Utilizing Peroxy Compound (e.g., Hydrogen Peroxide, Peracid, Etc.) Patents (Class 210/759)
  • Patent number: 10576427
    Abstract: A method for cleaning a filter membrane in which at least 2 types of cleaning water containing oxidizing agents are prepared, and the filter membrane is cleaned using the cleaning water in an ascending order of the oxidizabilities of the oxidizing agents. Moreover, an apparatus for cleaning a filter membrane of the present invention comprises a means for cleaning the filter membrane using at least 2 types of cleaning water containing oxidizing agents, and the filter membrane is cleaned using the cleaning water in an ascending order of the oxidizabilities of the oxidizing agents. The method and the apparatus for cleaning a filter membrane can efficiently remove polluting substances adhered to a filter membrane while reducing the amounts of oxidizing agents and water to be used, and can maintain the filtration performance for a long period of time.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: March 3, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kyohei Aketagawa, Nozomu Yasunaga
  • Patent number: 10308540
    Abstract: The present disclosure relates to a novel process to control odors from manure by digesting the manure into Methane. Embodiments may comprise a two stage anaerobic digestion process to digest the wastes and remove the nutrients from the wastewater. The initial anaerobic digestion is carried out in a closed vessel to capture any gassed released and otherwise proceeds as current practices are. The wastewater from the first stage digestion is then pumped into a second reaction vessel. This vessel reproduces the conditions that produce natural gas (methane) in the geologic setting, with high temperatures and high pressures.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: June 4, 2019
    Inventor: Stanley Marcus Meyer
  • Patent number: 10244762
    Abstract: A biocide contains a hydrogen peroxide producing compound, in combination with controlled amounts of a chelating agent and a peroxide enhancing agent. In one embodiment, the composition can be used to control an algae population in a water body. The chelating agent and the peroxide enhancing agent synergistically combine with the hydrogen peroxide producing compound to increase the potency and effectiveness of the oxidizer.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 2, 2019
    Assignee: Arch Chemicals, Inc.
    Inventors: Deqing Lei, Ryan Wersal
  • Patent number: 10046993
    Abstract: A compact system for treating pharmaceutical waste at a location at which the pharmaceutical waste is disposed includes a waste influent tank configured to hold and discharge a fluid containing pharmaceutical waste, a first container configured to hold and discharge hydrogen peroxide utilized in a chemical reaction to treat the pharmaceutical waste, a second container configured to hold and discharge aqueous iron solution utilized in a chemical reaction to treat the pharmaceutical waste, a neutralizer tank in which the chemical reaction is carried out, and a drain container configured to receive treated fluid. The system excludes a UV light source.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: August 14, 2018
    Assignee: CLEAR RIVER ENVIRO, LLC
    Inventors: Michael Sanborn, Todd McGee, Mark Macdonell, Scott Kosch
  • Patent number: 10017403
    Abstract: Compositions and methods for the use of peracid compositions having low to substantially no hydrogen peroxide for various water treatments, including oil- and gas-field operations, and/or other aseptic treatments are disclosed. In numerous aspects, peracetic acid is the preferred peracid and is treated with a peroxide-reducing agent to substantially reduce the hydrogen peroxide content. Methods for using the treated peracid compositions for treatment of drilling fluids, frac fluids, flow back waters and disposal waters are also disclosed for improving water condition, reducing oxidizing damage associated with hydrogen peroxide and/or reducing bacteria infestation.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 10, 2018
    Assignee: Ecolab USA Inc.
    Inventors: Victor Keasler, Renato De Paula, Junzhong Li, David D. McSherry, Brandon Herdt, Richard Staub
  • Patent number: 9986741
    Abstract: A surface treatment powder comprising (a) about 50 wt. % or more of a percarbonate, perphosphate, persulfate, peroxide or perborate salt; (b) about 0.2-10 wt. % of a chlorinated isocyanurate salt; and (c) a bleach activator, and method of using same to inhibit the growth of a microorganism on a surface.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: June 5, 2018
    Assignee: DeVere Company, Inc.
    Inventors: Randal D. Stevenson, Thomas J. Fahey
  • Patent number: 9802846
    Abstract: A process for treating oilfield waste water includes combining oilfield waste water and a biocide comprising hydrogen peroxide, the biocide being present in an amount effective to decrease a number density of bacteria in the oilfield waste water. The treated water can be reused in a subterranean environment.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: October 31, 2017
    Assignee: BAKER HUGHES, a GE COMPANY, LLC
    Inventors: Kushal Seth, Jenifer C. Lascano, Larry G. Hines
  • Patent number: 9694401
    Abstract: A method of treating a site containing perfluoroalkyl compounds (PFCs) is described. The method and apparatus treats the site with fine oxygen/ozone gas bubbles delivered with a hydroperoxide coating and solution which is activated by self-created temperature or applied temperature to raise the oxidation potential above 2.9 volts. Once begun, the reaction is often self-promulgating until the PFC is exhausted, if PFC concentrations are sufficiently elevated.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: July 4, 2017
    Assignee: KERFOOT TECHNOLOGIES, INC.
    Inventor: William B. Kerfoot
  • Patent number: 9656890
    Abstract: The present invention is directed to a method for the treatment of an environmental medium contaminated with arsenic, comprising treating such medium with an effective amount of persulfate and zero valent iron.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: May 23, 2017
    Assignee: PeroxyChem, LLC
    Inventor: Philip A. Block
  • Patent number: 9617170
    Abstract: The present invention relates to a process for reduction of the presence of microorganisms and/or decomposition of organic micropollutants in water using an energy source and an additive characterized in that the energy source is UV radiation and the additive comprises performic acid.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: April 11, 2017
    Assignee: Kemira Oyj
    Inventors: Tatjana Karpova, Esa Melin, Antti Vuori, Ulrik Ojstedt, Robin Gramstad, Kaj Jansson, Marko Kolari
  • Publication number: 20150129507
    Abstract: The present invention is directed to a method for the treatment of an environmental medium contaminated with arsenic, comprising treating such medium with an effective amount of persulfate and zero valent iron.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Applicant: PEROXYCHEM LLC
    Inventor: Philip A. BLOCK
  • Patent number: 8999175
    Abstract: The present invention relates to methods employing compositions including medium chain peroxycarboxylic acid for reducing microbial contamination on fruit, vegetable, or other produce; in waters used to transport or process fruit, vegetable, or other produce; or on surfaces employed in transporting or processing fruit, vegetable, or other produce. The present invention also relates to the medium chain peroxycarboxylic acid compositions. The methods include applying a medium chain peroxycarboxylic acid composition to fruit, vegetable, or other produce; into waters used to transport or process fruit, vegetable, or other produce; or to surfaces employed in transporting or processing fruit, vegetable, or other produce.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: April 7, 2015
    Assignee: Ecolab USA Inc.
    Inventors: Victor Fuk-Pong Man, Joshua Paul Magnuson
  • Patent number: 8992780
    Abstract: The invention provides methods and compositions for reducing the malodorous sulfide gas released by a wastewater treatment system. The method preserves the vitality of waste consuming organisms within the system. The method comprises the steps of: determining the SRP PAA demand of the system, determining the aerobic PAA demand of the system, and adding a composition in an amount such that it is in excess of the SRP PAA demand but is below the aerobic PAA demand. Even though the composition increases the amount of sulfates within the wastewater it reduces the amount of SRP which prevents the malodorous sulfite gas release. The composition comprises at least one percarboxyacid.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: March 31, 2015
    Assignee: Ecolab USA Inc
    Inventors: Gary L. Champion, Victor Keasler, Robert J Ryther
  • Patent number: 8992851
    Abstract: Continuous flow water treatment systems, devices and methods that reduce the costs associated with using oxidizing agents in water treatment by maximizing mixing energy with pressure of the solution in a continuous flow system. The systems comprise an inflow conduit that provides water to be treated to a mixing chamber in a housing, a first chemical injector mounted into either the inflow conduit or the housing that provides an oxidizing agent into the water flow, a driven impeller mounted within the mixing chamber that maintains the flow of fluid through the apparatus and provides agitation to the fluid within the mixing chamber, and an outflow conduit for expelling the treated water from the mixing chamber. The outflow conduit may be pressurized to increase the mixing energy in the mixing chamber.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: March 31, 2015
    Assignee: 0832521 B.C. Ltd.
    Inventors: Marten Hebert, Clifford Oleksiew
  • Patent number: 8961798
    Abstract: A method and system of providing ultrapure water for semiconductor fabrication operations is provided. The water is treated by utilizing a free radical scavenging system and a free radical removal system. The free radical scavenging system can utilize actinic radiation with a free radical precursor compound, such as ammonium persulfate. The free radical removal system can comprise use of a reducing agent. The ultrapure water may be further treated by utilizing ion exchange media and degasification apparatus. A control system can be utilized to regulate addition of the precursor compound, the intensity of the actinic radiation, and addition of the reducing agent to the water.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: February 24, 2015
    Assignee: Evoqua Water Technologies LLC
    Inventor: Bruce Lee Coulter
  • Patent number: 8950932
    Abstract: A method for recovering hydrocarbons from an aqueous hydrocarbonaceous slurry comprises pumping a mixture of the slurry and an oxidizing agent through a conduit, wherein the conduit comprises a plurality of stationary interior projections defining a non-linear path through the conduit, and thereby agitating the mixture to release the hydrocarbons from the slurry; and separating the hydrocarbons from the slurry.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: February 10, 2015
    Assignee: Zeta Global, Ltd.
    Inventors: Steig Breloff, Lawrence Conaway
  • Publication number: 20150034551
    Abstract: A process for treating an aqueous solution (A) derived from a method of producing a compound of formula (I), wherein R1 and R2 are identical or different and are chosen from among hydrogen and C1-C5 alkyl, wherein R1 and R2 together form a methylene group, and wherein R3, R4, R5 and R6, which are independently identical or different, are chosen from among: a hydrogen atom, a hydroxy group (—OH), an alkoxy group (—OR), an alcohol group (—ROH), an aldehyde group (—CHO), a ketone group (—C(?O)R), an acid group (—COOH), a nitrile group (—CN), a C1-C6 alkyl chain, linear or branched, saturated or unsaturated, potentially comprising one or a plurality of substitutes in a terminal or lateral position or one or more functions in said alkyl chain, R being a C1-C5 alkyl, wherein the aqueous solution (A) comprises at least one sulfate salt SO42?(S) rendered soluble and at least one aromatic organic compound (O) formed during the method for producing the compound (I), and wherein the process comprises at least one step (
    Type: Application
    Filed: March 15, 2013
    Publication date: February 5, 2015
    Inventors: Laurent Garel, Bertrand Satier
  • Publication number: 20140374103
    Abstract: A process for treating oilfield waste water includes combining oilfield waste water and a biocide comprising hydrogen peroxide, the biocide being present in an amount effective to decrease a number density of bacteria in the oilfield waste water. A process for treating oilfield waste water includes measuring an oxidation reduction potential (ORP) of oilfield waste water; combining the oilfield waste water and an oxidizer in an amount to adjust the ORP of the oilfield waste water to be greater than or equal to a first ORP value; and adding a biocide comprising hydrogen peroxide to the oilfield waste water to adjust the ORP of the oilfield waste water to be greater than or equal to a second ORP value, to treat the oilfield waste water, the second ORP value being greater than the first ORP value.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Kushal Seth, Jenifer C. Lascano, Larry G. Hines
  • Patent number: 8906241
    Abstract: Disclosed is a new form of reactive ozone and techniques for producing nanobubble suspensions of the reactive ozone. The bubbles entrap a high concentration of ozone, with the ozone orienting a net negative charge outwards and a net positive charge inwards.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: December 9, 2014
    Assignee: Kerfoot Technologies, Inc.
    Inventor: William B. Kerfoot
  • Publication number: 20140348735
    Abstract: Process for treating a medium by the removal or destruction of one or more undesired substances present in said medium, comprising combining hydrogen peroxide and alkali hydroxide in an aqueous solution to form superoxide, and bringing the resultant superoxide-containing solution into contact with said medium. The process is useful for the destruction of halogenated organic pollutants and also for carbon dioxide removal from flue gases. The process can also be applied for soil remediation.
    Type: Application
    Filed: December 20, 2012
    Publication date: November 27, 2014
    Inventors: Yoel Sasson, Uri Stoin, Zach Barnea
  • Patent number: 8877070
    Abstract: A process for oxidizing a chemical contaminant selected from the group consisting of (i) aromatic compounds, (ii) unsaturated compounds having one or more of the following bonds: C?C, C?C, C?O and C?N, and (iii) amines, which process comprises combining the chemical contaminant and cuprous (Cu+) ions in an aqueous solution in a reaction vessel in an essentially oxygen-free environment, and subsequently feeding an oxidizer to said solution.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 4, 2014
    Inventor: Magal Saphier
  • Publication number: 20140319078
    Abstract: A process for removing urea from an aqueous solution is disclosed herein, the process comprises the steps of: feeding an aqueous solution comprising urea into a mix tank; feeding hydrogen peroxide into the mix tank; feeding at least one soluble catalyst into the mix tank separately from the hydrogen peroxide feed; mixing the aqueous solution comprising urea, hydrogen peroxide, and the at least one soluble catalyst in the mix tank, forming a reactant mixture; and oxidizing the urea in the reactant mixture yielding CO2, N2, and H2O. The soluble catalyst is selected from a group of catalysts that when mixed with the hydrogen peroxide and urea causes the rate of reaction of the oxidation of the urea by hydrogen peroxide to accelerate; such as soluble iron salts. A system configured to carry out the process for removing urea from an aqueous solution is also disclosed herein. The disclosed process and system may be added to or incorporated with existing processes and systems for treating aqueous solutions.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Inventors: Luisa Kling Miller, Jorge Miller
  • Patent number: 8871097
    Abstract: A method of reclaiming a formate brine may include increasing the pH of a spent formate brine fluid comprising water-soluble polymers; treating the fluid with an oxidizing agent; and removing at least a portion of suspended solids from the fluid. Further, a method of reclaiming a formate brine may include lowering the pH of the spent formate brine fluid comprising water-soluble polymers; increasing the pH of the spent formate brine fluid to initiate precipitation of materials solubilized in the fluid; treating the fluid with an oxidizing agent to break down remaining water-soluble polymer; and recovering at least a portion of the formate brine.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 28, 2014
    Assignee: M-I L.L.C.
    Inventors: Hui Zhang, Robert L. Horton, Charles Svoboda, Frank E. Evans
  • Patent number: 8871098
    Abstract: The invention discloses an apparatus and method to uniformly disperse ozone gas bubbles into liquid phase water for the treatment thereof. The apparatus consists of a water inlet section connected with a section with structured packing or monolith having parallel flow channels. A portion of the influent water is withdrawn from the main water stream as a side stream, pressurized by a pump, mixed with ozone-containing gas, and then injected back into the main water flow. The side stream may be divided into multiple streams either before or after mixing with the ozone-containing gas, and then injected into the main flow section upstream of the packed section. In alternate embodiments, the ozone-containing gas can be injected directly through the gas diffusers just upstream of the packed section in order to achieve uniform concentration of gas and liquid in the fluid entering the monolith.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 28, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vipul P. Dholakia, Annemarie Ott Weist, David Lee Mitchell, Jr.
  • Patent number: 8858902
    Abstract: A method for removing sulfide from an aqueous alkali solution in which hydrogen peroxide is introduced into a sulfide-containing aqueous alkali solution associated with an alkali mineral recovery operation. The method is particularly useful for the processing of sulfide-containing aqueous alkali solutions containing NaHCO3 and Na2CO3, where bicarbonate in the sulfide-depleted alkali solution is decomposed to form Na2CO3, with concurrent evolution of gaseous carbon dioxide byproduct but without formation of gaseous H2S as a pollutant, and where Na2CO3 values are subsequently recovered from the sulfide-depleted carbonate-rich alkali solution via a crystallization operation.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 14, 2014
    Assignee: FMC Wyoming Corporation
    Inventor: William C. Copenhafer
  • Patent number: 8858806
    Abstract: Certain exemplary embodiments provide methods for reducing a concentration of a contaminant associated with a medium, which can be any substance or material, such as soil, water, air, and/or fluid. In one exemplary method, the medium is treated with a ferric chelate and an oxidizing agent in amounts effective to oxidize at least a portion of the contaminant.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 14, 2014
    Inventor: Henry Wilmore Cox, Jr.
  • Publication number: 20140299552
    Abstract: A process for disinfecting a treatment fluid is disclosed, including the step of admixing an aqueous solution comprising two or more oxidants generated via electrolysis of a salt solution with a treatment fluid. The mixed oxidants may be generated on site, using a containerized system.
    Type: Application
    Filed: May 25, 2012
    Publication date: October 9, 2014
    Applicant: M-I L.L.C.
    Inventors: Colin Stewart, Mukesh Kapila, James R. Fajt, Perry Lomond, Daniel Gallo, Richard Bingham, Alan McKee
  • Patent number: 8852437
    Abstract: A method of producing sterile water from raw water during a production cycle in a production plant P, including adding a disinfectant to the produced sterile water during the production cycle to permanently monitor the condition of the sterile water and/or the production plant, and determining and evaluating a reduction of concentration of the disinfectant directly in the production stream. In a production plant suited for carrying out the method, a sterile sensor is provided directly in the production stream through which the reduction of concentration of the disinfectant added to the produced sterile water can be permanently measured and evaluated to provide a sterility evidence.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 7, 2014
    Assignee: Krones AG
    Inventor: Jörg Zacharias
  • Publication number: 20140246382
    Abstract: A method for decontaminating a liquid having sulfides includes preparing a stabilized sodium percarbonate solution. In an embodiment, the method includes decontaminating a liquid. The liquid comprises reactive sulfides. The method also includes preparing a stabilized sodium percarbonate solution, which includes adding sodium percarbonate to a liquid solution. The liquid solution comprises a peroxide stabilizer and an acid. The method further includes dosing the liquid into the stabilized sodium percarbonate solution to decontaminate the liquid by oxidizing at least a portion of the reactive sulfides, wherein at least a portion of the reactive sulfides comprise solids.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: UNITED LABORATORIES INTERNATIONAL, LLC
    Inventors: Stephen D. Matza, Jack G. Frost
  • Patent number: 8808550
    Abstract: A system and method for oxidation treatment of water in which ozone gas is dissolved in water by passing a mixed gas-liquid stream through a monolith at an elevated pressure that is close to the preferred gas output pressure for an ozone generator. The monolith is preferably contained at least partially within a gas-liquid separator vessel. Advanced oxidation is optionally provided by injecting hydrogen peroxide and/or embedding a catalyst on the monolith. At least a portion of the treated water is preferably recycled in order to increase total ozone dosing in the effluent stream.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 19, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Vipul P. Dholakia
  • Patent number: 8801867
    Abstract: A method for cleaning process apparatus used for production of liquids, especially for cleaning filters, for example membrane filters. The apparatus is contacted with a solution of periodate. It is especially preferred that the cleaning process is carried out at a temperature between 15 and 95° C.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 12, 2014
    Assignee: X-Flow B.V.
    Inventors: Arie Cornelis Besemer, Elmar Van Mastrigt, André Mepschen
  • Patent number: 8801932
    Abstract: A process for treating wastewater containing nitro-hydroxy-aromatic compounds using oxidative sub-critical conditions. The wastewater to be treated is adjusted to contain excess hydroxide equivalent to greater than three moles of free hydroxide per mole of total nitro-hydroxy-aromatic compounds, and a sub-stoichiometric amount of an oxidant is supplied to the wastewater. The nitro-hydroxy-aromatic compounds may include nitro-phenol salts or nitro-cresol salts.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: August 12, 2014
    Assignee: Noram International Limited
    Inventor: Michael Gattrell
  • Publication number: 20140202956
    Abstract: A method for treating a sludge to be fed to a bioreactor for treating wastewater, or an anaerobic or aerobic sludge digester, the method comprising contacting the sludge with free nitrous acid.
    Type: Application
    Filed: June 22, 2012
    Publication date: July 24, 2014
    Applicant: THE UNIVERSITY OF QUEENSLAND
    Inventor: Zhiguo Yuan
  • Patent number: 8758631
    Abstract: A method for decontaminating a liquid having sulfides includes preparing a stabilized sodium percarbonate solution. In an embodiment, the method includes decontaminating a liquid. The liquid comprises reactive sulfides. The method also includes preparing a stabilized sodium percarbonate solution, which includes adding sodium percarbonate to a liquid solution. The liquid solution comprises a peroxide stabilizer and an acid. The method further includes dosing the liquid into the stabilized sodium percarbonate solution to decontaminate the liquid by oxidizing at least a portion of the reactive sulfides.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: June 24, 2014
    Assignee: United Laboratories International, LLC
    Inventors: Stephen D. Matza, Jack G. Frost
  • Patent number: 8753522
    Abstract: A method and system of providing ultrapure water for semiconductor fabrication operations is provided. The water is treated by utilizing a free radical scavenging system and a free radical removal system. The free radical scavenging system can utilize actinic radiation with a free radical precursor compound, such as ammonium persulfate. The free radical removal system can comprise use of a reducing agent. The ultrapure water may be further treated by utilizing ion exchange media and degasification apparatus. A control system can be utilized to regulate addition of the precursor compound, the intensity of the actinic radiation, and addition of the reducing agent to the water.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: June 17, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventor: Bruce Lee Coulter
  • Publication number: 20140151296
    Abstract: Systems and methods for removing organic contaminants from water may be used, for example, to treat produced water from a steam assisted heavy oil recovery operation. The treated produced water may be re-used to create steam. Alternatively, the produced water may be a blowdown stream treated to facilitate further treatment in a thermal crystallizer. The treatments may include pH adjustment or separating de-solubilized organics or both. Other treatments may include one or more of oxidation, sorption and biological treatments. The treatments may be used alone or in various combinations. One exemplary combination includes reducing the pH of produced water, separating de-solubilized organics from the produced water, and oxidizing the produced water or contacting the produced water with activated carbon.
    Type: Application
    Filed: March 14, 2013
    Publication date: June 5, 2014
    Applicant: General Electric Company
    Inventors: Brian Christopher MOORE, Hope MATIS, William Leonard KOSTEDT, IV, David M. POLIZZOTTI, Matthew Alan PETERSEN, Jeffrey Lynn SCHWORM, Anthony Yu-Chung KU
  • Patent number: 8734653
    Abstract: A mercury remediation method and apparatus for reducing mercury levels in water to a nanogram per liter level that uses four treatment steps: (1) chelation; (2) oxidation; (3) reduction; and (4) air stripping, vapor/liquid separation. There is a fifth step in the process, which does not involve the wastewater. It is to scrub the stripper air of the volatile mercury in an off-gas adsorption unit or to condense volatile mercury in a cryogenic mercury trap.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 27, 2014
    Inventor: Terrence W. Aylesworth
  • Patent number: 8728325
    Abstract: Advanced oxidation process namely ozonation and Fenton's (hydrogen peroxide/Fe:2+) were utilized to degrade kinetic hydrate inhibitor (KHI). The oxidized solution after scavenging oxygen can be successfully disposed to the injection well. This facilitates use of KHI more frequently and in higher concentrations for future projects oil & gas operations. It also offers an alternative that competes efficiently with thermodynamic hydrate inhibitor (THI) or complements THI.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 20, 2014
    Assignee: ConocoPhillips Company
    Inventors: Altaf Hussain, Isik Riza Turkmen, Joel Minier Matar, Samir Gharfeh, Samer Adham
  • Publication number: 20140116960
    Abstract: Various embodiments of contaminant removal systems, compositions, and methods are described herein. In one embodiment, a method for oxidizing a contaminant includes contacting the contaminant with a peroxygen compound and initializing, maintaining, or propagating degradation of the peroxygen compound with an oxygenated organic compound, thereby releasing oxidizing radicals. The method also includes oxidizing the contaminant with the released oxidizing radicals.
    Type: Application
    Filed: June 17, 2012
    Publication date: May 1, 2014
    Applicant: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Richard J. Watts, Mushtaque Ahmad
  • Patent number: 8709263
    Abstract: A method of removing contaminants from slurry samples is set forth. The method includes the utilization of repeated pressurizing and depressurizing steps to disrupt solidified particles in solid-containing slurries thereby increasing decontamination efficiency. An expansion fluid is injected into the slurry sample sufficient to create microbubbles when the slurry sample is depressurized. The micro bubbles mechanically disrupt the solidified particles increasing contaminant exposure. The microbubbles also provide for increased interfacial regions where contaminants can accumulate at gas-liquid thin films that are in close proximity to and can be effectively removed using a suitable expansion fluid and optional decontamination agents.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: April 29, 2014
    Assignee: University of Utah Research Foundation
    Inventor: P. K. Andy Hong
  • Patent number: 8696915
    Abstract: A method of treating water in order to minimize scaling and biomass buildup in water conduits or containers in which the treated water is used includes pressurizing and optionally filtering ambient air, processing the pressurized ambient air in a chamber including at least one ultraviolet light source operated to generate an output flow mixture of pressurized air and reactive oxygen species (ROS) gas, mixing the pressurized ROS/gas output mixture to realize a flow of water/pressurized ROS gas/air mixture and outputting the flow of water/pressurized ROS gas/air mixture as the treated water process product. The process includes generating reactive oxygen species (ROS) gas in the pressurized ROS/gas output mixture including at least one of Super Oxide (O2?), Peroxide (—O2—), Hydro peroxide (HO2?), Hydroxyl Radicals (OH.), Ozone (O3?) and Molecular Oxygen (O2).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Cascade Water Services
    Inventors: Eugene Klochkoff, Clive Ling, Steven Lerman
  • Publication number: 20140097144
    Abstract: The present invention relates generally to stable percarboxylic acid compositions comprising, inter alia, at least two stabilizing agents, and various uses for water treatments, including water treatments in connection with oil- and gas-field operations. The present invention also relates to slick water compositions and gel based compositions that comprise stable percarboxylic acid compositions and the use thereof in oil- and gas-field operations.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 10, 2014
    Applicant: ECOLAB USA INC.
    Inventors: Junzhong LI, David MCSHERRY, Allison BREWSTER, Richard STAUB, Renato DE PAULA, John Wilhelm BOLDUC, Robert J. RYTHER, Victor V. KEASLER
  • Publication number: 20140091046
    Abstract: A water treatment method by catalyzing ozone with a persulfate comprises the following steps: introducing the ozone into an ozone contact reactor filled with water to be treated; at the same time putting the persulfate into the reactor, wherein a stirring state is kept in the water treatment process. The method solves the problems of difficulty in the ionization of hydrogen peroxide, low capability in inducing the decomposition of the ozone, high hydrogen peroxide residues and inconvenience of hydrogen peroxide transportation and storage existing in the conventional water treatment method for catalyzing the ozone by using the hydrogen peroxide.
    Type: Application
    Filed: May 15, 2012
    Publication date: April 3, 2014
    Applicant: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jun Ma, Jin Jiang, Suyan Pang, Yi Yang, Juntao Zhu
  • Patent number: 8685253
    Abstract: A method of removing color bodies from a fermentation broth includes precipitating a color-forming impurity (color body) by adjusting the fermentation broth to a pH greater than about 13; filtering our precipitated color-forming impurities from the broth; and bleaching a second color impurity by treating the broth with an oxidizing agent.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: April 1, 2014
    Assignee: BioAmber S.A.S.
    Inventor: Olan S. Fruchey
  • Publication number: 20140072653
    Abstract: Systems and methods for generating reactive oxygen species formulations useful in various oxidation applications. Exemplary formulations include singlet oxygen or superoxide and can also contain hydroxyl radicals or hydroperoxy radicals, among others. Formulations can contain other reactive species, including other radicals. Exemplary formulations containing peracids are activated to generate singlet oxygen. Exemplary formulations include those containing a mixture of superoxide and hydrogen peroxide. Exemplary formulations include those in which one or more components of the formulation are generated electrochemically. Formulations of the invention containing reactive oxygen species can be further activated to generate reactive oxygen species using activation chosen from a Fenton or Fenton-like catalyst, ultrasound, ultraviolet radiation or thermal activation.
    Type: Application
    Filed: September 7, 2013
    Publication date: March 13, 2014
    Applicant: CLEAN CHEMISTRY, LLC
    Inventor: Wayne BUSCHMANN
  • Patent number: 8663478
    Abstract: The invention relates to a method for treating water charged with colloidal impurities, either dissolved or suspended, in a treatment plant, wherein said method comprises: the step of contacting said water, in an advanced oxidation area, with hydrogen peroxide in the presence of at least one transition-metal salt; a flocculation step that comprises contacting said water, in a flocculation area, with at least one flocculation additive and with at least one ballast comprising at least one non-soluble granular material denser than water and used as a biomass carrier; the step of feeding the water and floc mixture thus obtained into a settling area; the step of separating the treated water at the upper portion of said settling area from a mixture of sludge and ballast resulting from the settling of said flocs; the step of extracting the sludge and ballast mixture at the lower portion of said settling area; and the step of recycling at least a portion of the sludge into said advanced oxidation area.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: March 4, 2014
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Marielle Coste, Arnaud Bucaille, Sebastien Logette
  • Publication number: 20140042105
    Abstract: A method of water treatment include mixing a hydrogen peroxide solution into a flow of water and subsequently mixing and dissolving ozone into the flow of water. The hydrogen peroxide solution may be conditioned with a water-soluble hydroxide salt. After the mixing and dissolving of the ozone into the flow of water, at least a portion of the hydrogen peroxide solution dissociates into hydroperoxide ions at a dissociation rate, the hydroperoxide ions react with the ozone to form hydroxyl radicals, and the hydroxyl radicals react with organic contaminants in the flow of water to remove the organic contaminants. The flow of water is then directed into a contact basin to facilitate the further decay of ozone.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 13, 2014
    Inventor: Stephen R. McAdams
  • Publication number: 20130341289
    Abstract: Waste household liquid containing solid fecal content so as to include potentially toxic bacterial content is collected in a septic tank and periodically discharged through a pipe where a quantity of hydrogen peroxide is injected into the pipe to be mixed with the waste liquid. The pipe carries the liquid to a centrifugal separator to separate the solid content from the liquid so that the solid content free from toxic bacterial content is collected and the waste liquid with the solid content removed is discharged for re-use or for disposal to the ground.
    Type: Application
    Filed: December 18, 2012
    Publication date: December 26, 2013
    Inventor: Ross Oades
  • Patent number: 8613859
    Abstract: Synergistic mixtures of haloamines and their use to control the growth of microorganisms in aqueous systems are disclosed. The method of using the synergistic mixtures entails adding an effective amount of a monohaloamine and an effective amount of a dihaloamine to an aqueous system. The ratio of monohaloamine to dihaloamine is selected to result in a synergistic biocidal effect.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 24, 2013
    Assignee: Hercules Incorporated
    Inventors: Michael J. Mayer, Freddie L. Singleton
  • Patent number: 8579544
    Abstract: A method for the combined chemical oxidation/assisted bioremediation of contaminated materials, comprising contacting a contaminated material with at least one metal chelate and at least one peroxide compound.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: November 12, 2013
    Assignee: SOLVAY (Societe Anonyme)
    Inventors: Noel Boulos, Alastair McNeillie, Jason Muessig