
    Assignee: Institut Francats du Petrole
    Inventors: Pierre Galtier, Regis Bonifay, Sigismond Franckowiak, Thierry Gauthier, Renaud Pontier
  • Patent number: 5372704
    Abstract: A process and apparatus for low cracking or recracking of liquid hydrocarbons with FCC catalyst containing 0.2 to 1.5 wt % coke is disclosed. FCC naphtha, or a thermally or hydrocracked naphtha, contacts spent FCC catalyst in a naphtha recracking reactor for limited conversion to lighter products and an increase in octane number. Spent catalyst from the recracking reactor can be recycled to the FCC reactor without stripping or regeneration. Naphtha recracking products are preferably cooled, then used as an absorbent to recover gasoline boiling range products from the FCC main column overhead vapor. Use of spent catalyst and controlled conversion conditions minimizes overcracking of the light liquid and minimizes formation of heavy ends.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: December 13, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 5154818
    Abstract: Methods for the fluidized catalytic cracking of plural hydrocarbon feedstocks in a riser reactor are disclosed. The processes generally comprises contacting a relatively light hydrocarbon feedstock in a first reaction zone with a first catalyst stream comprising spent catalyst, contacting a relatively heavy hydrocarbon feedstock in a second reaction zone with a second catalyst stream comprising freshly regenerated catalyst, and introducing at least a portion of the effluent from the first reaction zone into the second reaction zone. The first reaction zone and the second reaction zone preferably comprise first and second riser reaction zones, respectively.
    Type: Grant
    Filed: August 15, 1991
    Date of Patent: October 13, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 5152883
    Abstract: Process for producing gasolines having improved RON and MON which consists in subjecting the LCO, HCO and CLO obtained by catalytic cracking of a heavy hydrocarbon feedstock, to a hydrogenation treatment and subjecting the obtained products to a new catalytic cracking and then recovering hydrocarbons boiling in the range of gasolines.
    Type: Grant
    Filed: March 22, 1991
    Date of Patent: October 6, 1992
    Assignee: Fina Research S.A.
    Inventors: Michel Melin, Jacques F. Grootjans
  • Patent number: 4990314
    Abstract: A fluid catalytic cracking (FCC) process and apparatus which employs relatively more elutriatable catalyst particles comprising intermediate pore zeolite, particularly ZSM-5, and relatively less elutriatable catalyst particles comprising large pore zeolite, preferably zeolite Y. The process and apparatus employ a first stripping vessel which also separates a more elutriatable first portion of catalyst from a less elutriatable second portion of catalyst. The more elutriatable first portion passes to a second stripping vessel, and subsequently recycles to a fluid catalytic cracking reactor riser. The second portion of less elutriatable catalyst passes from the first stripping vessel to a fluid catalytic cracking regenerator vessel and, after being regenerated, recycles to the reactor riser. The more elutriatable first portion contains a higher ratio of intermediate pore catalyst particles to large pore catalyst particles than does the second portion.
    Type: Grant
    Filed: November 15, 1988
    Date of Patent: February 5, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 4888103
    Abstract: An improved process for stripping, or desorbing, entrained hydrocarbon material and, where present, sulfur-containing material, from a catalyst mixture recovered from a catalytic cracking reaction zone is described which comprises:(a) providing a quantity of catalyst mixture containing entrained hydrocarbon material and, optionally, sulfur-containing material, in at least one stripping zone in which a stripping gas removes said entrained hydrocarbon material and, where present, sulfur-containing material, the catalyst mixture comprising, as a first catalyst component, an amorphous and/or large pore crystalline cracking catalyst and, as a second catalyst component, a shape selective medium pore crystalline silicate zeolite catalyst, said first and second catalyst components being present in admixture within a common stripping zone or segregated into separate stripping zones; and,(b) conducting an exothermic reaction within the common stripping zone or within the separate stripping zone containing segregated se
    Type: Grant
    Filed: September 3, 1986
    Date of Patent: December 19, 1989
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 4863585
    Abstract: The present invention discloses a catalytic cracking process featuring at least one riser reactor, at least one stripping unit and at least one regenerator, which comprises:(a) cracking a C.sub.
    Type: Grant
    Filed: January 26, 1988
    Date of Patent: September 5, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper