Solvent Extraction Patents (Class 208/87)
  • Patent number: 11447708
    Abstract: Systems and methods are provided for production of base stocks with a viscosity index of at least 120 and/or a sulfur content of 300 wppm or less and/or a kinematic viscosity at 100° C. of 3.0 cSt to 8.0 cSt by hydroconversion of a raffinate from aromatic extraction of a feed. The base stocks can further have a reduced content of 3+ ring naphthenes, such as 4.0 wt % or less, or 1.0 wt % or less. The base stocks can be produced by performing an elevated amount of feed conversion relative to 370° C. during hydroconversion of the raffinate, and optionally additional conversion during catalytic dewaxing of the hydroconverted raffinate. The base stocks can optionally be blended with additional base stocks and/or lubricant additives for production of lubricant compositions.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 20, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Jason T. Calla, Will G. Fisher, Jr., Eric D. Joseck, Seth D. Fortney
  • Patent number: 9359566
    Abstract: Aromatic extraction and hydrocracking processes are integrated to optimize the hydrocracking units design and/or performance. By processing aromatic-rich and aromatic-lean fractions separately, the hydrocracking operating severity and/or catalyst reactor volume requirement decreases.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 7, 2016
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 9309471
    Abstract: Embodiments of methods for purifying a biomass-derived pyrolysis oil are provided. The method comprises the step of contacting the biomass-derived pyrolysis oil with a first deoxygenating catalyst in the presence of hydrogen at first predetermined hydroprocessing conditions to form a first low-oxygen biomass-derived pyrolysis oil effluent. The low-oxygen biomass-derived pyrolysis oil effluent is contacted with an ionic liquid to remove phenolic compounds, nitrogen compounds and other impurities. This ionic liquid step may be followed by a second deoxygenation step or the deoxygenating may be completed and then followed by the ionic liquid purification step.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: April 12, 2016
    Assignee: UOP LLC
    Inventors: Beckay J. Mezza, Haiyan Wang, Alakananda Bhattacharyya, Christopher P. Nicholas
  • Patent number: 9145521
    Abstract: Aromatic extraction and hydrocracking processes are integrated to optimize the hydrocracking units design and/or performance. By processing aromatics-rich and aromatic-lean fractions separately, the hydrocracking operating severity and or catalyst reactor volume requirement decreases.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 29, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 9144752
    Abstract: Aromatic extraction and hydrocracking processes are integrated to optimize the hydrocracking units design and/or performance. By processing aromatic-rich and aromatic-lean fractions separately, the hydrocracking operating severity and or catalyst reactor volume requirement decreases.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 29, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Publication number: 20150136660
    Abstract: A process for removing at least one contaminant from coal tar is described. The process involves extraction with an extraction agent or adsorption with an adsorbent. The extraction agent includes at least one of amphiphilic block copolymers, inclusion complexes of poly(methyl methacrylate) and polycyclic aromatic hydrocarbons, cyclodextrins, functionalized cyclodextrins, and cyclodextrin-functionalized polymers, and the adsorbent includes exfoliated graphite oxide, thermally exfoliated graphite oxide or intercalated graphite compounds.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 21, 2015
  • Publication number: 20150136652
    Abstract: A process for hydrotreating a coal tar stream is described. A coal tar stream is provided, and the coal tar stream is expanded with an inert gas stream to provide an expanded liquid coal tar stream. The expanded liquid coal tar stream is hydrotreated. The coal tar stream can be reacted with a hydrocarbon solvent before it is expanded.
    Type: Application
    Filed: August 26, 2014
    Publication date: May 21, 2015
    Inventors: Maureen L. Bricker, Paul T. Barger, Joseph A. Kocal, Matthew Lippmann, Kurt M. Vanden Bussche
  • Publication number: 20150136654
    Abstract: A process for treating a pitch fraction from coal tar is described. The pitch fraction is contacted with a solvent, an extraction agent, or an adsorbent to remove at least one contaminant, such as oxygenate compounds, nitrogen containing compounds, and sulfur containing compounds. The solvent can be an ionic liquid, the extraction agent can be at least one of amphiphilic block copolymers, cyclodextrins, functionalized cyclodextrins, and cyclodextrin-functionalized polymers, and the adsorbent can be exfoliated graphite oxide, thermally exfoliated graphite oxide or intercalated graphite compounds.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 21, 2015
  • Patent number: 8986537
    Abstract: Provided are multiple correlations for relationships between MI value for a brightstock extract and the distillation cut point temperature used for separation of the vacuum resid that is used to form the brightstock extract. Based on these correlations, a BSE having a desired MI value can be formed based on an adjustment of the distillation cut point temperature. A first correlation establishes a relationship between a fractional weight boiling temperature for a vacuum resid fraction and a distillation cut point temperature for separating the vacuum resid fraction from at least one distillate fraction in a feedstock. A second correlation establishes a relationship between a fractional weight boiling temperature for a brightstock extract derived from the vacuum resid fraction, and the fractional weight boiling temperature for the vacuum resid fraction. A third correlation has been established between the fractional weight boiling temperature for the brightstock extract and a mutagenicity index value.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 24, 2015
    Inventors: Cristina M. Sircar, Keith K. Aldous, James J. Freeman, Katy O. Goyak
  • Publication number: 20150008158
    Abstract: Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by hydrotreating the feed under mild conditions, and separating the hydrotreated effluent into an aromatic-rich fraction which contains a substantial amount of the aromatic refractory and sterically hindered sulfur-containing compounds, and an aromatic-lean fraction. The aromatic-rich fraction is contacted with isomerization catalyst, and the isomerized aromatic-rich fraction is recycled to the mild hydrotreating process.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 8, 2015
    Inventor: Omer Refa Koseoglu
  • Publication number: 20150001131
    Abstract: A process for producing a caking additive for coke production, the process including a step of extracting a solvent deasphalted pitch that can be used as a caking additive for coke production from a residue containing at least one of an atmospheric residue obtained by atmospheric distillation of a crude oil and a vacuum residue obtained by atmospheric distillation and vacuum distillation of a crude oil, wherein the extraction is performed using, as a solvent, a light reformate obtained by catalytic reforming a naphtha fraction that is fractionated from a crude oil by atmospheric distillation of the crude oil.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 1, 2015
    Applicants: JX Nippon Oil & Energy Corporation, Mitsubishi Chemical Corporation
    Inventors: Yoshikazu Nakamura, Takushi Nagashima, Kenjiro Matsuoka, Kouichi Inoue, Daisuke Anraku
  • Patent number: 8900444
    Abstract: A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 2, 2014
    Assignees: Queen's University at Kingston, GreenCentre Canada
    Inventors: Philip G. Jessop, Lam N. Phan, Andrew J. Carrier, Rui Resendes, Dominik Wechsler
  • Patent number: 8894841
    Abstract: An improved process for the delayed coking of a heavy residual hydrocarbon feedstock to reduce the coking induction period and to enhance the coking process relative to the processes of the prior art is achieved by mixing a sufficient volume of a paraffinic solvent having the formula CnH2n+2, where n=3 to 8 with the heavy feedstock to disturb the equilibrium of asphaltenes in the solution of maltenes in order to flocculate substantially all of the solid asphaltenes particles to thereby increase the yield and quality of valuable liquid products and minimize undesirable cracking reactions that result in high molecular weight polymers and the formation of coke.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: November 25, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8852426
    Abstract: Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by hydrotreating the feed under mild conditions, and separating the hydrotreated effluent into an aromatic-rich fraction which contains a substantial amount of the aromatic refractory and sterically hindered sulfur-containing compounds, and an aromatic-lean fraction. The aromatic-rich fraction is contacted with isomerization catalyst, and the isomerized aromatic-rich fraction is recycled to the mild hydrotreating process.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8808535
    Abstract: System and method for processing hydrocarbon. One or more embodiments of the method include combining a first hydrocarbon including a de-asphalted oil with a recycled hydrocarbon product to produce a combined hydrocarbon, cracking the combined hydrocarbon to produce a cracked hydrocarbon product, and recycling at least a portion of the cracked hydrocarbon product to provide the recycled hydrocarbon product, wherein the recycled hydrocarbon product comprises a cycle oil product, a naphtha product, or a combination thereof.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: August 19, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Phillip K. Niccum, Vasant K. Patel
  • Patent number: 8741144
    Abstract: The process and apparatus are for removing a solute from a solute-bearing solid product by means of a solvent which remains in liquid state throughout the entire oil extraction process. In one embodiment, the solvent is normally in gaseous state at ambient temperature and pressure values, but is used mainly in liquid state within the method and apparatus of the present invention by maintaining such pressure and temperature values within the apparatus so that the solvent will remain in this liquid state.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: June 3, 2014
    Assignee: Epic Oil Extractors, LLC
    Inventors: Darrell J. Phillips, George Baxter Russell
  • Patent number: 8608949
    Abstract: A process for removing a metal from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the metal with a VGO-immiscible ionic liquid to produce a vacuum gas oil and VGO-immiscible ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced metal content relative to the vacuum gas oil feed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Manuela Serban, Beckay J. Mezza, Kurt M. Vanden Bussche, Christopher P. Nicholas, Joseph A. Kocal, Warren K. Bennion
  • Patent number: 8608950
    Abstract: A process for removing a metal from a resid feed includes contacting the resid feed comprising the metal with a resid-immiscible ionic liquid to produce a resid and resid-immiscible ionic liquid mixture, and separating the mixture to produce a resid effluent having a reduced metal content relative to the resid feed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Beckay J. Mezza, Kurt M. Vanden Bussche, Christopher P. Nicholas, Warren K. Bennion
  • Patent number: 8608952
    Abstract: A process for de-acidifying a hydrocarbon feed includes contacting the hydrocarbon feed containing an organic acid with a feed-immiscible phosphonium ionic liquid to produce a hydrocarbon and feed-immiscible phosphonium ionic liquid mixture and separating the mixture to produce a hydrocarbon effluent having a reduced organic acid content relative to the hydrocarbon feed. Optionally, a de-emulsifier is added to at least one of the contacting and separating steps.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Beckay J. Mezza, Kurt M. Vanden Bussche, Christopher P. Nicholas, Warren K. Bennion
  • Patent number: 8608943
    Abstract: A process for removing a nitrogen compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the nitrogen compound with a VGO-immiscible phosphonium ionic liquid to produce a vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced nitrogen content relative to the vacuum gas oil feed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Beckay J. Mezza, Kurt M. Vanden Bussche, Christopher P. Nicholas, Joseph A. Kocal, Warren K. Bennion
  • Patent number: 8580107
    Abstract: A process for removing a sulfur compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the sulfur compound with a VGO-immiscible ionic liquid to produce a vacuum gas oil and VGO-immiscible ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced sulfur content relative to the vacuum gas oil feed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 12, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Manuela Serban, Beckay J. Mezza, Kurt M. Vanden Bussche, Christopher P. Nicholas, Joseph A. Kocal, Warren K. Bennion
  • Patent number: 8574426
    Abstract: The present invention involves a process for removing one or more polycyclic aromatic hydrocarbon compounds from a vacuum gas oil comprising contacting the vacuum gas oil with a vacuum gas oil-immiscible phosphonium ionic liquid to produce a mixture comprising the vacuum gas oil and the vacuum gas oil-immiscible phosphonium ionic liquid, and separating the mixture to produce a vacuum gas oil effluent and a vacuum gas oil-immiscible phosphonium ionic liquid effluent, the vacuum gas oil-immiscible phosphonium ionic liquid effluent comprising the polycyclic aromatic hydrocarbon compound.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Beckay J. Mezza, Alakananda Bhattacharyya, Haiyan Wang, Christopher P. Nicholas
  • Patent number: 8574427
    Abstract: A process for removing a refractory nitrogen compound from a hydroprocessed vacuum gas oil feed includes contacting the hydroprocessed vacuum gas oil feed comprising the nitrogen compound with a VGO-immiscible phosphonium ionic liquid to produce a hydroprocessed vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a hydroprocessed vacuum gas oil effluent having a reduced refractory nitrogen compound content relative to the vacuum gas oil feed.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Beckay J. Mezza, Haiyan Wang, Alakananda Bhattacharyya, Christopher P. Nicholas
  • Patent number: 8440072
    Abstract: Method of removing metals from hydrocarbon feedstock using esters of carboxylic acids, and additives for the same, are provided, wherein hydrocarbon stream including crude oil containing metals and salts thereof, wherein metal is calcium and its salt is calcium naphthenate, is mixed with an effective metal-removing-amount of an aqueous extraction-solution of non-precipitating and non-fouling additive comprising a chemical compound selected from a group consisting of methyl or ethyl or propyl or isopropyl mono- and/or di-esters of any one of the carboxylic acids selected from the groups consisting of maleic acid, maleic anhydride, and fumaric acid, or an appropriate combination of said esters, or an appropriate combination of any of said esters with any of said carboxylic acids to form a hydrocarbonous phase and an aqueous phase containing the metal ions; and separating aqueous phase.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 14, 2013
    Assignee: Dorf Ketal Chemicals (I) Private Limited
    Inventor: Mahesh Subramaniyam
  • Patent number: 8431013
    Abstract: A process for refining or pre-refining a crude oil P is described in which P is fractionated into several fractions, wherein partial oxidation of an asphaltenic residue R1 derived from P is carried out to produce a synthesis gas SG1 with an H2/CO ratio of less than 1, steam cracking is carried out of an external light hydrocarbon fraction to produce a synthesis gas SG2 with a H2/CO ratio of more than 3; SG1 and SG2 are mixed to produce a synthesis gas SG with a H2/CO ratio in the range 1.2 to 2.5, and SG is converted by Fischer-Tropsch synthesis, then the waxes produced are converted into middle distillates. Preferably, a vacuum distillate VGO and/or a deasphalted oil DAO derived from P are hydrocracked mixed with the waxes. The invention also pertains to a facility for carrying out the process.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 30, 2013
    Assignee: IFP
    Inventors: Alexandre Rojey, Eric Lenglet
  • Patent number: 8419930
    Abstract: The invention discloses a system for preparing high-quality gasoline through component oil refining hydrocarbon recombination hydrogenation and a method thereof, which is characterized by comprising an extraction system, a distillation system and a hydrogenation device, wherein the upper part of the extraction system is connected with the distillation system through a pipeline, and the lower part of the extraction system is connected with an extract oil hydrogenation device through the pipeline; light gasoline is recovered by the upper part of the distillation system through the pipeline; the lower part of the distillation system is connected with the heavy gasoline hydrogenation device through the pipeline; and reformate or ethylene feed are recovered through the lower part of the heavy gasoline hydrogenation device through the pipeline.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: April 16, 2013
    Assignee: Beijing Grand Golden-Bright Engineering & Technologies Co., Ltd.
    Inventor: Ranfeng Ding
  • Patent number: 8398857
    Abstract: This invention is directed to a process for separating a solute from a solute-bearing material. A substantial amount of solute is extracted from the solute-bearing material by contacting particles of the solute-bearing material with globules of an extraction solvent. The particle size of the solute-bearing material and the globule size of the extraction solvent are balanced such that little if any solute or extraction solvent remains in the solute-bearing material.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 19, 2013
    Assignee: Epic Oil Extractors, LLC
    Inventor: Darrell J. Phillips
  • Publication number: 20130062255
    Abstract: Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by first subjecting the entire feed to an extraction zone to separate an aromatic-rich fraction containing a substantial amount of the aromatic refractory and sterically hindered sulfur-containing compounds and an aromatic-lean fraction containing a substantial amount of the labile sulfur-containing compounds. The aromatic-rich fraction is contacted with isomerization catalyst, and the isomerized aromatic-rich fraction and the aromatic-lean fraction are combined and contacted with a hydrotreating catalyst in a hydrodesulfurization reaction zone operating under mild conditions to reduce the quantity of organosulfur compounds to an ultra-low level.
    Type: Application
    Filed: July 27, 2012
    Publication date: March 14, 2013
    Inventor: Omer Refa Koseoglu
  • Publication number: 20130062256
    Abstract: Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by hydrotreating the feed under mild conditions, and separating the hydrotreated effluent into an aromatic-rich fraction which contains a substantial amount of the aromatic refractory and sterically hindered sulfur-containing compounds, and an aromatic-lean fraction. The aromatic-rich fraction is contacted with isomerization catalyst, and the isomerized aromatic-rich fraction is recycled to the mild hydrotreating process.
    Type: Application
    Filed: July 27, 2012
    Publication date: March 14, 2013
    Inventor: Omer Refa KOSEOGLU
  • Patent number: 8366912
    Abstract: A method for recovering base oil from waste lubricating oil by separating base oil range constituents from a waste lubricating oil mixture, thereafter separating higher quality base oil constituents and lower quality base oil constituents from the base oil recovered from the waste lubricating oil mixture and thereafter treating the lower quality base oil constituents to produce marketable base oil. The total base oil produced from a waste lubricating oil mixture by this process is greater than the quantity producible by previous processes using only base oil separation from the waste lubricating oil mixture or processes which use only treatment of the base oil recovered from the waste lubricating oil mixture to produce the product base oil.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: February 5, 2013
    Assignee: ARI Technologies, LLC
    Inventor: Martin R. MacDonald
  • Publication number: 20130026069
    Abstract: An improved process for the delayed coking of a heavy residual hydrocarbon feedstock to reduce the coking induction period and to enhance the coking process relative to the processes of the prior art is achieved by mixing a sufficient volume of a paraffinic solvent having the formula CnH2n+2, where n=3 to 8 with the heavy feedstock to disturb the equilibrium of asphaltenes in the solution of maltenes in order to flocculate substantially all of the solid asphaltenes particles to thereby increase the yield and quality of valuable liquid products and minimize undesirable cracking reactions that result in high molecular weight polymers and the formation of coke.
    Type: Application
    Filed: June 11, 2012
    Publication date: January 31, 2013
    Inventor: Omer Refa KOSEOGLU
  • Patent number: 8357291
    Abstract: The invention relates to an improved bitumen recovery process. The process includes adding water to a bitumen-froth/solvent system containing asphaltenes and mineral solids. The addition of water in droplets increases the settling rate of asphaltenes and mineral solids to more effectively treat the bitumen for pipeline transport, further enhancement, refining, or any other application of reduced-solids bitumen.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 22, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ken N. Sury, Joseph L. Feimer, Clay R. Sutton
  • Patent number: 8323481
    Abstract: A method of sequestering carbon dioxide emissions during recovery of hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be heated sufficient to remove hydrocarbons therefrom. During heating, the hydrocarbonaceous material is substantially stationary as the constructed infrastructure is a fixed structure. Additionally, during heating, any carbon dioxide that is produced can be sequestered. Removed hydrocarbons can be collected for further processing, use in the process, and/or use as recovered.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: December 4, 2012
    Assignee: Red Leaf Resources, Inc.
    Inventors: Todd Dana, James W. Patten
  • Patent number: 8308951
    Abstract: A method for separating proteins from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting proteins from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal proteins from a wet algal biomass. These proteins are high value products which can be used as renewable sources of food and food additives. Neutral lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8308949
    Abstract: Methods for selective extraction and fractionation of algal lipids and algal products are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which enable efficient separation of algal components. Among these components are neutral lipids synthesized by algae, which are extracted by the methods disclosed herein for the production of renewable fuels.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8293108
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 23, 2012
    Assignee: Heliae Developmet, LLC
    Inventor: Aniket Kale
  • Patent number: 8277637
    Abstract: Systems and methods for processing one or more hydrocarbons are provided. One or more hydrocarbons can be selectively separated to provide one or more heavy deasphalted oils. At least a portion of the heavy deasphalted oil can be cracked using a fluidized catalytic cracker to provide one or more lighter hydrocarbon products.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: October 2, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd
  • Patent number: 8273248
    Abstract: A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 25, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8152994
    Abstract: Systems and methods for processing one or more hydrocarbons are provided. One or more hydrocarbon feedstocks can be selectively separated to provide one or more light deasphalted oils. At least a portion of the light deasphalted oil can be hydrocracked to provide one or more hydrocarbon products.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 10, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd, Odette Eng
  • Patent number: 8137555
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: March 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8137558
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Publication number: 20120055844
    Abstract: A method and apparatus for recovering components from a hydrocarbon feedstock is provided. The method includes the steps of (a) supplying a hydrocarbon feedstock to an oxidation reactor, wherein the hydrocarbon feedstock is oxidized in the presence of a catalyst under conditions sufficient to selectively oxidize sulfur compounds and nitrogen compounds present in the hydrocarbon feedstock; (b) separating the hydrocarbons, the oxidized sulfur compounds, and the oxidized nitrogen compounds by solvent extraction; (c) collecting a residue stream that includes the oxidized sulfur compounds and the oxidized nitrogen compounds; and (d) supplying the residue stream to a fluid catalytic cracking unit.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Stephane Cyrille Kressmann
  • Patent number: 8048291
    Abstract: Systems and methods for processing one or more hydrocarbons are provided. One or more hydrocarbons can be selectively separated to provide one or more heavy deasphalted oils. At least a portion of the heavy deasphalted oil can be thermally cracked to provide one or more lighter hydrocarbon products.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: November 1, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd
  • Patent number: 7981277
    Abstract: A method for dewatering and deasphalting a hydrocarbon feed is provided. A hydrocarbon feed containing one or more hydrocarbons, asphaltenes and water can be mixed or otherwise combined with one or more solvents. The addition of the solvent sufficiently decreases the density of the hydrocarbon feed to enable gravity settling of the water phase, providing an oil phase containing one or more hydrocarbons, asphaltenes and solvents. The asphaltenes can be separated from the oil phase to provide an asphaltene mixture containing asphaltenes and a portion of the solvents and a deasphalted oil containing one or more hydrocarbons and the balance of the solvents. The solvents can be separated from the asphaltenes and deasphalted oil, and recycled to the initial mixing step wherein the solvent is mixed or otherwise combined with one or more solvents.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: July 19, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd
  • Publication number: 20110155635
    Abstract: A process for removing a metal from a resid feed includes contacting the resid feed comprising the metal with a resid-immiscible ionic liquid to produce a resid and resid-immiscible ionic liquid mixture, and separating the mixture to produce a resid effluent having a reduced metal content relative to the resid feed.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 30, 2011
    Applicant: UOP LLC
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Beckay J. Mezza, Kurt Vanden Bussche, Christopher P. Nicholas, Warren K. Bennion
  • Patent number: 7868214
    Abstract: A process for producing olefins from a feedstock comprising a petroleum and non-petroleum fraction has been developed. The process comprises first pretreating the feedstock to remove contaminants such as alkali metals and then cracking the purified feedstock in a fluidized catalytic cracking (FCC) zone operated at conditions to provide C2-C5 olefins. Alternatively, the non-petroleum fraction can first be treated and then mixed with petroleum fraction to provide the feedstock which is then catalytically cracked.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 11, 2011
    Assignee: UOP LLC
    Inventor: Terry L. Marker
  • Publication number: 20100326885
    Abstract: The invention discloses a system for preparing high-quality gasoline through component oil refining hydrocarbon recombination hydrogenation and a method thereof, which is characterized by comprising an extraction system, a distillation system and a hydrogenation device, wherein the upper part of the extraction system is connected with the distillation system through a pipeline, and the lower part of the extraction system is connected with an extract oil hydrogenation device through the pipeline; light gasoline is recovered by the upper part of the distillation system through the pipeline; the lower part of the distillation system is connected with the heavy gasoline hydrogenation device through the pipeline; and reformate or ethylene feed are recovered through the lower part of the heavy gasoline hydrogenation device through the pipeline.
    Type: Application
    Filed: January 21, 2009
    Publication date: December 30, 2010
    Inventor: Ranfeng Ding
  • Publication number: 20100264065
    Abstract: The process of the present invention is directed to the desulfurization of a sulfur-containing unrefined hydrocarbon stream with a membrane separation apparatus, where sulfur compounds are concentrated in a sulfur-rich stream on a permeate side of the membrane, and a sulfur-lean stream is recovered as a retentate. The sulfur-rich stream, which has a small volume relative to the original unrefined hydrocarbon stream, is conveyed to a subsequent desulfurization apparatus or system, such as a hydrotreating system, to recover the hydrocarbons associated with the organosulfur compounds. The stream desulfurized by conventional processes, such as hydrotreating, and the hydrocarbons desulfurized by the membrane separation apparatus may be combined to provide a low sulfur hydrocarbon effluent with minimal or no loss of the original volume.
    Type: Application
    Filed: December 23, 2008
    Publication date: October 21, 2010
    Inventors: Esam Zaki Hamad, Ahmad Abdullah Bahamdan
  • Publication number: 20100200461
    Abstract: A highly effective liquid-liquid extraction process to remove nitrogen compounds and especially basic nitrogen compounds from aromatic light petroleum oils with excellent recovery employs de-ionized water, which can be acidified, as the extractive solvent. The product is an aromatic hydrocarbon with ultra-low amounts of nitrogen poisons that can deactivate acidic catalysts. The extracted oils are suitable feedstock for the subsequent catalytic processes that are promoted with the high performance solid catalysts, which are extremely sensitive to nitrogen poison.
    Type: Application
    Filed: April 24, 2010
    Publication date: August 12, 2010
    Applicants: CPC Corporation Taiwan, AMT International, Inc.
    Inventors: Tzong-Bin Lin, Hung-Chung Shen, Kuang-Yeu Wu
  • Patent number: 7744743
    Abstract: A feedstream comprising tar is fed to a solvent deasphalter wherein it is contacted with a deasphalting solvent or fluid to produce a composition comprising a mixture or slurry of solvent containing a soluble portion of the tar, and a heavy tar fraction comprising the insoluble portion of the tar. These fractions may be separated in the deasphalter apparatus, such as by gravity settling wherein the heavy tar fraction is taken off as bottoms, and the solvent-soluble fraction taken as overflow or overheads with the solvent. The overflow or overheads is sent to a solvent recovery unit, such as a distillation apparatus, wherein solvent is recovered as overheads and a deasphalted tar fraction is taken off as a sidestream or bottoms. The solvent or a portion thereof, recovered as overheads, may be then be recycled to the solvent deasphalter, or in a preferred embodiment, at least a portion of the solvent is steam cracked to produce a product comprising light olefins.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 29, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen, Alok Srivastava