Biological Fluid (e.g., Blood, Urine, Etc.) Patents (Class 210/645)
  • Patent number: 10980934
    Abstract: A method for collecting plasma includes determining the weight, height, and hematocrit of a donor, and calculating a donor plasma volume and a target plasma collection volume. The target plasma collection volume is based on the donor plasma volume and a target percentage of plasma. The method then withdraws blood from the donor through a line connected to a blood component separation device, and introduces anticoagulant into the withdrawn blood. The blood component separation device separates the blood into a plasma component and a second blood component, and the plasma component is collected from the blood component separation device and into a plasma collection container. The method may then calculate the volume of pure plasma collected within the plasma collection container, and continue processing/collecting until the calculated volume of pure plasma equals the target plasma collection volume.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: April 20, 2021
    Assignee: HAEMONETICS CORPORATION
    Inventor: Michael Ragusa
  • Patent number: 10906042
    Abstract: A new method is disclosed for extracting plasma from whole blood and metering the amount of plasma to an exact volume for dispensing into a diagnostic test, in a fully automatic and self-contained device. The device can be used in resource limited settings by unskilled users to facilitate sophisticated medical diagnostic testing outside of a hospital, clinic or laboratory.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 2, 2021
    Assignee: GattaCo Inc.
    Inventor: Michael Ryan McNeely
  • Patent number: 10850235
    Abstract: Systems and methods for filtering materials from biologic fluids are discussed. Embodiments may be used to filter cerebrospinal fluid (CSF) from a human or animal subject. The method may include the steps of withdrawing fluid comprising CSF, filtering the volume into permeate and retentate by passing the fluid through a tangential flow filter, and returning the permeate to the subject. During operation of the system, various parameters may be modified, such as flow rate.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 1, 2020
    Assignee: MINNETRONIX, INC.
    Inventors: Emily Rolfes Meyering, Gary Seim, Abhi Vase, Ben Krehbiel, Blake Hedstrom, Aaron McCabe
  • Patent number: 10807068
    Abstract: A sorbent pouch for use in sorbent dialysis. The sorbent pouch allows for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouch.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: October 20, 2020
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 10751251
    Abstract: A medical preparation dividing method is dividing a medical preparation stored in a storage member into a plurality of division bags by gravitational force through a primary tube, a branch portion, and a plurality of branch tubes. A medical preparation dividing unit has a curved portion formed in another end side of the primary tube, an inlet of the branch portion arranged above the curved portion, and outlets of the branch portion arranged above the inlet, in a state where the plurality of division bags is held with a holding tool.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: August 25, 2020
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Kaoru Hosoe, Koudai Nagata
  • Patent number: 10617809
    Abstract: An electrical sensor for sensing electromagnetic properties of process fluids in a dialysis machine or a similar medical device can include a probe for interfacing with the fluids that is made from electronic fabric materials. The electronic fabric probe can include one or more conductors embedded in a non-conductive fabric layer. The electronic fabric probe is accommodated an enclosure which establishes a flow path with respect to the probe to establish fluid contact between the process fluids and the conductors. The conductors can apply or sense current and/or voltage with respect to the fluid. A portion of the electronic fabric probe can be disposed externally of the enclosure to provide electronic communication externally of the enclosure.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 14, 2020
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Colin Weaver, Elliott Alber, Philip Scott James, Daniel Schmidt
  • Patent number: 10426883
    Abstract: A hemodialysis system configured to purge air from a blood circuit comprising: a dialyzer; a dialysis fluid circuit operable with the dialyzer via dialysis fluid inlet and outlet lines; the blood circuit operable with the dialyzer and including an arterial line, a venous line, a blood pump operable with the arterial line upstream of the dialyzer, and a physiologically acceptable fluid source in fluid communication with the arterial line upstream of the blood pump; and an air purging scheme wherein, with the dialysis fluid inlet and outlet lines connected to the dialyzer, air is purged using dialysis fluid or other physiologically acceptable fluid pumped by at least one of the fresh or used dialysis fluid pumps from the dialysis fluid circuit, through the dialyzer, into the blood circuit, in combination with dialysis fluid or other physiologically acceptable fluid from the source introduced directly into the blood circuit.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: October 1, 2019
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed Mutasem El Sayyid, Shahid Din
  • Patent number: 10391228
    Abstract: A hemodialysis system configured to purge air from a blood circuit comprises a dialyzer; a dialysis fluid circuit operable with the dialyzer via dialysis fluid inlet and outlet lines, the dialysis fluid circuit including a fresh dialysis fluid pump, and a used dialysis fluid pump; the blood circuit operable with the dialyzer and including an arterial line, a venous line, a blood pump operable with the arterial line upstream of the dialyzer, a physiologically acceptable fluid source in fluid communication with the arterial line upstream of the blood pump, a drip chamber located along the venous line, and a container for accepting air purged from the blood circuit; and an air purging scheme wherein, with the dialysis fluid inlet and outlet lines connected to the dialyzer, the blood pump pumps a fluid through the dialyzer and into the drip chamber, forcing air from the drip chamber into the container.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 27, 2019
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Thomas D. Kelly, Marc S. Minkus, Angelito A. Bernardo, William P. Burns, Robert W. Childers, Shincy J. Maliekkal, Matthew R. Muller, Justin B. Rohde, Michael E. Hogard
  • Patent number: 10378693
    Abstract: There is disclosed a condensate drain, comprising: a body defining a drain chamber having a liquid-gas inlet and a liquid outlet; and a porous membrane having a pore size of about 0.2 ?m or less disposed within the body between the liquid-gas inlet and the liquid outlet; wherein in use, the porous membrane permits liquid to pass therethrough but restricts the passage of gas.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: August 13, 2019
    Assignee: Spirax-Sarco Limited
    Inventors: Jeremy Miller, Brian Chu, Kevin Rushbrooke, Simon Geuley
  • Patent number: 10342911
    Abstract: An apparatus for extracorporeal blood treatment, comprising a treatment unit (2) having a first chamber (3) and a second chamber (4) separated from one another by a semipermeable membrane (5), a blood removal line (6) connected in inlet with the first chamber (3) and a blood return line (7) connected in outlet with the first chamber; an infusion line (9; 9a, 9b) of a replacement fluid and a fluid evacuation line (10) connected in outlet from the second chamber.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 9, 2019
    Assignee: Gambro Lundia AB
    Inventors: Mauro Suffritti, Michela Carpani
  • Patent number: 10272363
    Abstract: An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis. The system is configured to allow insertion of a urease pouch, injection of a urease solution, or addition of a urease cartridge, into a dialysis cabinet containing a dialysis flow loop. The urease can be dissolved and the resulting urease solution added to the sorbent cartridge in the flow loop to replenish the urease within the sorbent cartridge. The sorbent cartridge can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 30, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 10265459
    Abstract: An apparatus for extracorporeal treatment of blood (1) comprising a treatment unit, a blood withdrawal line, a blood return line, a preparation line and a spent dialysate line. A control unit (10) is configured to calculate values of a parameter relating to treatment effectiveness based on measures of the conductivity in the spent dialysate line. The value of the effectiveness parameter is calculated using one or more values representative of the conductivity in the spent dialysate line obtained relying on a mathematical model.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: April 23, 2019
    Assignee: GAMBRO LUNDIA AB
    Inventors: Francesco Fontanazzi, Alessandro Surace, Francesco Rosati
  • Patent number: 10245369
    Abstract: A method for priming a hemodialysis treatment includes: providing a disposable cassette including at least a portion of a dialysate circuit and at least a portion of a blood circuit; placing a dialyzer in fluid communication with the dialysate circuit via a to-dialyzer dialysate line and a from-dialyzer dialysate line; placing the dialyzer in fluid communication with the blood circuit via an arterial blood line and a venous blood line; placing a source of dialysis fluid in fluid communication with the dialyzer; priming the dialysate circuit with dialysis fluid from the source while both the to-dialyzer dialysate line and the from-dialyzer dialysate line are connected at their dialyzer ends to the dialyzer; and priming the blood circuit with dialysis fluid from the source by actuating at least one valve provided by the disposable cassette.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: April 2, 2019
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed Mutasem El Sayyid, Shahid Din
  • Patent number: 10226543
    Abstract: There is provided an allergen inactivating agent having less lowering in performance due to fluctuation in pH, and being capable of not only adsorbing and removing an allergen, but also inactivating and removing the allergen itself. In addition, there is provided a house dust treatment agent, spray, and sheet, capable of effectively removing house dust, without any disadvantages upon use such as generation of stains.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: March 12, 2019
    Assignee: FUMAKILLA LIMITED
    Inventors: Shinichi Nagai, Takashi Sugiyama
  • Patent number: 10201650
    Abstract: An apparatus and method are disclosed for detecting the disconnection of a vascular access device such as a needle, cannula or catheter from a blood vessel or vascular graft segment. A pair of electrodes is placed in direct contact with fluid or blood in fluid communication with the vascular segment. In one embodiment, the electrodes are incorporated into a pair of connectors connecting arterial and venous catheters to arterial and venous tubes leading to and from an extracorporeal blood flow apparatus. Wires leading from the electrodes to a detecting circuit can be incorporated into a pair of double lumen arterial and venous tubes connecting the blood flow apparatus to the blood vessel or vascular graft. The detecting circuit is configured to provide a low-voltage alternating current signal to the electrodes to measure the electrical resistance between the electrodes, minimizing both the duration and amount of current being delivered.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: February 12, 2019
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, Jason M. Sachs
  • Patent number: 10124274
    Abstract: An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis using urease pouches. The sorbent cartridge is configured to allow insertion of a urease pouch or injection of a urease solution into the sorbent cartridge containing a urease pouch. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: November 13, 2018
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 10076283
    Abstract: A system and method for determining the amount of fluid to be removed from a dialysis patient is disclosed. The system utilizes sensors and a computer. The computer obtains the input parameters from the sensors, along with information added directly by the user, and performs a forward algorithm to determine a recommended change in patient fluid level. As fluid is removed, the effect of the removal on the parameters is detected by the sensors and re-transmitted back to the computer. The computer then performs a backward algorithm to refine the variables used in the forward algorithm and obtain more accurate results. The system and method provide for changing the amount of fluid removed from the patient based on the results of the algorithm and the data received from the sensors.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: September 18, 2018
    Assignee: Medtronic, Inc.
    Inventors: Orhan Soykan, Christopher M. Hobot, Martin T. Gerber, VenKatesh R. Manda
  • Patent number: 10016553
    Abstract: An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis. The sorbent cartridge is configured to allow an amount of urease to be added to the sorbent cartridge. A urease solution can be injected into the sorbent cartridge to replenish the urease containing module, or solid urease can be added to the sorbent cartridge. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: July 10, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 9968721
    Abstract: A method includes monitoring an indicator of fluid volume of a patient via a sensor device, and setting an initial fluid volume removal prescription for a blood fluid removal session based on the monitored indicator of fluid volume. The method may further include transmitting data regarding the indicator of fluid volume from the implantable sensor device to fluid removal device. The system includes a blood fluid removal device and control electronics configured to set the initial fluid removal volume and rate prescription. In some embodiments, the fluid removal device sets or calculated the initial fluid volume removal prescription based on the data received from the implantable sensor. The indicator of fluid volume may be an indicator of tissue fluid volume or an indicator of blood fluid volume.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 15, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Martin Gerber, John Burnes, Suping Lyu, VenKatesh R. Manda, Bryant Pudil
  • Patent number: 9950105
    Abstract: A blood treatment machine includes a blood pump; an arterial line in fluid communication with the blood pump, the arterial line including an arterial needle; a venous line including a venous needle; and a blood leak detection device including (i) at least one electrical component, (ii) a member configured to secure the at least one electrical component onto a patient's arm adjacent to patient access of at least one of the arterial and venous needles, the at least one electrical component capable of sensing the presence of a blood leak, and (iii) a controller in operable communication with the at least one electrical component, the controller programmed to allow for an amount of expected blood seepage and to cause an alarm if blood greater than the amount of expected blood seepage is sensed by the at least one electrical component.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: April 24, 2018
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Rodolfo Roger, Robert Childers, Thomas D. Kelly
  • Patent number: 9943631
    Abstract: A system and method for determining a concentration of total chlorine in dialysis water are provided. The system comprises a main unit housing a KI/water sample chamber and a sodium sulfate chamber. A first electrode pair bridges the two chambers and generates tri-iodide proportional to the amount of total chlorine in the water sample. A second electrode pair in contact with fluid in the KI/water sample detects an amount of tri-iodide generated by the first electrode pair. The system is suitable for use in connection with, or for incorporation into, a water purification system for generating dialysis fluid, and may include a display that alerts the user to stop or prevent a hemodialysis treatment if the total chlorine level exceeds a predetermined level.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 17, 2018
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Jeff White, Ye Chen, Yuanpang Samuel Ding, Joel Titus, Justin Rohde, Shincy Maliekkal, Kevin Cooper
  • Patent number: 9943636
    Abstract: An apparatus for extracorporeal treatment of blood (1) comprising a treatment unit, a blood withdrawal line, a blood return line, a preparation line and a spent dialysate line. A control unit (10) is configured to calculate values of a parameter relating to treatment effectiveness based on measures of the conductivity in the spent dialysate line. The value of the effectiveness parameter is calculated using one or more values representative of the conductivity in the spent dialysate line obtained relying on a mathematical model.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 17, 2018
    Assignee: GAMBRO LUNDIA AB
    Inventors: Francesco Fontanazzi, Alessandro Surace, Francesco Rosati
  • Patent number: 9937285
    Abstract: A system and method for determining a concentration of total chlorine in dialysis water are provided. The system comprises a main unit housing an iodide/water sample chamber and a reducing agent chamber. An electrode pair bridges the two chambers and generates tri-iodide proportional to the amount of total chlorine in the dialysis water. The electrode pair detects the amount of tri-iodide generated in proportion to the amount of active chloride in the dialysis water. The system is suitable for use in connection with, or for incorporation into, a water purification system for generating dialysis fluid, and may include a display that alerts the user to stop or prevent a hemodialysis treatment if the total chlorine level exceeds a predetermined level.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 10, 2018
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Jeff White, Ye Chen, Yuanpang Samuel Ding, Joel Titus, Justin Rohde, Shincy Maliekkal, Kevin Cooper
  • Patent number: 9927416
    Abstract: The present application relates to a method for controlling a disinfection status of a heater and/or cooler for human body temperature control during extracorporeal circulation. The temperature control is conducted by use of a heat exchanger and a temperature control liquid circulating through the heat exchanger and the heater and/or cooler. The inventive method comprises using a long term disinfectant in the temperature control liquid, measuring and preferably recording the concentration of the disinfectant in the temperature control liquid and deducing a disinfectant status of the temperature control liquid from the measured concentration of the disinfectant in the temperature control liquid.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 27, 2018
    Assignee: Sorin Group Deutschland GmbH
    Inventors: Johann Schreyer, Erwin Knott
  • Patent number: 9889245
    Abstract: A highly reliable circulation apparatus promptly detects an abnormal state of a status value related to blood flowing in a circulation circuit with no particular operation performed. As an extracorporeal circulation mode starts, a user operates a pump first and waits until a flow rate is stabilized. Then, when the flow rate is stabilized, a predetermined value is added to or subtracted from the stabilized flow rate so as to set two threshold values which regulate an upper end and a lower end of a permissible state range. Then, it is monitored whether or not the flow rate is within the permissible state range regulated by the threshold values, and when the flow rate deviates from the permissible state range, an alarm is issued for notification.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: February 13, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Tomoki Utsugida, Ryosuke Hanai
  • Patent number: 9889243
    Abstract: A hemodialysis system comprising: a source of priming fluid; an extracorporeal circuit including an arterial line, a venous line, and a drip chamber; a level sensor operable with the drip chamber; a reversible blood pump operable with the extracorporeal circuit; a connection between the arterial and the venous line; and a priming sequence in which priming fluid from the source is pumped in a reverse pump direction through the extracorporeal circuit and reversibly in a normal pump direction through the extracorporeal circuit, wherein an output from the level sensor is used to determine when to stop pumping in at least one of the directions.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: February 13, 2018
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed Mutasem El Sayyid, Shahid Din
  • Patent number: 9867920
    Abstract: An Oxygenator as a medical instrument includes at least one first hollow fiber membrane layer comprised of a plurality of integrated first hollow fiber membranes, and forms a shape of a cylindrical body as a whole, and at least one second hollow fiber membrane layer disposed at the outer circumferential side of the first hollow fiber membrane layer in a state of being concentric with the first hollow fiber membrane layer, has a plurality of integrated second hollow fiber membranes, and forms a shape of a cylindrical body as a whole. Moreover, each of the first hollow fiber membranes is wound around a central axis, and each of the second hollow fiber membranes is wound around a central axis. The number of times the second hollow fiber membranes are wound is smaller than the number of times the first hollow fiber membranes are wound.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: January 16, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Kazuhiko Takeuchi, Eisuke Sasaki
  • Patent number: 9821107
    Abstract: This invention relates to dialysis systems and methods. In some implementations, a method includes applying vacuum pressure to a device of a dialysis system, and then determining, based on a detected fluid level or measured pressure, whether the device is functioning properly.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 21, 2017
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Colin Weaver, Martin Joseph Crnkovich
  • Patent number: 9795731
    Abstract: An air purging method includes: (a) detecting a low fluid level in a blood circuit indicating a high amount of air in the blood circuit; (b) stopping a blood pump; (c) closing a venous patient line; (d) opening a blood circuit air vent valve and a drain valve; and (e) running the blood pump to meter air through the air vent valve and the drain valve to a drain.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: October 24, 2017
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas D. Kelly, Marc S. Minkus, Angelito A. Bernardo, William P. Burns, Robert W. Childers, Shincy J. Maliekkal, Matthew R. Muller, Justin B. Rohde, Michael E. Hogard
  • Patent number: 9757095
    Abstract: The present invention generally relates to devices and methods for collecting and stabilizing biological samples, and more particularly, for collecting and stabilizing blood or other bodily fluids from a user's fingertip, earlobe, heel or other locations. The present invention also relates to sample collection devices that simplify the process for mixing the biological samples with an additive or additives, provide for efficient storage and safe transport of the samples, and provide for easy access to the samples for subsequent processing.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: September 12, 2017
    Assignee: DXTERITY DIAGNOSTICS INCORPORATED
    Inventors: Robert Terbrueggen, Scott Gordon Beach
  • Patent number: 9744284
    Abstract: A method for a hybrid blood and peritoneal dialysis (“PD”) machine comprising: (i) determining whether a previous treatment left a last fill of dialysate in a patient's peritoneum; (ii) if a next treatment is a PD treatment, and if the previous treatment did not leave the last fill of dialysate, causing a PD treatment in which a first cycle is a fill cycle to be initiated; (iii) if the next treatment is a PD treatment, and if the previous treatment did leave the last fill of dialysate, causing a PD treatment in which a first cycle is a last fill drain cycle to be initiated; and (iv) if the next treatment is a blood treatment and if the previous treatment did leave the last fill of dialysate, causing a blood treatment including a last fill drain cycle to be initiated.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 29, 2017
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Gino Cicchello, Christian Bernard, Robert W. Childers, Anthony Simiele
  • Patent number: 9737653
    Abstract: A system and method provide improved ultrafiltration of charged/uncharged solutes in a fluid, especially a body fluid. The improvement is achieved through imposed electric field and/or surface charge patterning to a permeable membrane. In many of the embodiments, at least one selected material is used as an additive on a permeate side of the permeable membrane to reduce the sieving coefficient of the membrane with regard to a solute present in the fluid.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 22, 2017
    Inventors: Albert Terrence Conlisk, Jr., Subhra Datta, William H. Fissell, Shuvo Roy
  • Patent number: 9731061
    Abstract: A method and a device for monitoring an extracorporeal blood flow during an extracorporeal blood treatment with an extracorporeal blood treatment device. The extracorporeal blood treatment device may include the device for monitoring an extracorporeal blood flow. The arterial and/or venous patient access is monitored with a first and a second method, each of which there is a check for a presence of at least one criterion that is characteristic of a condition of the vascular access that is not in proper order, the criteria for the first and second methods being distinguished from one another. A blood pump, which is preferably an occlusion blood pump, is stopped once the presence of the at least one criterion of the first method has been established, while a venous cut-off unit remains open. Once the blood pump has been stopped, the presence of the at least one criterion is checked with the second method. The venous cut-off unit is not closed until the at least one criterion for the second method is present.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 15, 2017
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Pascal Kopperschmidt, Thomas Núrnberger
  • Patent number: 9718003
    Abstract: A centrifuge tube assembly which allows for a single centrifuge cycle and which permits the aspiration of fluids from multiple levels with the centrifuge tube assembly. A modified centrifuge assembly is described wherein the inner tube has an externally threaded portion at its upper end. The method of using the centrifuge tube assembly is also described wherein the centrifuge tube assembly may be used for the aspiration, separation, isolation and extracting of discrete layer in a liquid suspension.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: August 1, 2017
    Assignee: CELLMEDIX HOLDINGS, LLC
    Inventor: Thomas R. Petrie, Jr.
  • Patent number: 9663813
    Abstract: A method for filtering a sample comprising the steps of: (a) providing a sample with eukaryotic cells and containing or suspected to contain a micro-organism; (b) performing a selective lysis of the eukaryotic cells to obtain a lysed sample; (c) filtering the lysed sample obtained in step (b) through a filter arranged to retain the micro-organism; and (d) washing the filter with a detergent based wash buffer to selectively solubilize proteins originating from the eukaryotic cells retained by the filter, by passing the detergent based wash buffer through the filter, to remove protein clogs from the filter in order to allow an additional step (c) of filtering said lysed sample.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: May 30, 2017
    Assignee: Biocartis NV
    Inventors: Roel Penterman, Bart Van Meerbergen
  • Patent number: 9630179
    Abstract: System, apparatuses, and methods for performing automated reagent-based analysis are provided. Also provided are methods for automated attachment of a cap to a reaction receptacle, and automated removal of a cap from a capped reaction receptacle.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: April 25, 2017
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Byron J. Knight, Julian Groeli
  • Patent number: 9629951
    Abstract: An apparatus for performing blood therapy having a plurality of pumps for engaging blood and fluid tubing is characterized by a plurality of manually mounted and disengagable panels installed on the sides of the apparatus housing, the panels having pump engaging tubing mounted on the inside of the respective panels.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: April 25, 2017
    Assignee: B. BRAUN AVITUM AG
    Inventors: J. Michael Delmage, Harold W. Peters, Tommy Cooper
  • Patent number: 9617532
    Abstract: The present invention relates to a lysis, binding and/or wash reagent for isolating and/or purifying nucleic acids and a method for isolating and/or purifying nucleic acids.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: April 11, 2017
    Assignee: QIAGEN GmbH
    Inventors: Roland Fabis, Anke Homann-Wischinski, Thorsten Voss, Thomas Hanselle
  • Patent number: 9610579
    Abstract: This document provides devices, systems, and methods for delivering fluids. In some cases, the devices, systems, and methods include a deformable reservoir being at least partially defined by rigid plastically-deformable web. An actuator can press against said rigid plastically-deformable web to plastically deform said web. In some cases, a controller is adapted to receive a cartridge including a deformable reservoir and control the pressing of an actuator against a rigid plastically-deformable web to deliver fluid from the deformable reservoir.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: April 4, 2017
    Assignee: Daktari Diagnostics, Inc.
    Inventors: Aaron Oppenheimer, Lutz Weber, Matthias Kronsbein, Zachary Jarrod Traina, Philip Charles Walker, Andrew Boyce, Adam Casey
  • Patent number: 9561316
    Abstract: Methods for monitoring patient parameters and blood fluid removal system parameters include identifying those system parameters that result in improved patient parameters or in worsened patent parameters. By comparing the patient's current parameters to past parameters in response to system parameters or changes in system parameters, a blood fluid removal system may be able to avoid future use of parameters that may harm the patient and may be able to learn which parameters are likely to be most effective in treating the patient in a blood fluid removal session.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: February 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: Martin Gerber, Suping Lyu, Bryant Pudil
  • Patent number: 9561478
    Abstract: A separation membrane includes a membrane comprising a polymer, characterized in that a functional layer is formed on the surface in one side of the membrane, the peak area percentage of carbon derived from ester group measured by the electron spectroscopy for chemical analysis (ESCA) on the surface of the preceding functional layer is 0.1% (by atomic number) or more but not more than 10 (% by atomic number), and the peak area percentage of carbon derived from ester group measured by the electron spectroscopy for chemical analysis (ESCA) on the surface opposite to the functional layer is not more than 10 (% by atomic number). A separation membrane module suffering from little sticking of organic matters, proteins, platelets and so on is provided with the separation membrane as a built-in membrane.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: February 7, 2017
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Yoshiyuki Ueno, Masaki Fujita, Hiroyuki Sugaya
  • Patent number: 9540630
    Abstract: Apparatus is provided, including a plurality of islets, and a hydrogel configured to macroencapsulate the plurality of islets. The hydrogel is implantable in a subcapsular space (21) of a kidney (22) of a subject and is shaped to define a planar configuration. Other applications are also described.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 10, 2017
    Assignee: BETA O2 TECHNOLOGIES LTD.
    Inventors: Uriel Barkai, Avi Rotem, Dimitry Azarov, Tova Neufeld, Zohar Gendler
  • Patent number: 9486570
    Abstract: A method of treating blood withdrawn from patient including: simultaneously withdrawing blood and infusing withdrawn blood from and to the patient by flowing the withdrawn blood through an extracorporeal dialysis circuit including a dialyzer having a semi-permeable dialysis membrane and a dialysate side adjacent the membrane; feeding a dialysate containing 1 to 5 mM total calcium and 2 to 8 mM citrate to the dialysate side of the dialyzer, and introducing an anticoagulation fluid including at least 8 mM citrate into the arterial blood line.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: November 8, 2016
    Assignee: Gambro Lundia AB
    Inventor: Jan Sternby
  • Patent number: 9480784
    Abstract: A dialysis system includes an extracorporeal circuit, a dialysis fluid circuit including first and second balance chambers, a fresh dialysis fluid pump in fluid communication with first and second fresh compartments of the first and second balance chambers, respectively. The first and second fresh compartments are in fluid communication with a fresh dialysate fluid inlet of the dialyzer, and a used dialysis fluid pump is in fluid communication with first and second spent compartments of the first and second balance chambers, respectively. The system is configured to run a blood rinseback sequence in which (i) at least one of the fresh used dialysis fluid pumps is operated to pump dialysis fluid through the dialyzer and into the extracorporeal circuit and (ii) the blood pump is operated to push blood back to a patient connected to the extracorporeal circuit.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 1, 2016
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed M El Sayyid, Shahid Din
  • Patent number: 9446181
    Abstract: A washer press apparatus for washing and dewatering a wide range of solids concentrations of pulp in liquid suspensions includes multiple distinct displacement wash zones about a drum with multiple nips.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: September 20, 2016
    Assignee: Gambro Lundia AB
    Inventors: Lennart Jonsson, Olof Jansson, Mattias Holmer, Jan Sternby, Anders Nilsson, Per Hansson
  • Patent number: 9440018
    Abstract: A method for filtering blood including: withdrawing blood from an adult patient; performing ultrafiltration by filtering the withdrawn blood in a filter having an active filter membrane surface of no greater than 0.2 meters squared (m2) to remove ultrafiltrate from the blood, wherein the filter membrane blocks the passage of blood molecules having a molecular weight of at least 60,000 Daltons, wherein an amount of the removed ultrafiltrate is an effective therapeutic amount for treating a fluid overload condition of the patient; infusing the ultrafiltrated blood into the adult patient, and pumping the ultrafiltrate from the filter a rate no greater than one liter per hour.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: September 13, 2016
    Assignee: Gambro Lundia AB
    Inventors: Howard Levin, Mark Gelfand, John O'Mahony, Hans-Dietrich Polaschegg
  • Patent number: 9409146
    Abstract: Disclosed herein are methods for treating amyloid disease in humans by clearing amyloid peptides from one or more bodily fluids such as, e.g., blood, of a patient. In particular, the methods are based on the administration of compounds capable of binding to amyloid-beta (A?) or on dialysis of blood or plasma exchange in order to remove A? peptides from the blood circulation, and/or brain or other affected organs.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: August 9, 2016
    Assignee: New York University
    Inventors: Blas Frangione, Einar M. Sigurdsson, Thomas Wisniewski, Jorge Ghiso
  • Patent number: 9402941
    Abstract: A continuous renal replacement therapy (CRRT) device is provided that weighs between 2 and 10 pounds. The CRRT device can be portable, mobile or completely worn on the person of the patient. Blood and dialysate are each pumped in a pulsed or pulsatile manner through a dialyzer such that a significant portion of the peak pulse of the blood flow coincides with a significant portion of a low pulse portion of the dialysate flow. An differential pressure between a dialysate inlet of the dialyzer and the blood inlet of the dialyzer periodically changes from a high differential pressure of between 70 and 120 mmHg for a first time period and a low differential pressure of between ?10 and 10 mmHg for a first time period and a low differential pressure of between ?10 and 10 mmHg for a second time period. The frequency of the high and low differential pressure cycle is between about 0.5 and 4 Hz.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: August 2, 2016
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Edmond Rambod, Victor Gura
  • Patent number: 9393356
    Abstract: Methods and devices for providing dialysis treatment are provided. The device comprises a cartridge for providing regenerative dialysis, the cartridge comprising: a body having an inlet and an outlet and defining an interior, the interior including at least a layer comprising urease, a layer comprising zirconium oxide, a layer comprising zirconium phosphate, and a layer comprising carbon, wherein at least two of the layers are blended together to provide a gradient of the two materials.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: July 19, 2016
    Assignee: Baxter International Inc.
    Inventors: Sujatha Karoor, Brian Donovan, Ton That Hai, Mari Katada, Luis Lu, Leo Martis, Stavroula Morti, Salim Mujais, Paul J. Sanders, Paul J. Soltys, Rahul Tandon
  • Patent number: 9370614
    Abstract: Methods and devices implementing, for detecting a recirculation, at the side of a dialysis solution, by a blood-sided administration of a bolus are disclosed. Recirculation may be detected by: measuring a first light absorbance value (ad) of a dialysis solution (d) draining off a dialyzer using a spectrometer, prior to the administration of the bolus; venous administration of the bolus having a predefined volume (QBven) at the venous access; measuring a second light absorbance value (bd) of the draining dialysis solution using a spectrometer, after the administration of the bolus; and determining a change in the absorbance value between the first (ad) and second (bd) measured absorbance values due to the presence of a bolus in the dialysis solution during recirculation as a basis for the recirculation quantification.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: June 21, 2016
    Assignee: B. BRAUN AVITUM AG
    Inventor: Joern Ahrens