Biological Fluid (e.g., Blood, Urine, Etc.) Patents (Class 210/645)
  • Patent number: 11857713
    Abstract: An automated peritoneal dialysis system and machine configured to perform dextrose mixing are disclosed. An example dialysis machine includes a pump, a first solution having a first formulation stored in a first container that is placed in fluid communication with the pump, and a second solution having a second formulation stored in a second container that is also placed in fluid communication with the pump. The first container has a first unique identifier indicative of the first formulation and the second container has a second unique identifier indicative of the second formulation. The dialysis machine also includes a logic implementer programmed to receive a therapy prescription and operate the pump if the first formulation indicated by the first unique identifier is specified by the therapy prescription, or the second formulation indicated by the second unique identifier is specified by the therapy prescription.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: January 2, 2024
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Robert W. Childers, Alex Anping Yu, Borut Cizman
  • Patent number: 11690946
    Abstract: A blood treatment apparatus is disclosed. The example apparatus includes a blood treatment unit including a fluid inlet and a fluid outlet and a blood line. The apparatus also includes a fluid line including an upstream fluid line configured to receive electrically conductive treatment fluid from a fluid source and pass the electrically conductive treatment fluid to the fluid inlet of the blood treatment unit and a downstream fluid line connected to the fluid outlet of the blood treatment unit for delivering the used electrically conductive treatment fluid to a fluid sink. The apparatus further includes a flow divider arranged in the downstream fluid line and configured to separate the used electrically conductive treatment fluid in the downstream fluid line into to a first fluid section and a second fluid section, thereby electrically isolating the first and second fluid sections.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: July 4, 2023
    Assignee: Gambro Lundia AB
    Inventors: Per Hansson, Thomas Hertz, Mattias Holmer, Lennart Jonsson, Anders Nilsson, Anders Wallenborg, Johan Andersson
  • Patent number: 11672895
    Abstract: A dialysis method to enable a patient to undergo both peritoneal dialysis and extracorporeal blood treatments is disclosed. The method includes determining, via a base unit controller, whether a peritoneal dialysis treatment or an extracorporeal blood treatment is to be performed. If the peritoneal dialysis treatment is to be performed, the method includes operating first software instructions that cause a base unit to use a first fluid stored in a fluid container. If the extracorporeal blood treatment is to be performed, the method includes operating second software instructions that cause the base unit to use a second, different fluid from an online source and selectively move the second, different fluid to a blood treatment unit for use in the extracorporeal blood treatment. The blood treatment unit is operable with the base unit to perform the extracorporeal blood treatment on a patient.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: June 13, 2023
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Gino Cicchello, Christian Bernard, Robert W. Childers, Anthony Simiele
  • Patent number: 11571504
    Abstract: An apparatus and method for the batch photoactivation of mononuclear cells (MNCs) is described. The system includes a programmable controller configured to automatically separate whole blood in a first collection cycle to obtain a first quantity of MNCs; separate whole blood in a second collection cycle to obtain a second quantity of MNCs while simultaneously photoactivating the first quantity of MNCs to obtain a first quantity of treated MNCs; either store the first quantity of treated MNCs or reinfuse the first quantity of treated MNCs; photoactivate the second quantity of MNCs to obtain a second quantity of treated MNCs; either store the second quantity of treated MNCs or reinfuse the second quantity of treated MNCs; and reinfuse any blood components remaining after the second collection cycle.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: February 7, 2023
    Assignee: Fenwal, Inc.
    Inventors: Katherine N. Radwanski, Lan T Nguyen
  • Patent number: 11439736
    Abstract: A dialysis system includes a dialysis machine including at least one pump positioned and arranged to pump a dialysis fluid; and a dialysis fluid source located separate from and in fluid communication with the dialysis fluid machine, the dialysis fluid source including a purified water line for carrying purified water, a source of a first concentrate, a source of a second concentrate, a first concentrate pump positioned and arranged to pump first concentrate from the first concentrate source, and a second concentrate pump positioned and arranged to pump second concentrate from the second concentrate source, wherein dialysis fluid is prepared for delivery from the dialysis fluid source to the dialysis machine by mixing the purified water with the first concentrate pumped by the first concentrate pump and the second concentrate pumped by the second concentrate pump.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 13, 2022
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Justin B. Rohde, Shincy J. Maliekkal
  • Patent number: 11360076
    Abstract: Sample processing methods and systems to collect a biological sample. A device may be configured collect a predetermined volume of a sample in sample chamber, and seal the chamber upon activation. The device may be further configured to mix the mix the sample with a predetermined volume of a reagent and/or mix the sample and the reagent in a pre-determined ration.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: June 14, 2022
    Assignee: WEAVR HEALTH CORP.
    Inventors: Brandon T. Johnson, Kate E. Christian, Glenn H. Verner, Daniel Morgan
  • Patent number: 11358138
    Abstract: A blood sample collection and/or storage device includes a two-piece housing that encompasses a port at which a fingertip blood sample is collected. After the sample is taken, the two-piece housing is moved to a closed position to protect the sample for storage and optionally process the sample.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: June 14, 2022
    Assignee: BOSTON MICROFLUIDICS INC.
    Inventor: Brandon T. Johnson
  • Patent number: 11331667
    Abstract: An apparatus and method are disclosed for modifying the position of particles distributed in a fluid flow in a channel, comprising a channel formed by two substrates, each of the two substrates being on opposite sides of the channel, each substrate having a preselected periodic profile pattern along a length of the channel, and a transducer, wherein one of the substrates is between the transducer and the channel, the transducer to generate an acoustic standing wave within the channel with at least one node or antinode positioned within the channel.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: May 17, 2022
    Assignee: Nokia Technologies Oy
    Inventors: Ian Davis, Kevin Nolan
  • Patent number: 11298446
    Abstract: A method is provided for calibrating a pump during a blood separation procedure that has at least a first and second state or phase where fluid is flowed to or from a reservoir by action of the pump. The state or phase of the procedure may be a priming state, a draw state, a separation state and a return state, and the pump calibration may be performed between consecutive performances of the same procedure state. The calibration is based on a variance between the volume of fluid predicted to be processed by the pump for the given state of the procedure and the actual volume processed based on the change of weight of the reservoir. Recalibration of the pump, if necessary, is accomplished before the performance of the second phase is commenced.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 12, 2022
    Assignee: Fenwal, Inc.
    Inventors: Samantha M. Planas, Amit J. Patel, Kathleen M. Higginson
  • Patent number: 11253801
    Abstract: The prevent invention addresses the problem of providing a filter cloth for a bag filter, which has excellent collection efficiency, has excellent collection efficiency, provides low pressure drop and is resistant to clogging, and also has excellent dust-off ability; a method for producing the same; and a bag filter. As a means for resolution, a nonwoven fabric containing an ultrafine fiber having a fiber diameter D of 200 to 2,000 nm is laminated on a base material to form a filter cloth for a bag filter.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: February 22, 2022
    Assignee: TEIJIN FRONTIER CO., LTD.
    Inventors: Mie Kamiyama, Yoshikazu Kobayashi, Kazuyoshi Sakita
  • Patent number: 10980934
    Abstract: A method for collecting plasma includes determining the weight, height, and hematocrit of a donor, and calculating a donor plasma volume and a target plasma collection volume. The target plasma collection volume is based on the donor plasma volume and a target percentage of plasma. The method then withdraws blood from the donor through a line connected to a blood component separation device, and introduces anticoagulant into the withdrawn blood. The blood component separation device separates the blood into a plasma component and a second blood component, and the plasma component is collected from the blood component separation device and into a plasma collection container. The method may then calculate the volume of pure plasma collected within the plasma collection container, and continue processing/collecting until the calculated volume of pure plasma equals the target plasma collection volume.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: April 20, 2021
    Assignee: HAEMONETICS CORPORATION
    Inventor: Michael Ragusa
  • Patent number: 10906042
    Abstract: A new method is disclosed for extracting plasma from whole blood and metering the amount of plasma to an exact volume for dispensing into a diagnostic test, in a fully automatic and self-contained device. The device can be used in resource limited settings by unskilled users to facilitate sophisticated medical diagnostic testing outside of a hospital, clinic or laboratory.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 2, 2021
    Assignee: GattaCo Inc.
    Inventor: Michael Ryan McNeely
  • Patent number: 10850235
    Abstract: Systems and methods for filtering materials from biologic fluids are discussed. Embodiments may be used to filter cerebrospinal fluid (CSF) from a human or animal subject. The method may include the steps of withdrawing fluid comprising CSF, filtering the volume into permeate and retentate by passing the fluid through a tangential flow filter, and returning the permeate to the subject. During operation of the system, various parameters may be modified, such as flow rate.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 1, 2020
    Assignee: MINNETRONIX, INC.
    Inventors: Emily Rolfes Meyering, Gary Seim, Abhi Vase, Ben Krehbiel, Blake Hedstrom, Aaron McCabe
  • Patent number: 10807068
    Abstract: A sorbent pouch for use in sorbent dialysis. The sorbent pouch allows for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouch.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: October 20, 2020
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 10751251
    Abstract: A medical preparation dividing method is dividing a medical preparation stored in a storage member into a plurality of division bags by gravitational force through a primary tube, a branch portion, and a plurality of branch tubes. A medical preparation dividing unit has a curved portion formed in another end side of the primary tube, an inlet of the branch portion arranged above the curved portion, and outlets of the branch portion arranged above the inlet, in a state where the plurality of division bags is held with a holding tool.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: August 25, 2020
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Kaoru Hosoe, Koudai Nagata
  • Patent number: 10617809
    Abstract: An electrical sensor for sensing electromagnetic properties of process fluids in a dialysis machine or a similar medical device can include a probe for interfacing with the fluids that is made from electronic fabric materials. The electronic fabric probe can include one or more conductors embedded in a non-conductive fabric layer. The electronic fabric probe is accommodated an enclosure which establishes a flow path with respect to the probe to establish fluid contact between the process fluids and the conductors. The conductors can apply or sense current and/or voltage with respect to the fluid. A portion of the electronic fabric probe can be disposed externally of the enclosure to provide electronic communication externally of the enclosure.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 14, 2020
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Colin Weaver, Elliott Alber, Philip Scott James, Daniel Schmidt
  • Patent number: 10426883
    Abstract: A hemodialysis system configured to purge air from a blood circuit comprising: a dialyzer; a dialysis fluid circuit operable with the dialyzer via dialysis fluid inlet and outlet lines; the blood circuit operable with the dialyzer and including an arterial line, a venous line, a blood pump operable with the arterial line upstream of the dialyzer, and a physiologically acceptable fluid source in fluid communication with the arterial line upstream of the blood pump; and an air purging scheme wherein, with the dialysis fluid inlet and outlet lines connected to the dialyzer, air is purged using dialysis fluid or other physiologically acceptable fluid pumped by at least one of the fresh or used dialysis fluid pumps from the dialysis fluid circuit, through the dialyzer, into the blood circuit, in combination with dialysis fluid or other physiologically acceptable fluid from the source introduced directly into the blood circuit.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: October 1, 2019
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed Mutasem El Sayyid, Shahid Din
  • Patent number: 10391228
    Abstract: A hemodialysis system configured to purge air from a blood circuit comprises a dialyzer; a dialysis fluid circuit operable with the dialyzer via dialysis fluid inlet and outlet lines, the dialysis fluid circuit including a fresh dialysis fluid pump, and a used dialysis fluid pump; the blood circuit operable with the dialyzer and including an arterial line, a venous line, a blood pump operable with the arterial line upstream of the dialyzer, a physiologically acceptable fluid source in fluid communication with the arterial line upstream of the blood pump, a drip chamber located along the venous line, and a container for accepting air purged from the blood circuit; and an air purging scheme wherein, with the dialysis fluid inlet and outlet lines connected to the dialyzer, the blood pump pumps a fluid through the dialyzer and into the drip chamber, forcing air from the drip chamber into the container.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 27, 2019
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Thomas D. Kelly, Marc S. Minkus, Angelito A. Bernardo, William P. Burns, Robert W. Childers, Shincy J. Maliekkal, Matthew R. Muller, Justin B. Rohde, Michael E. Hogard
  • Patent number: 10378693
    Abstract: There is disclosed a condensate drain, comprising: a body defining a drain chamber having a liquid-gas inlet and a liquid outlet; and a porous membrane having a pore size of about 0.2 ?m or less disposed within the body between the liquid-gas inlet and the liquid outlet; wherein in use, the porous membrane permits liquid to pass therethrough but restricts the passage of gas.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: August 13, 2019
    Assignee: Spirax-Sarco Limited
    Inventors: Jeremy Miller, Brian Chu, Kevin Rushbrooke, Simon Geuley
  • Patent number: 10342911
    Abstract: An apparatus for extracorporeal blood treatment, comprising a treatment unit (2) having a first chamber (3) and a second chamber (4) separated from one another by a semipermeable membrane (5), a blood removal line (6) connected in inlet with the first chamber (3) and a blood return line (7) connected in outlet with the first chamber; an infusion line (9; 9a, 9b) of a replacement fluid and a fluid evacuation line (10) connected in outlet from the second chamber.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 9, 2019
    Assignee: Gambro Lundia AB
    Inventors: Mauro Suffritti, Michela Carpani
  • Patent number: 10272363
    Abstract: An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis. The system is configured to allow insertion of a urease pouch, injection of a urease solution, or addition of a urease cartridge, into a dialysis cabinet containing a dialysis flow loop. The urease can be dissolved and the resulting urease solution added to the sorbent cartridge in the flow loop to replenish the urease within the sorbent cartridge. The sorbent cartridge can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 30, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 10265459
    Abstract: An apparatus for extracorporeal treatment of blood (1) comprising a treatment unit, a blood withdrawal line, a blood return line, a preparation line and a spent dialysate line. A control unit (10) is configured to calculate values of a parameter relating to treatment effectiveness based on measures of the conductivity in the spent dialysate line. The value of the effectiveness parameter is calculated using one or more values representative of the conductivity in the spent dialysate line obtained relying on a mathematical model.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: April 23, 2019
    Assignee: GAMBRO LUNDIA AB
    Inventors: Francesco Fontanazzi, Alessandro Surace, Francesco Rosati
  • Patent number: 10245369
    Abstract: A method for priming a hemodialysis treatment includes: providing a disposable cassette including at least a portion of a dialysate circuit and at least a portion of a blood circuit; placing a dialyzer in fluid communication with the dialysate circuit via a to-dialyzer dialysate line and a from-dialyzer dialysate line; placing the dialyzer in fluid communication with the blood circuit via an arterial blood line and a venous blood line; placing a source of dialysis fluid in fluid communication with the dialyzer; priming the dialysate circuit with dialysis fluid from the source while both the to-dialyzer dialysate line and the from-dialyzer dialysate line are connected at their dialyzer ends to the dialyzer; and priming the blood circuit with dialysis fluid from the source by actuating at least one valve provided by the disposable cassette.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: April 2, 2019
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed Mutasem El Sayyid, Shahid Din
  • Patent number: 10226543
    Abstract: There is provided an allergen inactivating agent having less lowering in performance due to fluctuation in pH, and being capable of not only adsorbing and removing an allergen, but also inactivating and removing the allergen itself. In addition, there is provided a house dust treatment agent, spray, and sheet, capable of effectively removing house dust, without any disadvantages upon use such as generation of stains.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: March 12, 2019
    Assignee: FUMAKILLA LIMITED
    Inventors: Shinichi Nagai, Takashi Sugiyama
  • Patent number: 10201650
    Abstract: An apparatus and method are disclosed for detecting the disconnection of a vascular access device such as a needle, cannula or catheter from a blood vessel or vascular graft segment. A pair of electrodes is placed in direct contact with fluid or blood in fluid communication with the vascular segment. In one embodiment, the electrodes are incorporated into a pair of connectors connecting arterial and venous catheters to arterial and venous tubes leading to and from an extracorporeal blood flow apparatus. Wires leading from the electrodes to a detecting circuit can be incorporated into a pair of double lumen arterial and venous tubes connecting the blood flow apparatus to the blood vessel or vascular graft. The detecting circuit is configured to provide a low-voltage alternating current signal to the electrodes to measure the electrical resistance between the electrodes, minimizing both the duration and amount of current being delivered.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: February 12, 2019
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, Jason M. Sachs
  • Patent number: 10124274
    Abstract: An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis using urease pouches. The sorbent cartridge is configured to allow insertion of a urease pouch or injection of a urease solution into the sorbent cartridge containing a urease pouch. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: November 13, 2018
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 10076283
    Abstract: A system and method for determining the amount of fluid to be removed from a dialysis patient is disclosed. The system utilizes sensors and a computer. The computer obtains the input parameters from the sensors, along with information added directly by the user, and performs a forward algorithm to determine a recommended change in patient fluid level. As fluid is removed, the effect of the removal on the parameters is detected by the sensors and re-transmitted back to the computer. The computer then performs a backward algorithm to refine the variables used in the forward algorithm and obtain more accurate results. The system and method provide for changing the amount of fluid removed from the patient based on the results of the algorithm and the data received from the sensors.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: September 18, 2018
    Assignee: Medtronic, Inc.
    Inventors: Orhan Soykan, Christopher M. Hobot, Martin T. Gerber, VenKatesh R. Manda
  • Patent number: 10016553
    Abstract: An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis. The sorbent cartridge is configured to allow an amount of urease to be added to the sorbent cartridge. A urease solution can be injected into the sorbent cartridge to replenish the urease containing module, or solid urease can be added to the sorbent cartridge. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: July 10, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, Christopher M. Hobot
  • Patent number: 9968721
    Abstract: A method includes monitoring an indicator of fluid volume of a patient via a sensor device, and setting an initial fluid volume removal prescription for a blood fluid removal session based on the monitored indicator of fluid volume. The method may further include transmitting data regarding the indicator of fluid volume from the implantable sensor device to fluid removal device. The system includes a blood fluid removal device and control electronics configured to set the initial fluid removal volume and rate prescription. In some embodiments, the fluid removal device sets or calculated the initial fluid volume removal prescription based on the data received from the implantable sensor. The indicator of fluid volume may be an indicator of tissue fluid volume or an indicator of blood fluid volume.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 15, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Martin Gerber, John Burnes, Suping Lyu, VenKatesh R. Manda, Bryant Pudil
  • Patent number: 9950105
    Abstract: A blood treatment machine includes a blood pump; an arterial line in fluid communication with the blood pump, the arterial line including an arterial needle; a venous line including a venous needle; and a blood leak detection device including (i) at least one electrical component, (ii) a member configured to secure the at least one electrical component onto a patient's arm adjacent to patient access of at least one of the arterial and venous needles, the at least one electrical component capable of sensing the presence of a blood leak, and (iii) a controller in operable communication with the at least one electrical component, the controller programmed to allow for an amount of expected blood seepage and to cause an alarm if blood greater than the amount of expected blood seepage is sensed by the at least one electrical component.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: April 24, 2018
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Rodolfo Roger, Robert Childers, Thomas D. Kelly
  • Patent number: 9943636
    Abstract: An apparatus for extracorporeal treatment of blood (1) comprising a treatment unit, a blood withdrawal line, a blood return line, a preparation line and a spent dialysate line. A control unit (10) is configured to calculate values of a parameter relating to treatment effectiveness based on measures of the conductivity in the spent dialysate line. The value of the effectiveness parameter is calculated using one or more values representative of the conductivity in the spent dialysate line obtained relying on a mathematical model.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 17, 2018
    Assignee: GAMBRO LUNDIA AB
    Inventors: Francesco Fontanazzi, Alessandro Surace, Francesco Rosati
  • Patent number: 9943631
    Abstract: A system and method for determining a concentration of total chlorine in dialysis water are provided. The system comprises a main unit housing a KI/water sample chamber and a sodium sulfate chamber. A first electrode pair bridges the two chambers and generates tri-iodide proportional to the amount of total chlorine in the water sample. A second electrode pair in contact with fluid in the KI/water sample detects an amount of tri-iodide generated by the first electrode pair. The system is suitable for use in connection with, or for incorporation into, a water purification system for generating dialysis fluid, and may include a display that alerts the user to stop or prevent a hemodialysis treatment if the total chlorine level exceeds a predetermined level.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 17, 2018
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Jeff White, Ye Chen, Yuanpang Samuel Ding, Joel Titus, Justin Rohde, Shincy Maliekkal, Kevin Cooper
  • Patent number: 9937285
    Abstract: A system and method for determining a concentration of total chlorine in dialysis water are provided. The system comprises a main unit housing an iodide/water sample chamber and a reducing agent chamber. An electrode pair bridges the two chambers and generates tri-iodide proportional to the amount of total chlorine in the dialysis water. The electrode pair detects the amount of tri-iodide generated in proportion to the amount of active chloride in the dialysis water. The system is suitable for use in connection with, or for incorporation into, a water purification system for generating dialysis fluid, and may include a display that alerts the user to stop or prevent a hemodialysis treatment if the total chlorine level exceeds a predetermined level.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 10, 2018
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Jeff White, Ye Chen, Yuanpang Samuel Ding, Joel Titus, Justin Rohde, Shincy Maliekkal, Kevin Cooper
  • Patent number: 9927416
    Abstract: The present application relates to a method for controlling a disinfection status of a heater and/or cooler for human body temperature control during extracorporeal circulation. The temperature control is conducted by use of a heat exchanger and a temperature control liquid circulating through the heat exchanger and the heater and/or cooler. The inventive method comprises using a long term disinfectant in the temperature control liquid, measuring and preferably recording the concentration of the disinfectant in the temperature control liquid and deducing a disinfectant status of the temperature control liquid from the measured concentration of the disinfectant in the temperature control liquid.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 27, 2018
    Assignee: Sorin Group Deutschland GmbH
    Inventors: Johann Schreyer, Erwin Knott
  • Patent number: 9889243
    Abstract: A hemodialysis system comprising: a source of priming fluid; an extracorporeal circuit including an arterial line, a venous line, and a drip chamber; a level sensor operable with the drip chamber; a reversible blood pump operable with the extracorporeal circuit; a connection between the arterial and the venous line; and a priming sequence in which priming fluid from the source is pumped in a reverse pump direction through the extracorporeal circuit and reversibly in a normal pump direction through the extracorporeal circuit, wherein an output from the level sensor is used to determine when to stop pumping in at least one of the directions.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: February 13, 2018
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas Kelly, Robert W. Childers, Don Busby, Rodolfo Roger, Waleed Mutasem El Sayyid, Shahid Din
  • Patent number: 9889245
    Abstract: A highly reliable circulation apparatus promptly detects an abnormal state of a status value related to blood flowing in a circulation circuit with no particular operation performed. As an extracorporeal circulation mode starts, a user operates a pump first and waits until a flow rate is stabilized. Then, when the flow rate is stabilized, a predetermined value is added to or subtracted from the stabilized flow rate so as to set two threshold values which regulate an upper end and a lower end of a permissible state range. Then, it is monitored whether or not the flow rate is within the permissible state range regulated by the threshold values, and when the flow rate deviates from the permissible state range, an alarm is issued for notification.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: February 13, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Tomoki Utsugida, Ryosuke Hanai
  • Patent number: 9867920
    Abstract: An Oxygenator as a medical instrument includes at least one first hollow fiber membrane layer comprised of a plurality of integrated first hollow fiber membranes, and forms a shape of a cylindrical body as a whole, and at least one second hollow fiber membrane layer disposed at the outer circumferential side of the first hollow fiber membrane layer in a state of being concentric with the first hollow fiber membrane layer, has a plurality of integrated second hollow fiber membranes, and forms a shape of a cylindrical body as a whole. Moreover, each of the first hollow fiber membranes is wound around a central axis, and each of the second hollow fiber membranes is wound around a central axis. The number of times the second hollow fiber membranes are wound is smaller than the number of times the first hollow fiber membranes are wound.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: January 16, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Kazuhiko Takeuchi, Eisuke Sasaki
  • Patent number: 9821107
    Abstract: This invention relates to dialysis systems and methods. In some implementations, a method includes applying vacuum pressure to a device of a dialysis system, and then determining, based on a detected fluid level or measured pressure, whether the device is functioning properly.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 21, 2017
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Colin Weaver, Martin Joseph Crnkovich
  • Patent number: 9795731
    Abstract: An air purging method includes: (a) detecting a low fluid level in a blood circuit indicating a high amount of air in the blood circuit; (b) stopping a blood pump; (c) closing a venous patient line; (d) opening a blood circuit air vent valve and a drain valve; and (e) running the blood pump to meter air through the air vent valve and the drain valve to a drain.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: October 24, 2017
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Thomas D. Kelly, Marc S. Minkus, Angelito A. Bernardo, William P. Burns, Robert W. Childers, Shincy J. Maliekkal, Matthew R. Muller, Justin B. Rohde, Michael E. Hogard
  • Patent number: 9757095
    Abstract: The present invention generally relates to devices and methods for collecting and stabilizing biological samples, and more particularly, for collecting and stabilizing blood or other bodily fluids from a user's fingertip, earlobe, heel or other locations. The present invention also relates to sample collection devices that simplify the process for mixing the biological samples with an additive or additives, provide for efficient storage and safe transport of the samples, and provide for easy access to the samples for subsequent processing.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: September 12, 2017
    Assignee: DXTERITY DIAGNOSTICS INCORPORATED
    Inventors: Robert Terbrueggen, Scott Gordon Beach
  • Patent number: 9744284
    Abstract: A method for a hybrid blood and peritoneal dialysis (“PD”) machine comprising: (i) determining whether a previous treatment left a last fill of dialysate in a patient's peritoneum; (ii) if a next treatment is a PD treatment, and if the previous treatment did not leave the last fill of dialysate, causing a PD treatment in which a first cycle is a fill cycle to be initiated; (iii) if the next treatment is a PD treatment, and if the previous treatment did leave the last fill of dialysate, causing a PD treatment in which a first cycle is a last fill drain cycle to be initiated; and (iv) if the next treatment is a blood treatment and if the previous treatment did leave the last fill of dialysate, causing a blood treatment including a last fill drain cycle to be initiated.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 29, 2017
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Gino Cicchello, Christian Bernard, Robert W. Childers, Anthony Simiele
  • Patent number: 9737653
    Abstract: A system and method provide improved ultrafiltration of charged/uncharged solutes in a fluid, especially a body fluid. The improvement is achieved through imposed electric field and/or surface charge patterning to a permeable membrane. In many of the embodiments, at least one selected material is used as an additive on a permeate side of the permeable membrane to reduce the sieving coefficient of the membrane with regard to a solute present in the fluid.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 22, 2017
    Inventors: Albert Terrence Conlisk, Jr., Subhra Datta, William H. Fissell, Shuvo Roy
  • Patent number: 9731061
    Abstract: A method and a device for monitoring an extracorporeal blood flow during an extracorporeal blood treatment with an extracorporeal blood treatment device. The extracorporeal blood treatment device may include the device for monitoring an extracorporeal blood flow. The arterial and/or venous patient access is monitored with a first and a second method, each of which there is a check for a presence of at least one criterion that is characteristic of a condition of the vascular access that is not in proper order, the criteria for the first and second methods being distinguished from one another. A blood pump, which is preferably an occlusion blood pump, is stopped once the presence of the at least one criterion of the first method has been established, while a venous cut-off unit remains open. Once the blood pump has been stopped, the presence of the at least one criterion is checked with the second method. The venous cut-off unit is not closed until the at least one criterion for the second method is present.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 15, 2017
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Pascal Kopperschmidt, Thomas Núrnberger
  • Patent number: 9718003
    Abstract: A centrifuge tube assembly which allows for a single centrifuge cycle and which permits the aspiration of fluids from multiple levels with the centrifuge tube assembly. A modified centrifuge assembly is described wherein the inner tube has an externally threaded portion at its upper end. The method of using the centrifuge tube assembly is also described wherein the centrifuge tube assembly may be used for the aspiration, separation, isolation and extracting of discrete layer in a liquid suspension.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: August 1, 2017
    Assignee: CELLMEDIX HOLDINGS, LLC
    Inventor: Thomas R. Petrie, Jr.
  • Patent number: 9663813
    Abstract: A method for filtering a sample comprising the steps of: (a) providing a sample with eukaryotic cells and containing or suspected to contain a micro-organism; (b) performing a selective lysis of the eukaryotic cells to obtain a lysed sample; (c) filtering the lysed sample obtained in step (b) through a filter arranged to retain the micro-organism; and (d) washing the filter with a detergent based wash buffer to selectively solubilize proteins originating from the eukaryotic cells retained by the filter, by passing the detergent based wash buffer through the filter, to remove protein clogs from the filter in order to allow an additional step (c) of filtering said lysed sample.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: May 30, 2017
    Assignee: Biocartis NV
    Inventors: Roel Penterman, Bart Van Meerbergen
  • Patent number: 9629951
    Abstract: An apparatus for performing blood therapy having a plurality of pumps for engaging blood and fluid tubing is characterized by a plurality of manually mounted and disengagable panels installed on the sides of the apparatus housing, the panels having pump engaging tubing mounted on the inside of the respective panels.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: April 25, 2017
    Assignee: B. BRAUN AVITUM AG
    Inventors: J. Michael Delmage, Harold W. Peters, Tommy Cooper
  • Patent number: 9630179
    Abstract: System, apparatuses, and methods for performing automated reagent-based analysis are provided. Also provided are methods for automated attachment of a cap to a reaction receptacle, and automated removal of a cap from a capped reaction receptacle.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: April 25, 2017
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Byron J. Knight, Julian Groeli
  • Patent number: 9617532
    Abstract: The present invention relates to a lysis, binding and/or wash reagent for isolating and/or purifying nucleic acids and a method for isolating and/or purifying nucleic acids.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: April 11, 2017
    Assignee: QIAGEN GmbH
    Inventors: Roland Fabis, Anke Homann-Wischinski, Thorsten Voss, Thomas Hanselle
  • Patent number: 9610579
    Abstract: This document provides devices, systems, and methods for delivering fluids. In some cases, the devices, systems, and methods include a deformable reservoir being at least partially defined by rigid plastically-deformable web. An actuator can press against said rigid plastically-deformable web to plastically deform said web. In some cases, a controller is adapted to receive a cartridge including a deformable reservoir and control the pressing of an actuator against a rigid plastically-deformable web to deliver fluid from the deformable reservoir.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: April 4, 2017
    Assignee: Daktari Diagnostics, Inc.
    Inventors: Aaron Oppenheimer, Lutz Weber, Matthias Kronsbein, Zachary Jarrod Traina, Philip Charles Walker, Andrew Boyce, Adam Casey
  • Patent number: 9561478
    Abstract: A separation membrane includes a membrane comprising a polymer, characterized in that a functional layer is formed on the surface in one side of the membrane, the peak area percentage of carbon derived from ester group measured by the electron spectroscopy for chemical analysis (ESCA) on the surface of the preceding functional layer is 0.1% (by atomic number) or more but not more than 10 (% by atomic number), and the peak area percentage of carbon derived from ester group measured by the electron spectroscopy for chemical analysis (ESCA) on the surface opposite to the functional layer is not more than 10 (% by atomic number). A separation membrane module suffering from little sticking of organic matters, proteins, platelets and so on is provided with the separation membrane as a built-in membrane.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: February 7, 2017
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Yoshiyuki Ueno, Masaki Fujita, Hiroyuki Sugaya