Hyperfiltration (e.g., Reverse Osmosis, Etc.) Patents (Class 210/652)
  • Publication number: 20120273422
    Abstract: Equipment, systems, processes and techniques for conducting reverse osmosis processing of solutions are described. The techniques can be applied to provide diluted solution (i.e. purified solvent), concentrate solution or each. A variety of specific equipment, example systems and processes are depicted and described.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Inventor: CALVIN WADE WOHLERT
  • Patent number: 8292088
    Abstract: A water supply system in accordance with the invention includes pumping in which there is a mechanical co-dependency between the generations of liquid-draw pressure and filtration-drive pressure, but a hydraulic dependency of the application of the filtration-drive pressure upon release of water from the liquid-draw pressure. In one preferred embodiment, the system is enabled by a retrofit assembly in which a second, filtration-drive pump is mechanically connected to the pump handle of a water intake pump. The retrofit assembly may include multiple arms and hinge points for coupling the second pump to the pump handle, as well as a flow path from the output of the water intake pump to the input of the second pump and a flow path from the second pump to a filtration system. The flow path between the two pumps typically includes an unfiltered water outlet.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 23, 2012
    Assignee: Acuity/Sparkle, Ltd. (Cayman)
    Inventors: Michael H. Francisco, Sumeet Mehra, Subhash Mehra
  • Publication number: 20120255908
    Abstract: Synergies in recovery of reverse osmosis (RO) membrane process reject waste and forward osmosis (FO) membrane process water extraction, using such osmotic process byproducts in applications for makeup to evaporative cooling towers, concurrent with use of specific corrosion and scale inhibition methods that permit tower water discharge reduction to approach zero blowdown. Such synergies are derived from methods for application of subsequent RO feed water and reject wastewater with pre-treatment steps, and FO process optimization steps to permit water quality and economic performance efficiencies when used as makeup to evaporative cooling systems.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 11, 2012
    Applicant: WATER CONSERVATION TECHNOLOGY INTERNATIONAL, INC.
    Inventors: DAN A. DUKE, JOHN L. KUBIS
  • Patent number: 8282830
    Abstract: Devices and methods for producing purified water. The device includes a reverse osmosis subsystem, a dehumidification subsystem and a purified water storage tank fluidly coupled to the subsystems such that purified water produced by each can be locally stored. A vehicular platform, such as a ship, can be used to locate the device adjacent a supply of saline water and humid air. A saline water inlet, membrane and purified water outlet cooperate in the reverse osmosis subsystem to allow preferential passage of water relative to salt in a saline water supply, while the dehumidification subsystem includes a heat exchanger that extracts moisture from the ambient humid air. Purified water produced by each of the subsystems can be used as a potable water source.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: October 9, 2012
    Inventor: Ival O. Salyer
  • Patent number: 8282828
    Abstract: A method and a system for regenerating a body fluid, such as a peritoneal dialysis fluid. The body fluid is removed into an extracorporeal circuit comprising an electrofilter for removing charged ions from the body fluid, a nanofilter for removing large molecules, such as Dextran 40, and a reverse osmosis filter for concentrating the body fluid, for producing a synthetic urine to be discarded. The removed ions and large molecules are returned to the patient together with pure water from the reverse osmosis filter through an ultrafilter.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: October 9, 2012
    Assignee: Triomed AB
    Inventor: Anders Wallenås
  • Patent number: 8277661
    Abstract: A hydrothermally stable, microporous organic-inorganic hybrid membrane based on silica, having an mean pore diameter of between 0.2 and 1.5 nm, is characterised in that between 5 and 40 mole % of the Si—O—Si bonds have been replaced by moieties having the one of the formulas: Si—{[CmH(n-1)X]—Si—}q, Si—[CmH(n-2)X2]—Si or Si—CmHn—Si{(CmHn)—Si—}y in which m=1-8, n=2m, 2m?2, 2m?4, 2m?6 or 2m?8; provided that n?2, X=H or (CH2)pSi, p=0 or 1, and q=1, 2, 3 or 4. The membrane can be produced by acid-catalysed hydrolysis of suitable bis-silane precursors such as bis(trialkoxysily)alkanes, preferably in the presence of monoorganyl-silane precursors such as trialkoxy-alkylsilanes.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: October 2, 2012
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Ashima Sah, Hessel Lennart Castricum, Jaap Ferdinand Vente, David Hermanus Adrianus Blank, Johan Evert Ten Elshof
  • Patent number: 8277660
    Abstract: Disclosed are embodiments of a method and apparatus for the treatment of water containing silica in order to recover as much treated water from a water source as possible while minimizing the generation of waste products. Other embodiments include removing specific elements from the water source and utilizing those elements. Embodiments of the method and apparatus uses in-line physical and physio-chemical treatment methods to remove potential biological, colloidal and hardness foulants continually so that there is minimal loss of water from the water source stream and minimal addition of chemicals to accomplish removal or reduction of these potential recovery-limiting foulants.
    Type: Grant
    Filed: March 12, 2011
    Date of Patent: October 2, 2012
    Assignee: CDM Smith Inc
    Inventors: Robert J. Kimball, Kenneth A. Klinko
  • Publication number: 20120234760
    Abstract: A desalination apparatus includes a first reverse osmosis membrane device 13 that removes a salt content from raw water supplied with predetermined pressure, a second reverse osmosis membrane device 15 that removes a salt content in first permeated water 12 from the first reverse osmosis membrane device 13, a first flow regulation valve 17 that regulates flow rate of first concentrated water 16 from the first reverse osmosis membrane device 13, a second flow regulation valve 19 that regulate flow rate of second concentrated water 18 from the second reverse osmosis membrane device 15, and a control device that measures a supply temperature of the raw water 11 by a thermometer 20, controls the first flow regulation valve 17 to maintain discharge amount of concentrated water constant, and controls the second flow regulation valve 19 to reduce a return amount of water.
    Type: Application
    Filed: November 16, 2010
    Publication date: September 20, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshiaki Ito, Kazuhisa Takeuchi, Kenji Tanaka, Hideo Iwahashi
  • Publication number: 20120238777
    Abstract: A method is provided for concentrating a material solution using at least two consecutive membrane separating stages, each stage for separating the material solution into a retentate and a permeate. The cut-off of the membranes used in the separating stages is higher than that of the membrane used in the previous stage. The retentate of each separating stage, with the exception of the last stage, is fed to the following separating stage as a feed, and the permeate from at least one separating stage is fed back to a preceding separating stage and introduced into the feed thereof. The fed-back permeate has a concentration and viscosity that substantially corresponds to the concentration and viscosity of the preceding separating stage into which the permeate is introduced.
    Type: Application
    Filed: September 8, 2010
    Publication date: September 20, 2012
    Applicant: TECHNISCHE UNIVERSITAT WIEN
    Inventors: Michael Harasek, Saeed Gul
  • Publication number: 20120234758
    Abstract: Forward osmosis membranes include an active layer and a thin support layer. A bilayer substrate including a removable backing layer may allow forward osmosis membranes with reduced supporting layer thickness to be processed on existing manufacturing lines.
    Type: Application
    Filed: April 17, 2012
    Publication date: September 20, 2012
    Applicant: OASYS WATER, INC.
    Inventors: Robert McGinnis, Gary McGurgan
  • Publication number: 20120234759
    Abstract: Various embodiments described herein provide methods and apparatus for producing purified water from sea water or some other salty or brackish water source by using brackish concentrate mixed with salty water. The various embodiments also provide methods and apparatus for the treatment of toxicity of brackish concentrate, which brackish concentrate exhibits on aquatic life inhabiting the area of discharge of the brackish concentrate, as well as a method for environmentally safe disposal of brackish concentrate.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 20, 2012
    Inventor: Nikolay Voutchkov
  • Publication number: 20120223018
    Abstract: A method and system for recycling and treating dyeing wastewater are provided. To begin with, the dyeing wastewater is added with an adsorbent for assisted decolorization and filtration. Then, the wastewater is filtered with a first filtration device having hydrophilic membranes. The liquid having passed through the hydrophilic membranes undergoes an RO membrane-base filtration process to produce recycled water and concentrated wastewater. The concentrated wastewater is delivered into a second filtration device having hydrophobic membranes, before a micro-bubbling process is performed on the concentrated wastewater in the second filtration device to turn the concentrated wastewater into a creamy-white nebulized working liquid of high gas content. The steam in the working liquid can readily pass through the hydrophobic membranes to produce an effluent that meets effluent standards.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Inventor: Jr-Jung Iang
  • Patent number: 8257594
    Abstract: A water-on-water filtration system that includes a filter member and two storage vessels. The system includes a plurality of valves that are controlled to place a first of the storage vessels in a fill state in which the first storage vessel is being filled with filtered water, and concurrently place the second of the storage vessels in a service state in which filtered water held in the second storage vessel is delivered as an output of the filtration system. The filtration system can be configured to supply a constant output of filtered water to meet a constant demand while using a relatively small filter member and relatively small storage vessels.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: September 4, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Robert E. Astle, Martin J. Blaze, Katrina Prutzman
  • Publication number: 20120216875
    Abstract: Methods and systems for producing, trading, transporting, and storing commodities are disclosed. More specifically, methods and systems for producing, trading, transporting, and storing large quantities of water having specific characteristics are provided. Methods for transferring title and trading commodities in the form of water are disclosed. Various transport systems are disclosed, including devices and methods for utilizing preexisting vessels to carry different liquid cargoes which should not contact one another.
    Type: Application
    Filed: August 31, 2011
    Publication date: August 30, 2012
    Inventors: Allen Szydlowski, Ian Szydlowski, Mickey Fouts
  • Publication number: 20120210869
    Abstract: The present invention relates to a membrane, in particular to a hollow fiber membrane comprising a membrane, comprising at least two layers, wherein the at least two layers each comprise at least one layer forming material comprising at least one polymer and the at least two layers differ from each other with respect to the layer forming material, wherein the at least two layers are at least partly covalently and delamination free bonded to each other. The present invention relates furthermore to a method of production of the said membrane as well as to its use.
    Type: Application
    Filed: December 20, 2011
    Publication date: August 23, 2012
    Applicant: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventors: Christian Finkler, Rainer Fislage, Torsten Keller, Igor Raiko, Roland Sander
  • Publication number: 20120211421
    Abstract: Systems and methods for lowering levels of carbon dioxide and other atmospheric pollutants are provided. Economically viable systems and processes capable of removing vast quantities of carbon dioxide and other atmospheric pollutants from gaseous waste streams and sequestering them in storage-stable forms are also discussed.
    Type: Application
    Filed: March 1, 2012
    Publication date: August 23, 2012
    Inventors: KYLE SELF, Kasra Farsad, Robert W. Elliott, Brian Curtis, Srikanth Bellur, Miguel Fernandez, Philip Brian Tuet
  • Publication number: 20120205313
    Abstract: This invention provides for sulfate removal from a water source by a reverse osmosis (RO) or nanofiltration (NF) process where the concentrate stream is treated to precipitate and remove reject sulfate and recycle the discharged concentrate water and any backwash water used to clean a filter used to prepare feed water for the RO or NF process.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: SIEMENS INDUSTRY, INC.
    Inventors: Karthikeyan Sathrugnan, Lew Andrew Reyes
  • Publication number: 20120205309
    Abstract: According to one embodiment, a method for separating a solvent from an object solution includes the solvent and a solute is provided. The method includes preparing a forward osmosis membrane having a first surface and a second surface, and contacting the first surface of the membrane with the object solution and contacting the second surface with a liquid for collection. A substance having solidity is configured to exert a force for transferring the solvent in the object solution to the membrane, and disposed on the second surface of the membrane and/or dispersed in the liquid for collection to transfer the solvent in the object solution from the first surface to the liquid for collection.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 16, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenji Sano, Hideyuki Tsuji
  • Publication number: 20120205307
    Abstract: A method of treating a fluid comprises producing a permeate fluid (24) from an outlet (22) of a filtration unit (12), delivering the permeate fluid (24) to be injected into a subterranean formation, and recirculating at least a portion of the permeate fluid to be mixed with a source fluid (32) to produce a feed fluid (14) to be treated within the filtration unit (12).
    Type: Application
    Filed: October 26, 2010
    Publication date: August 16, 2012
    Applicant: VWS WESTGARTH LIMITED
    Inventor: Mourad Ben Boudinar
  • Patent number: 8241503
    Abstract: Disclosed is an economical process for the purification of water containing soluble and sparingly soluble inorganic compounds using single-stage or two-stage membrane processes that integrate membrane water purification with chemical precipitation softening and residual hardness and silica removal from the membrane concentrates using ion exchange resins and silica sequestering media, respectively.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 14, 2012
    Inventor: Riad Al-Samadi
  • Patent number: 8236178
    Abstract: A method for cleaning and maintaining reverse osmosis membrane filters by injecting sulfurous acid into water to form sulfurous acid (H2SO3), and then sequentially filtering the acidified water through membrane filters to reduce alkalinity and mineral scaling, add sufficient SO2 as a biocide to attack bacteria and other micro organisms to prevent membrane fouling, reduce iron to prevent iron deposit build-up, scavenge and remove dissolved oxygen prior to filtration to prevent membrane oxidation, and prevent concentrated salts within the retentate from precipitating out of solution during transport for land application.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: August 7, 2012
    Assignee: Earth Renaissance Technologies, LLC
    Inventors: Thomas A. Ruehr, Evelyn Ruehr, legal representative, Terry R. Gong
  • Patent number: 8231784
    Abstract: A reverse osmosis system and method for operating the same includes a pressure tank having a first end and a second end, the pressure tank has a first volume adjacent to the first end and a second volume adjacent to the second end and a third volume between the first volume and the second volume and a fluid passage fluidically coupling the second volume to the first volume. The reverse osmosis system also includes a plurality of membranes disposed within the third volume generating permeate and a permeate manifold receiving permeate from the membranes and fluidically communicating permeate out of the pressure tank. A feed line couples feed fluid into the pressure tank. A first pump pressurizes the feed line. A second pump is disposed within the tank and circulates brine fluid from the second volume through the fluid passage.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: July 31, 2012
    Assignee: Fluid Equipment Development Company, LLC
    Inventor: Eli Oklejas, Jr.
  • Patent number: 8231786
    Abstract: Water treatment method and apparatus according to which supply water containing dissolved matter is delivered to at least one treatment surface. An electric field is created in the vicinity of the treatment surface to cause a hydration layer to be established due to the bipolar nature of the water molecules. Water is then extracted from the hydration layer. Such extraction may be effected by osmosis or by removal of the element (s) from the supply water with the hydration layer water thereon, dehydration layer water subsequently being extracted from the element (s). The method has been devised to reduce energy consumption for the purpose of providing potable water from seawater.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: July 31, 2012
    Assignee: HydroPath Holdings Limited
    Inventor: Daniel Stefanini
  • Patent number: 8226829
    Abstract: Process for separating a dissolved complex catalyst of a metal of group 4, 5, 6, 7, 8, 9 or 10 of the Periodic Table of the Elements and/or any free organophosphorus ligand present from a nonaqueous hydroformylation reaction mixture which contains an aldehyde product and an organic solvent at least one membrane which is more permeable to the hydroformylation product than to the organophosphorus ligand, the separation being carried out under a carbon monoxide partial vapor pressure of more than 200 kPa.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 24, 2012
    Assignee: Evonik Oxenc GmbH
    Inventors: Klaus-Diether Wiese, Goetz Baumgarten, Franz-Felix Kuppinger, Oliver Moeller, Dagmara Ortmann, Cornelia Borgmann, Wilfried Bueschken
  • Publication number: 20120180656
    Abstract: Provided is an apparatus and method for filtration using osmosis, which induce osmotic pressure and allow separation of pure fluid by using the reduced osmotic pressure as an energy source, and thus carry out filtration without any additional energy supply.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 19, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Seong Pil JEONG, Seock Heon LEE, Young Beom YU
  • Patent number: 8221629
    Abstract: A process for removing a solvent from a first solution, said process comprising positioning a selective membrane between the first solution and a second solution having a higher osmotic potential than the first solution, such that solvent from the first solution passes across the membrane to dilute the second solution, and extracting solvent from the second solution, wherein the membrane has an average pore size of at least 10 Angstroms, and wherein the second solution contains solute species that are too large to pass through the pores of the membrane.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: July 17, 2012
    Assignee: Surrey Aquatechnology Limited
    Inventors: Abdulsalam Al-Mayahi, Adel Sharif
  • Patent number: 8221628
    Abstract: In one embodiment, the present invention includes a liquid processing system. In the liquid processing system, a first liquid source transmits feed liquid to a heat exchange unit while a heat generation unit transmits warm coolant to the heat exchange unit. A heat generation unit warms the feed liquid while cooling the warm coolant. The warmed feed liquid is sent to a pump, and cooled feed liquid from a second liquid source is mixed with the warmed feed liquid as necessary until a target temperature is reached. The warmed feed liquid is sent to a reverse osmosis unit for filtering and the resulting permeate is sent to the liquid utilization unit. The cooled coolant is sent from the heat exchange unit to the storage tank and if the cooled coolant is not cool enough, it is sent to a cooling tower for further cooling.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: July 17, 2012
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: John A. Goodfellow
  • Patent number: 8216474
    Abstract: The present disclosure provides methods and systems for purifying liquids. In a particular implementation, the system includes a forward-osmosis unit for diluting a water source for a downstream desalination unit. A pretreatment unit may be located hydraulically upstream of the desalination unit, such as upstream or downstream of the forward-osmosis unit. In certain embodiments, the system includes an extraction unit for extracting a relatively easily extractable osmotic agent from an osmotic draw solution. The system may include one or more forward-osmosis units downstream of the desalination unit for diluting a concentrated brine stream produced by the desalination unit. In particular embodiments, a downstream forward-osmosis unit uses the concentrated brine stream as an osmotic agent, such as to extract water from seawater or brackish water. Another downstream forward-osmosis unit may use impaired water as a feed stream.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 10, 2012
    Assignee: The Board of Regents of the Nevada System of Higher Education
    Inventors: Tzahi Y. Cath, Amy E. Childress
  • Patent number: 8216473
    Abstract: Equipment, systems, processes and techniques for conducting reverse osmosis processing of solutions are described. The techniques can be applied to provide diluted solution (i.e. purified solvent), concentrate solution or each. A variety of specific equipment, example systems and processes are depicted and described.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: July 10, 2012
    Assignee: Solution Dynamics, LLC
    Inventor: Calvin Wade Wohlert
  • Patent number: 8216627
    Abstract: A processes is provide herein for converting waste bio-product pomace to useful bio-product extracts. The process includes the steps of forming a mixture of water as a solvent and a specified quantity of the waste bio-product pomace. Then optionally adding a suitable quantity of citric acid to the water/waste bio-product mixture. Then heating waste bio-product pomace/water mixture to an elevated temperature below the boiling point of water. Then optionally adding a suitable quantity of sodium metabisulfite to the heated waste bio-product pomace/water mixture Then stirring heated waste bio-product pomace/water mixture for a suitable time to disperse the waste bio-product uniformly in the water solvent. Then cooling the stirred, heated waste bio-product pomace/water mixture to a suitable lower temperature at a rate of about 60° C. per hour. Then removing solids from the stirred waste bio-product pomace/water mixture. Then clarifying the cooled stirred water/waste bio-product mixture.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 10, 2012
    Inventor: Richard F. Ablett
  • Patent number: 8206589
    Abstract: Various embodiments described herein provide methods and apparatus for producing purified water from sea water or some other salty or brackish water source by using brackish concentrate mixed with salty water. The various embodiments also provide methods and apparatus for the treatment of toxicity of brackish concentrate, which brackish concentrate exhibits on aquatic life inhabiting the area of discharge of the brackish concentrate, as well as a method for environmentally safe disposal of brackish concentrate.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: June 26, 2012
    Assignee: Poseidon Resources IP LLC
    Inventor: Nikolay Voutchkov
  • Patent number: 8206592
    Abstract: The invention relates to systems and methods of treating water by directing the water to a first reverse osmosis (RO) membrane; separating the water using the first RO membrane; adding a chelating agent to first permeate and/or raising the pH of the first permeate to between about 5.5 and 7.5 before a second RO membrane; and separating the first permeate into a second permeate and a second concentrate using the second RO membrane, thereby separating constituents from the water.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: June 26, 2012
    Assignee: Siemens Industry, Inc.
    Inventors: John F. Bossler, Hari Bhushan Gupta, Kenneth R. Workman, Jospeh C. Jimerson
  • Patent number: 8202429
    Abstract: Foreign substances which are not inherently contained in a polishing slurry are selectively separated and removed from a polishing slurry component comprised of abrasives, a solvent and an additive which are inherently contained in the polishing slurry.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: June 19, 2012
    Assignee: Nomura Micro Science Co., Ltd.
    Inventors: Mitsugu Abe, Masamitsu Iiyama
  • Publication number: 20120145636
    Abstract: A high efficiency water purification system is provided incorporating recovery of a portion concentrate wastewater associated with the reverse osmosis unit. This reduces the overall volume of concentrate wastewater requiring discharge/disposal by reusing the purified concentrate of a concentrate recovery units as RO feed water. Initial feedwater is pressurized and passed through an RO membrane, and separated into a permeate flow and a concentrate flow. A portion of the higher pressure concentrate is then directed to an additional set of thin film composite membranes (concentrate recovery membranes). The concentrate recovery membranes are arranged in an array such that the concentrate pressure is adequate to provide the force required to drive the concentrate through the recovery system membranes. The permeate produced by the concentrate recovery system is directed back to the feed of the primary RO unit; thereby, reducing the volume of raw feed water required for system operation.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 14, 2012
    Inventors: Joseph Hooley, William E. Kovacs
  • Publication number: 20120145634
    Abstract: A high efficiency water purification system is provided incorporating a process to recover a portion of the concentrate wastewater associated with the reverse osmosis unit to reduce the overall volume of concentrate wastewater requiring discharge/disposal by reusing the purified concentrate of a concentrate recovery units as RO feed water. The initial municipal feedwater is pressurized and passed through an RO membrane, and separated into a permeate flow and a concentrate flow. After passing through the membrane, a portion of the higher pressure concentrate is then directed to an additional set of thin film composite membranes (concentrate recovery membranes). The concentrate is drawn from the primary RO unit upstream of a concentrate flow control valve where the pressure is typically 100-600 psig. The concentrate recovery membranes are arranged in an array such that the concentrate pressure is adequate to provide the force required to drive the concentrate through the recovery system membranes.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Inventors: Joseph Hooley, William E. Kovacs
  • Publication number: 20120145633
    Abstract: Methods are provided for separating solids containing oily/water of the type normally encountered in SAGD and hydraulic fracturing operations. The solids containing oily/water is subjected to ultrasound separation techniques and mechanical separation operations. The mechanical separation operation may, preferably, comprise centrifugal separation such as that in which the treated solids containing oily/water is separated into a solids fraction, an oil fraction, and a water fraction.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David M. Polizzotti, Abdul Rafi Khwaja
  • Publication number: 20120145635
    Abstract: The present invention provides for a process for treating water with multiple contaminants. The process includes filtering the water to remove relatively large particulates and immiscible organic fluids. The pH of the water is adjusted. Components such as sulfates are added to precipitate heavy metals. Any suspended solids and residual organic compounds are removed with an enhanced air flotation device. The resulting water is then passed through a reverse osmosis system whereby the water is treated in a cascading stage-wise manner with one or more selective membrane units.
    Type: Application
    Filed: October 14, 2011
    Publication date: June 14, 2012
    Inventors: Arthur L. Lucas, III, John E. Sawyer
  • Patent number: 8197645
    Abstract: The present invention relates to a process for separating at least one propylene glycol from a mixture (M) comprising water and said propylene glycol, said process comprising (I) evaporating the mixture in at least two evaporation and/or distillation stages at decreasing operating pressures of the evaporators and/or distillation columns obtaining mixture (M?) and mixture (M?); (II) separating the mixture (M?) obtained in (I) in at least one further distillation step, obtaining a mixture (M-I) comprising at least 70 wt.-% of water and a mixture (M-II) comprising less than 30 wt.-% of water.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 12, 2012
    Assignees: BASF Aktiengesellschaft, The Dow Chemical Company
    Inventors: Armin Diefenbacher, Hans-Georg Goebbel, Stefan Bitterlich, Hartwig Voss, Henning Schultz, Anna Forlin, Renate Patrascu
  • Patent number: 8197693
    Abstract: Sea water is not suitable for human consumption. Naturally present dissolved chemicals in sea water make it inconsumable. The precipitants and dissolved chemicals need to be separated from water to make it consumable. A combination of aeration system, filtration system, crystallizer, hydrophobic membrane carrying filter and pressure retarded osmosis system are used in various combination to desalinate the sea water. Pressure retarded osmosis process is also used to produce pressurized diluted brine which is further decompressed to by the turbine and used by the generators to produce electricity. Various heat exchange apparatus are used for energy conservation and efficient processing of water in a feasible way. The disclosure enables to purify water and provide an economical means for producing electricity.
    Type: Grant
    Filed: January 15, 2012
    Date of Patent: June 12, 2012
    Assignee: King Abdulazia City for Science and Technology (KACST)
    Inventor: Saad A Al-Jlil
  • Publication number: 20120138536
    Abstract: A reverse osmosis system includes a membrane chamber having a feed line. The chamber generates a permeate stream and a brine stream from the feed line. A feed pump pressurizes the feed line. A first flow meter generates a first flow signal corresponding to a flow of fluid in the permeate stream. A booster device has a turbine in fluid communication with the brine stream and a pump in fluid communication with the feed line. A motor is coupled to the turbine device and a variable frequency drive is attached to the turbine device operating in response to the first flow signal. A second flow meter generates a second flow signal corresponding to a flow of fluid in the brine stream and a variable size nozzle operates an opening in response to the second flow meter.
    Type: Application
    Filed: January 11, 2012
    Publication date: June 7, 2012
    Applicant: FLUID EQUIPMENT DEVELOPMENT COMPANY, LLC
    Inventor: Eli Oklejas, JR.
  • Patent number: 8187429
    Abstract: A wastewater treatment apparatus and method with stair-like heat treatment tanks for performing a breakdown process are disclosed, in which the apparatus comprises: a mixing tank, for evenly mixing wastewater with reaction agents and thus forming a mixed solution; a plurality of heat treatment tanks, for enabling the mixed solution to circulate therein while being heating for a period of time so as to perform an organic destruction process upon the mixed solution and thus cause a discharging liquid to be formed; a heat exchanger, for enabling a heat exchanging process between the discharging liquid and the mixed solution to be performed therein; a condensation tank, for receiving and cooling the discharging liquid; a water purifier, for purifying and thus separating the discharging water into a cleaned water and a concentrated liquid for outputting; an agent recycling unit, for electrolyzing the concentrated liquid so as to recycle the reaction agents.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 29, 2012
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Jen-Chieh Chung, Ming-Hsin Wu, Yu-Chang Liu
  • Publication number: 20120125851
    Abstract: A transportable disaster-relief generating system is a power generated, multi-functional, and compact relief unit with means for providing area lighting via a power generator, purifying and storing potable water from a non-potable water source, and creating ice utilizing purified water. The disaster-relief unit of the present invention may further provide a portable ice storage bin in a knockdown configuration to hold a large quantity of ice. A bladder may be used to hold potable water produced. The equipment is physically protected by the structural framework and base. The device may comprise access doors and suitable paneling on the walls and roof of the device.
    Type: Application
    Filed: March 15, 2011
    Publication date: May 24, 2012
    Inventor: Irwin Shapiro
  • Patent number: 8182693
    Abstract: A method and apparatus for purifying water are provided. A feed water such as seawater can be fed to a filter such as a microporous or nanofiltration membrane to produce a permeate that can, in turn, be fed to an electrodeionization system to produce fresh water.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: May 22, 2012
    Assignee: Siemens Industry, Inc.
    Inventors: Frederick C. Wilkins, Anil Jha, Gary C. Ganzi
  • Patent number: 8177979
    Abstract: This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 15, 2012
    Assignee: NanOasis Technologies, Inc.
    Inventors: Timothy V. Ratto, Jason K. Holt, Alan W. Szmodis
  • Patent number: 8177978
    Abstract: An interfacial polymerization process (IFP) for preparing a highly permeable TFC RO membrane by contacting on a porous support membrane for IFP, a polyfunctional acyl halide monomer and a polyamine monomer and recovering a highly permeable thin film (TFC) reverse osmosis (RO) membrane. At least one of solutions may contain nanoparticle additives which may release ions into solution and at least one of the solutions may contain additional ions from a second additive. The presence of the nanoparticle additives during IFP may increase the hydrophilicity and/or permeability of the recovered membrane compared to a control membrane. The presence of the additional ions from the second additive may also increase the permeability of the recovered membrane.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 15, 2012
    Assignee: NanoH20, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Publication number: 20120103899
    Abstract: A maple sap reverse osmosis device has a support rack configured and sized to rest atop a tank. The support rack supporting a reverse osmosis device. The reverse osmosis device has a pump line and a dump line both located within the tub. The pump line being located at an upper region of the tank. A pumping means to pump the maple sap from the pump line. The pumping means pushing maple sap through an osmosis membrane. The dump pipe purging concentrate resulting from sap not passing through the osmosis membrane into the deepest region of the tub.
    Type: Application
    Filed: September 26, 2011
    Publication date: May 3, 2012
    Inventor: Denis Côtè
  • Publication number: 20120103906
    Abstract: The retrofit technology utilizes pressurized brine of convention RO to feed a Closed Circuit Desalination (CCD) unit; wherein, further desalination takes place to a desired recovery level. The application exemplified in FIG. 4 is of a retrofit unit comprising a Booster Pump (BP2) for raising pressure of inlet feed; a Circulation Pump (CP) for creating cross flow over membranes (E) in the pressure vessel (M), thereby enable efficient RO desalination; an Actuated Valve (AV) in line with a partially open Manual Valve (MV) to enable periodic replacement of high salinity concentrates with fresh feed without stopping desalination; No Return (NR) valve means to control the direction of flow in the system; and monitoring means such as of electric conductivity (CM) and flow (FM). Periodic replacement of high salinity concentrates by fresh feed initiated at desired high system electric conductivity and terminated at a desired low system electric conductivity, while desalination continued.
    Type: Application
    Filed: July 5, 2010
    Publication date: May 3, 2012
    Applicant: Desalitech Ltd.
    Inventor: Avi Efraty
  • Publication number: 20120103905
    Abstract: A microfiltration method and system for treating production water, for example, from oil and gas operations so that the treated water can be put to a beneficial user(s) such as agriculture, irrigation, industrial or municipal or potable applications. The production water is treated using a ceramic microfilter after pretreatment, for example, to remove volatile hydrocarbons and heavier oils, such as paraffins and asphaltenes, that could foul the ceramic filter. The effluent from the ceramic microfiltration can be further treated, for example, with activated charcoal or otherwise for the intended end use.
    Type: Application
    Filed: January 12, 2012
    Publication date: May 3, 2012
    Applicant: PRODUCED WATER DEVELOPMENT, LLC
    Inventor: David Rakestraw Stewart
  • Patent number: 8167143
    Abstract: DCMD and VMD systems and methods for use in desalination applications are provided. The DCMD and VMD systems employ coated porous hydrophobic hollow fiber membranes. The coatings advantageously function to essentially eliminate pore wetting of the membrane, while permitting substantially unimpeded water vapor permeance through the fiber walls. The DCMD and VMD membranes are characterized by larger fiber bore diameters and wall thicknesses. The membranes substantially reduce the loss of brine sensible heat, e.g., heat loss via conductive heat flux through the membrane wall and the vapor space and, in exemplary embodiments, the brine-side heat transfer coefficient is dramatically enhanced by horizontal/vertical cross flow of brine over the outside surface of the coated fibers. Superior water vapor fluxes are achieved with the systems and methods.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: May 1, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, Baoan Li
  • Publication number: 20120091062
    Abstract: An energy efficient desalination process that does not produce waste products involves the extraction of water from a first solution, such as seawater, by using a second concentrated solution to draw the water from the first solution across a semi-permeable membrane. By manipulating the equilibrium of the soluble and insoluble species of solute within the second solution in favor of the soluble species of the solute, a saturated second solution can be used to generate osmotic pressure on the first solution. Also, by adjusting the equilibrium in favor of the less soluble species after the water has been drawn from the first solution, a portion of the solute can easily be precipitated out. Heating the second solution decomposes the solute into its constituent gases. The constituent gases and precipitated solute may be recycled through the process to affect the changes in equilibrium and eliminate waste products.
    Type: Application
    Filed: April 13, 2011
    Publication date: April 19, 2012
    Applicant: Yale University
    Inventor: Robert L. McGinnis