Utilizing Peroxy Compound (e.g., Hydrogen Peroxide, Peracid, Etc.) Patents (Class 210/759)
  • Patent number: 8734653
    Abstract: A mercury remediation method and apparatus for reducing mercury levels in water to a nanogram per liter level that uses four treatment steps: (1) chelation; (2) oxidation; (3) reduction; and (4) air stripping, vapor/liquid separation. There is a fifth step in the process, which does not involve the wastewater. It is to scrub the stripper air of the volatile mercury in an off-gas adsorption unit or to condense volatile mercury in a cryogenic mercury trap.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 27, 2014
    Inventor: Terrence W. Aylesworth
  • Patent number: 8728325
    Abstract: Advanced oxidation process namely ozonation and Fenton's (hydrogen peroxide/Fe:2+) were utilized to degrade kinetic hydrate inhibitor (KHI). The oxidized solution after scavenging oxygen can be successfully disposed to the injection well. This facilitates use of KHI more frequently and in higher concentrations for future projects oil & gas operations. It also offers an alternative that competes efficiently with thermodynamic hydrate inhibitor (THI) or complements THI.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 20, 2014
    Assignee: ConocoPhillips Company
    Inventors: Altaf Hussain, Isik Riza Turkmen, Joel Minier Matar, Samir Gharfeh, Samer Adham
  • Publication number: 20140116960
    Abstract: Various embodiments of contaminant removal systems, compositions, and methods are described herein. In one embodiment, a method for oxidizing a contaminant includes contacting the contaminant with a peroxygen compound and initializing, maintaining, or propagating degradation of the peroxygen compound with an oxygenated organic compound, thereby releasing oxidizing radicals. The method also includes oxidizing the contaminant with the released oxidizing radicals.
    Type: Application
    Filed: June 17, 2012
    Publication date: May 1, 2014
    Applicant: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Richard J. Watts, Mushtaque Ahmad
  • Patent number: 8709263
    Abstract: A method of removing contaminants from slurry samples is set forth. The method includes the utilization of repeated pressurizing and depressurizing steps to disrupt solidified particles in solid-containing slurries thereby increasing decontamination efficiency. An expansion fluid is injected into the slurry sample sufficient to create microbubbles when the slurry sample is depressurized. The micro bubbles mechanically disrupt the solidified particles increasing contaminant exposure. The microbubbles also provide for increased interfacial regions where contaminants can accumulate at gas-liquid thin films that are in close proximity to and can be effectively removed using a suitable expansion fluid and optional decontamination agents.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: April 29, 2014
    Assignee: University of Utah Research Foundation
    Inventor: P. K. Andy Hong
  • Patent number: 8696915
    Abstract: A method of treating water in order to minimize scaling and biomass buildup in water conduits or containers in which the treated water is used includes pressurizing and optionally filtering ambient air, processing the pressurized ambient air in a chamber including at least one ultraviolet light source operated to generate an output flow mixture of pressurized air and reactive oxygen species (ROS) gas, mixing the pressurized ROS/gas output mixture to realize a flow of water/pressurized ROS gas/air mixture and outputting the flow of water/pressurized ROS gas/air mixture as the treated water process product. The process includes generating reactive oxygen species (ROS) gas in the pressurized ROS/gas output mixture including at least one of Super Oxide (O2?), Peroxide (—O2—), Hydro peroxide (HO2?), Hydroxyl Radicals (OH.), Ozone (O3?) and Molecular Oxygen (O2).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Cascade Water Services
    Inventors: Eugene Klochkoff, Clive Ling, Steven Lerman
  • Publication number: 20140097144
    Abstract: The present invention relates generally to stable percarboxylic acid compositions comprising, inter alia, at least two stabilizing agents, and various uses for water treatments, including water treatments in connection with oil- and gas-field operations. The present invention also relates to slick water compositions and gel based compositions that comprise stable percarboxylic acid compositions and the use thereof in oil- and gas-field operations.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 10, 2014
    Applicant: ECOLAB USA INC.
    Inventors: Junzhong LI, David MCSHERRY, Allison BREWSTER, Richard STAUB, Renato DE PAULA, John Wilhelm BOLDUC, Robert J. RYTHER, Victor V. KEASLER
  • Publication number: 20140091046
    Abstract: A water treatment method by catalyzing ozone with a persulfate comprises the following steps: introducing the ozone into an ozone contact reactor filled with water to be treated; at the same time putting the persulfate into the reactor, wherein a stirring state is kept in the water treatment process. The method solves the problems of difficulty in the ionization of hydrogen peroxide, low capability in inducing the decomposition of the ozone, high hydrogen peroxide residues and inconvenience of hydrogen peroxide transportation and storage existing in the conventional water treatment method for catalyzing the ozone by using the hydrogen peroxide.
    Type: Application
    Filed: May 15, 2012
    Publication date: April 3, 2014
    Applicant: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jun Ma, Jin Jiang, Suyan Pang, Yi Yang, Juntao Zhu
  • Patent number: 8685253
    Abstract: A method of removing color bodies from a fermentation broth includes precipitating a color-forming impurity (color body) by adjusting the fermentation broth to a pH greater than about 13; filtering our precipitated color-forming impurities from the broth; and bleaching a second color impurity by treating the broth with an oxidizing agent.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: April 1, 2014
    Assignee: BioAmber S.A.S.
    Inventor: Olan S. Fruchey
  • Publication number: 20140072653
    Abstract: Systems and methods for generating reactive oxygen species formulations useful in various oxidation applications. Exemplary formulations include singlet oxygen or superoxide and can also contain hydroxyl radicals or hydroperoxy radicals, among others. Formulations can contain other reactive species, including other radicals. Exemplary formulations containing peracids are activated to generate singlet oxygen. Exemplary formulations include those containing a mixture of superoxide and hydrogen peroxide. Exemplary formulations include those in which one or more components of the formulation are generated electrochemically. Formulations of the invention containing reactive oxygen species can be further activated to generate reactive oxygen species using activation chosen from a Fenton or Fenton-like catalyst, ultrasound, ultraviolet radiation or thermal activation.
    Type: Application
    Filed: September 7, 2013
    Publication date: March 13, 2014
    Applicant: CLEAN CHEMISTRY, LLC
    Inventor: Wayne BUSCHMANN
  • Patent number: 8663478
    Abstract: The invention relates to a method for treating water charged with colloidal impurities, either dissolved or suspended, in a treatment plant, wherein said method comprises: the step of contacting said water, in an advanced oxidation area, with hydrogen peroxide in the presence of at least one transition-metal salt; a flocculation step that comprises contacting said water, in a flocculation area, with at least one flocculation additive and with at least one ballast comprising at least one non-soluble granular material denser than water and used as a biomass carrier; the step of feeding the water and floc mixture thus obtained into a settling area; the step of separating the treated water at the upper portion of said settling area from a mixture of sludge and ballast resulting from the settling of said flocs; the step of extracting the sludge and ballast mixture at the lower portion of said settling area; and the step of recycling at least a portion of the sludge into said advanced oxidation area.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: March 4, 2014
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Marielle Coste, Arnaud Bucaille, Sebastien Logette
  • Publication number: 20140042105
    Abstract: A method of water treatment include mixing a hydrogen peroxide solution into a flow of water and subsequently mixing and dissolving ozone into the flow of water. The hydrogen peroxide solution may be conditioned with a water-soluble hydroxide salt. After the mixing and dissolving of the ozone into the flow of water, at least a portion of the hydrogen peroxide solution dissociates into hydroperoxide ions at a dissociation rate, the hydroperoxide ions react with the ozone to form hydroxyl radicals, and the hydroxyl radicals react with organic contaminants in the flow of water to remove the organic contaminants. The flow of water is then directed into a contact basin to facilitate the further decay of ozone.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 13, 2014
    Inventor: Stephen R. McAdams
  • Publication number: 20130341289
    Abstract: Waste household liquid containing solid fecal content so as to include potentially toxic bacterial content is collected in a septic tank and periodically discharged through a pipe where a quantity of hydrogen peroxide is injected into the pipe to be mixed with the waste liquid. The pipe carries the liquid to a centrifugal separator to separate the solid content from the liquid so that the solid content free from toxic bacterial content is collected and the waste liquid with the solid content removed is discharged for re-use or for disposal to the ground.
    Type: Application
    Filed: December 18, 2012
    Publication date: December 26, 2013
    Inventor: Ross Oades
  • Patent number: 8613859
    Abstract: Synergistic mixtures of haloamines and their use to control the growth of microorganisms in aqueous systems are disclosed. The method of using the synergistic mixtures entails adding an effective amount of a monohaloamine and an effective amount of a dihaloamine to an aqueous system. The ratio of monohaloamine to dihaloamine is selected to result in a synergistic biocidal effect.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 24, 2013
    Assignee: Hercules Incorporated
    Inventors: Michael J. Mayer, Freddie L. Singleton
  • Patent number: 8580122
    Abstract: A hybrid chemical/mechanical water treatment plant and method employing rapid sulfur dioxide chemical disinfection and dewatering technology in conjunction with lime and oxidization/reduction agents to removal pharmaceuticals and personal care products from waters to meet operating constraints and environmental permitting restrictions and siting limitations for water treatment.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: November 12, 2013
    Assignee: Earth Renaissance Technologies, LLC
    Inventor: Marcus G. Theodore
  • Patent number: 8579544
    Abstract: A method for the combined chemical oxidation/assisted bioremediation of contaminated materials, comprising contacting a contaminated material with at least one metal chelate and at least one peroxide compound.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: November 12, 2013
    Assignee: SOLVAY (Societe Anonyme)
    Inventors: Noel Boulos, Alastair McNeillie, Jason Muessig
  • Patent number: 8557013
    Abstract: The invention is directed to processes for treating biosolids that result in high-value, nitrogen-containing, slow-release, organically-augmented inorganic fertilizer that are competitive with less valuable or more costly conventional commercially manufactured fertilizers. The process involves conditioning traditional waste-water biosolids and processing the conditioned biosolids continuously in a high throughput manufacturing facility. The exothermic design and closed loop control of the primary reaction vessel decreases significantly the amount of power necessary to run a manufacturing facility. The process utilizes green technologies to facilitate decreased waste and enhanced air quality standards over traditional processing plants. The fertilizer produced from recovered biosolid waste is safe and meets or exceeds the United States Environment Protection Agency (USEPA) Class A and Exceptional Quality standards and is not subject to restrictions or regulations.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 15, 2013
    Assignee: VitAG Holdings, LLC
    Inventors: Jeffrey C. Burnham, James P. Carr, Gary L. Dahms
  • Publication number: 20130264292
    Abstract: A device and a method for treating liquids by ozone, including a pipe in which a main flow of the liquid is guided in a flow direction from an inlet to an outlet, an ozone feed point at which ozone can be introduced in gas form into the main flow, and at least two mixers which are located downstream of the ozone feed point, wherein the mixers are arranged at a distance from one another, and wherein at least one reaction zone is formed between the mixers, and wherein the mixers are designed in such a way that they each dissolve only a portion of the ozone in the main flow that has been introduced in gas form.
    Type: Application
    Filed: August 22, 2011
    Publication date: October 10, 2013
    Applicant: XYLEM IP HOLDINGS LLC
    Inventors: Arne Wieland, Martin Kampmann, Jens Scheideler, Achim Ried
  • Publication number: 20130248462
    Abstract: A method for removing sulfide from an aqueous alkali solution in which hydrogen peroxide is introduced into a sulfide-containing aqueous alkali solution associated with an alkali mineral recovery operation. The method is particularly useful for the processing of sulfide-containing aqueous alkali solutions containing NaHCO3 and Na2CO3, where bicarbonate in the sulfide-depleted alkali solution is decomposed to form Na2CO3, with concurrent evolution of gaseous carbon dioxide byproduct but without formation of gaseous H2S as a pollutant, and where Na2CO3 values are subsequently recovered from the sulfide-depleted carbonate-rich alkali solution via a crystallization operation.
    Type: Application
    Filed: May 17, 2013
    Publication date: September 26, 2013
    Applicant: FMC Wyoming Corporation
    Inventor: William C. Copenhafer
  • Publication number: 20130200303
    Abstract: A method of degrading halogenated organic compounds, to use of the method for decontaminating PFOS (perfluorooctanesulfonic acid) and PFOA (perfluorooctanoic acid) contaminated medium, and a composition such as that which is suitable to be applied in said method.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: Arcadis Nederland B.V.
    Inventors: Tessa Alida Pancras, Wim Plaisier, Pieter Jacobus Anna Dols, Jan Adriaan Barbier
  • Patent number: 8480903
    Abstract: The present invention provides systems and methods for in-situ remediation of soil and groundwater having contaminants such as but not limited to organic compounds perhaps providing adsorption, chemical oxidation, and even biodegradation of contaminants with novel treatments such as but not limited to mixtures of granular activated carbon, calcium peroxide, sodium persulfate, and nitrate perhaps in various concentrations.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: July 9, 2013
    Inventor: Jesse Clinton Taylor, III
  • Patent number: 8480924
    Abstract: Certain exemplary embodiments provide methods for reducing a concentration of a contaminant associated with a medium, which can be any substance or material, such as soil, water, air, and/or fluid. In one exemplary method, the medium is treated with a ferric chelate and an oxidizing agent in amounts effective to oxidize at least a portion of the contaminant.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: July 9, 2013
    Inventor: Henry Wilmore Cox, Jr.
  • Patent number: 8465723
    Abstract: Provided is an arsenic-containing solid comprising 100 parts by mass of a scorodite-type iron-arsenic compound and at least 1 part by mass of an iron oxide compound added thereto, in which the scorodite-type iron-arsenic compound is produced by adding an oxidizing agent to an aqueous acidic solution that contains a 5-valent arsenic (V) ion and a 2-valent iron (II) ion, then promoting the precipitation of an iron-arsenic compound with stirring the liquid, and finishing the precipitation thereof within a range where the pH of the liquid is at most 1.2. The iron oxide compound includes goethite, hematite and their mixture, preferably having a BET specific surface area of at least 3 m2/g, more preferably at least 20 m2/g.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: June 18, 2013
    Assignee: Dowa Metals & Mining Co., Ltd.
    Inventors: Tetsuo Fujita, Ryoichi Taguchi, Hisashi Kubo
  • Patent number: 8454840
    Abstract: A method for removing sulfide from an aqueous alkali solution in which hydrogen peroxide is introduced into a sulfide-containing aqueous alkali solution associated with an alkali mineral recovery operation. The method is particularly useful for the processing of sulfide-containing aqueous alkali solutions containing NaHCO3 and Na2CO3, where bicarbonate in the sulfide-depleted alkali solution is decomposed to form Na2CO3, with concurrent evolution of gaseous carbon dioxide byproduct but without formation of gaseous H2S as a pollutant, and where Na2CO3 values are subsequently recovered from the sulfide-depleted carbonate-rich alkali solution via a crystallization operation.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 4, 2013
    Assignee: FMC Wyoming Corporation
    Inventor: Ann Copenhafer
  • Publication number: 20130126443
    Abstract: Embodiments of the invention provide a tetraamido macrocyclic ligand catalytic activator bound to a carbon containing support. When combined with an oxidant, such as a peroxy compound, the carbon supported catalytic activator is a long-lived, robust oxidizing agent useful for oxidizing oxidizable compounds, such as aromatic groups, conjugated pi systems, natural and synthetic hormones, pesticides, pathogens, and dyes.
    Type: Application
    Filed: April 27, 2011
    Publication date: May 23, 2013
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Terrence J. Collins, Colin P. Horwitz, Newell R. Washburn, William Ellis, Riddhi Roy
  • Publication number: 20130087512
    Abstract: Disclosed is a method, apparatus and system for the remediation of contaminated soils, groundwater and water. A combination of reagents such as persulfate and ozone or persulfate, ozone and hydrogen peroxide may be used to enhance destruction of organic contaminants. Reagents may be injected into the smear zone to trap and destroy volatile compounds that may otherwise escape treatment.
    Type: Application
    Filed: November 29, 2012
    Publication date: April 11, 2013
    Applicant: ENCHEM ENGINEERING, INC.
    Inventor: Enchem Engineering, Inc.
  • Publication number: 20130075346
    Abstract: Methods for introducing a substantially uniform concentration of a functional agent into a flowing stream of water using a shaped composition. The composition may be shaped and sized to be inserted into a device configured to be attached over the end of a faucet. The shaped composition comprises a dissolvable region including a functional agent (e.g., an anti-microbial sanitizing agent). A non-dissolvable region disposed adjacent to the dissolvable region may optionally be provided. The substantially non-dissolvable region remains substantially intact as the dissolving region is progressively dissolved, introducing the functional agent into a flowing stream of water.
    Type: Application
    Filed: March 22, 2012
    Publication date: March 28, 2013
    Inventors: Evan Rumberger, William Ouellette, William L. Smith
  • Publication number: 20130045150
    Abstract: Disclosed are reactive fibers having a polycationic exterior surface to which multivalent peroxy anions are bound. The use of such fibers, mats of such fibers, and filters of such fibers, as well as methods of treating fluid streams, and rejuvenating such fibers, mats and filters are also disclosed.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventors: Kwangyeol Lee, Seth Adrian Miller
  • Patent number: 8366938
    Abstract: The invention relates to a method and a device for purifying liquid effluents, in which water is separated from substances by performing, in a single vertical enclosure (3), a vertical bubbling in the effluents fed at a flow rate d. The enclosure has a free surface and includes at least two compartments (4, 5, 6, 7) communicating together for enabling a circulation between the compartments successively from the top to the bottom and from the bottom to the top between the lower portion thereof and a medium level at a flow rate D at least three times higher than the flow rate d. The supernatant phase is continuously discharged and a hydraulic or gaseous chemical oxidation of said effluents is simultaneously carried out in the same enclosure, the chemical oxidation rate and the bubble flow rate and size being selected in order to progressively obtain a separation of the solid/liquid and liquid/liquid phases at the surface of the enclosure for obtaining a COD below a predetermined threshold.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 5, 2013
    Assignee: Orege, Societe a Responsabilite Limitee
    Inventors: Patrice Capeau, Michel Lopez, Pascal Gendrot
  • Publication number: 20130023405
    Abstract: An activated carbon having a high catalytic activity as an oxidation catalyst or a decomposition catalyst, and use therefor are provided. The activated carbon has (a) an oxygen content in a range from 1.40 to 4.30% by mass, (b) a nitrogen content in a range from 0.90 to 2.30% by mass, (c) a sulfur content in a range from 0.50 to 1.20% by mass, and (d) a hydrogen content in a range from 0.40 to 0.65% by mass. The activated carbon may have at least one characteristic of (e) an amount of an acidic surface functional group of 0.10 to 0.36 meq/g, (f) an amount of a basic surface functional group of 0.50 to 1.30 meq/g, and (g) a benzene adsorption capacity of 25 to 50%. The activated carbon catalyzes an oxidation reaction of N-(phosphonomethyl) iminodiacetic acid with a peroxide (e.g., hydrogen peroxide) and achieves an efficient production of N-(phosphonomethyl)glycine even after repetitive use. The activated carbon also efficiently decomposes a chloramine.
    Type: Application
    Filed: March 24, 2011
    Publication date: January 24, 2013
    Applicant: Kuraray Chemical Co., Ltd.
    Inventors: Mitsunori Hitomi, Takayuki Yoshikawa, Takayuki Yamada
  • Publication number: 20130017270
    Abstract: A Fenton reaction catalyst including a reaction product as an active component, in which the reaction product is obtained by using roasted and ground coffee beans (in particular, coffee grounds) or tea leaves (in particular, tea dregs) as feedstocks for supplying a component having a reduction effect, and mixing the feedstocks for supplying the component having a reduction effect with an iron-supplying source containing divalent or trivalent iron in the presence of water. The Fenton reaction catalyst can be used to generate hydroxy radicals from hydrogen peroxide. The Fenton reaction catalyst can maintain iron in a divalent state for a long period of time.
    Type: Application
    Filed: October 25, 2010
    Publication date: January 17, 2013
    Inventors: Claudio Kendi Morikawa, Makoto Shinohara
  • Patent number: 8349190
    Abstract: The object of the invention is to provide a method for cleaning circulation water, which reduces the cost of operation and maintenance as much as possible, without a cumbersome cleaning operation such as by detaching electrode plates from an electrolysis cleaning tank and removing scale from inside the tank, and to provide a device used in this method.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: January 8, 2013
    Assignee: Koganei Corporation
    Inventors: Yoshiyuki Taguchi, Takayuki Nakano, Masahito Kato
  • Patent number: 8343359
    Abstract: A system and method for treating an aqueous effluent having organic material. The system comprises a single cell reactor having an injector for injecting an oxidizing gas into the reactor. Disposed downstream from the injector is an immersed membrane filtration device for filtering the effluent contained or passing through the reactor. Disposed between the membrane filtration device and the injector for directing an oxidizing gas into the reactor, is a bed of catalyst material. Preferably the oxidizing gas injector injects an oxidizing gas in a direction co-currently the direction of the effluent being treated. The bed of catalyst material is capable of catalyzing the oxidation of the organic material in the effluent or absorbing the organic material.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: January 1, 2013
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Catherine Daines, Jean-Christophe Schrotter, Herve Paillard
  • Publication number: 20120305497
    Abstract: Fenton and Fenton-like system enhancing agent and the usage thereof are provided. It relates to a water treatment enhancer (enhancing agent) and the usage thereof. It widens water pH range of Fenton and Fenton-like system reaction. It reduces amount of Fe2+ required for Fenton reaction. It increases rate of Fenton-like reaction. The enhancing agent is selected from sodium sulfite, lithium sulfite, potassium sulfite, magnesium sulfite, calcium sulfite, hydroxylamine hydrochloride, hydroxylamine perchlorate, hydroxylamine sulfate, hydrazine, N,N-diethylhydroxylamine, amino ethanolamine, hydroxylamine solution or N,N,N?,N?-tetrasubstituted p-phenylenediamine. The method of use of enhancing agent comprises the steps of: adding Fenton or Fenton-like system enhancing agent, an agent for enhancement and hydrogen peroxide into water subject to treatment; and mixing and allowing reaction. The enhancing agent can increase the rate of reaction for the water treatment and reduce the dosage of the agent for enhancement.
    Type: Application
    Filed: October 18, 2010
    Publication date: December 6, 2012
    Applicant: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jun Ma, Liwei Chen, Xuchun Li, Jing Zhang, Yinghong Guan, Jingyun Fang
  • Patent number: 8242323
    Abstract: This invention provides a process for the detoxification of chemical agents including chemical warfare agents such as sulfur mustards, nitrogen mustards, nerve agents of G and V type, lewisite and adamsite by reacting the chemical agents with hydroxyl radicals at a pH greater than 7.0 to detoxify the agents and to render them suitable for disposal. The process can be used on-site and can be easily scaled to fairly large sizes.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 14, 2012
    Inventors: Ravi Jain, Abhinav Jain
  • Publication number: 20120193302
    Abstract: A method for decontaminating a liquid having sulfides includes preparing a stabilized sodium percarbonate solution. In an embodiment, the method includes decontaminating a liquid. The liquid comprises reactive sulfides. The method also includes preparing a stabilized sodium percarbonate solution, which includes adding sodium percarbonate to a liquid solution. The liquid solution comprises a peroxide stabilizer and an acid. The method further includes dosing the liquid into the stabilized sodium percarbonate solution to decontaminate the liquid by oxidizing at least a portion of the reactive sulfides.
    Type: Application
    Filed: May 13, 2011
    Publication date: August 2, 2012
    Applicant: UNITED LABORATORIES INTERNATIONAL, LLC
    Inventors: Stephen D. Matza, Jack G. Frost
  • Publication number: 20120187051
    Abstract: The disclosure relates to a method for oxidising one or more organic compounds, including placing the organic compounds in contact with at least one oxidising agent as well as with a catalyst agent including at least one source of divalent or trivalent transition metal ions and at least one poly-?-hydroxyacrylic acid and/or a poly-?-hydroxyacrylate. The disclosure can be used for removing pollutants from soils.
    Type: Application
    Filed: October 8, 2010
    Publication date: July 26, 2012
    Applicants: TOTAL S.A., ARCADIS ESG, TRAITEMENT VALORISATION DECONTAMINATION (TVD), SOLVAY
    Inventors: Jean-Claude Setier, Jean-Louis Pornain, Jean-Sébastien Dehez, Frédéric Perie, Jean-Marie Blondel, Roger Jacquet, Jean-Christophe Renat, Laurent Clementelle, Wim Plaisier
  • Patent number: 8227396
    Abstract: A method for cleaning process apparatus used for production of liquids, especially for cleaning filters, for example membrane filters. The apparatus is contacted with a solution of peroxydisulphate. It is especially preferred that the cleaning process is carried out at a temperature between 15 and 95° C.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: July 24, 2012
    Assignee: X-Flow B.V.
    Inventors: Arie Cornelis Besemer, Elmar Van Mastrigt, André Mepschen
  • Patent number: 8197698
    Abstract: A method for removing undesired substances from liquid water may comprise the steps of: subjecting an oxygen-containing substance to an environment; increasing a temperature within said environment; ionizing said oxygen-containing substance; forming an electrostatically enhanced oxygen species; transferring at least some of said electrostatically enhanced oxygen species to said liquid water; processing said liquid water by action of said electrostatically enhanced oxygen species; creating a charged negatively electrostatically enhanced water species by the presence of said electrostatically enhanced oxygen species in said liquid water; and removing said undesired substances from said liquid water through action of said charged negatively electrostatically enhanced water species in said liquid water, perhaps with the goal of purifying water. Such water may be used in a variety of manners, including but not limited to reuse of the purified water in a closed loop system as a cleaning agent.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: June 12, 2012
    Assignee: Thermo Technologies, LLC
    Inventors: Dennis E. J. Johnson, Grigori A. Abramov, Richard A. Kleinke, Marcus A. Wiley
  • Patent number: 8193430
    Abstract: Disclosed herein too is a method that includes dispersing nanotubes in media that comprises flavin moieties substituted with solubilizing side chains, and/or non-flavin containing molecular species; self-assembling the flavin moieties and other non-flavin containing molecular species in a pattern that is orderly wrapped around the nanotubes to form a composite; introducing desired amounts of an optional reagent that competes with self-assembly in order to disturb the wrapping around nanotubes with moderate order; and centrifuging the mass of the nanotubes and the composites to extract the composite from other nanotubes that are not in composite form.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: June 5, 2012
    Assignee: The University of Connecticut
    Inventors: Fotios Papadimitrakopoulos, Sang-Yong Ju
  • Publication number: 20120080389
    Abstract: Method for SOx remediation in a manufacturing operation includes providing a process stream including an organic compound and an amount of a sulfur-containing compound, an oxidation stream including at least one chemical oxidant, and combining at least a portion of the oxidant stream with at least a portion of the process stream to obtain an organic stripper feed stream, in which the amount of the sulfur-containing compound is reduced upon reaction with the at least one chemical oxidant. The method can further include directing at least a portion of the organic stripper feed stream to a combustion operation, and emitting a SOx remediated off gas from the combustion operation. A system using the disclosed method also is provided.
    Type: Application
    Filed: August 24, 2011
    Publication date: April 5, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Steven Thomas SMITH, Piyush S. SHAH, John D. MILLER, David PERRY
  • Publication number: 20120055872
    Abstract: A process for treating wastewater containing nitro-hydroxy-aromatic compounds using oxidative sub-critical conditions. The wastewater to be treated is adjusted to contain excess hydroxide equivalent to greater than three moles of free hydroxide per mole of total nitro-hydroxy-aromatic compounds, and a sub-stoichiometric amount of an oxidant is supplied to the wastewater. The nitro-hydroxy-aromatic compounds may include nitro-phenol salts or nitro-cresol salts.
    Type: Application
    Filed: May 14, 2010
    Publication date: March 8, 2012
    Applicant: NORAM INTERNATIONAL LIMITED
    Inventor: Michael Gattrell
  • Patent number: 8123958
    Abstract: A method for treating ship ballast water in which aquatic organisms in the ship ballast water are exterminated by adding hydrogen peroxide or a compound producing hydrogen peroxide in an amount such that a hydrogen peroxide concentration comes to be 10 to 500 mg/L to the ship ballast water, and then providing physical means for causing shear strength and/or cavitation to the ship ballast water.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 28, 2012
    Assignees: Katayama Chemical, Inc., The Japan Association of Marine Safety, Marine Technology Institute Co., Ltd., Laboratory of Aquatic Science Consultant Corporation, M.O. Marine Consulting, Ltd., Mitsui Engineering & Shipbuilding Co., Ltd., Shinko Ind. Ltd.
    Inventors: Yasuo Fukuyo, Yoshiharu Wakao, Takuro Tabuchi, Takashi Mizumori, Takeaki Kikuchi
  • Publication number: 20120031853
    Abstract: A process for oxidizing a chemical contaminant selected from the group consisting of (i) aromatic compounds, (ii) unsaturated compounds having one or more of the following bonds: C?C, C?C, C?O and C?N, and (iii) amines, which process comprises combining the chemical contaminant and cuprous (Cu+) ions in an aqueous solution in a reaction vessel in an essentially oxygen-free environment, and subsequently feeding an oxidizer to said solution.
    Type: Application
    Filed: January 28, 2010
    Publication date: February 9, 2012
    Inventor: Magal Saphier
  • Patent number: 8092689
    Abstract: A method of reducing styrene emissions in aqueous cured-in-place pipe closed molding processes and other aqueous environments using a styrene reduction agent. The reduction agent generally comprises a calibrated mixture of salts including sodium chloride plus three persulfate salts: ammonium (APS), potassium (KPS), and sodium (NPS). These ingredients are combined in powder form and are compressed into soluble capsules containing calibrated amounts of the mixture. The capsule(s) may be prescribed through the use of software. Capsule(s) are added to the cure water prior to starting the boiler equipment for the Cured-In-Place Pipe process in order to reduce the residual monomer content in either process or waste streams.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: January 10, 2012
    Inventor: Michel Gosselin
  • Publication number: 20110309017
    Abstract: Embodiments are provided for removing a variety of contaminants using both rare earth and non-rare earth-containing treatment elements.
    Type: Application
    Filed: April 13, 2011
    Publication date: December 22, 2011
    Applicant: MOLYCORP MINERALS, LLC
    Inventors: Carl R. Hassler, John L. Burba, III, Charles F. Whitehead, Joseph Lupo, Timothy L. Oriard
  • Patent number: 8070962
    Abstract: A method for reclamation of a brine that includes mixing a brine containing thiocyanates with an oxidizing agent; and allowing for a time sufficient for the oxidizing agent to oxidize at least a portion of the thiocyanates is disclosed. Other methods may also include determining the quantity of unoxidized thiocyanates after the oxidizing treatment.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: December 6, 2011
    Assignee: M-I L.L.C.
    Inventor: Morris Arvie, Jr.
  • Publication number: 20110284377
    Abstract: Systems and methods for removing hydrogen peroxide from water purification systems are provided. In a general embodiment, the present disclosure provides a water purification system including a water treatment unit, an electrodeionization unit and a hydrogen peroxide decomposition catalyst in fluid connection with the electrodeionization unit. The water purification system can be fluidly connected to a renal treatment system.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 24, 2011
    Applicants: BAXTER HEALTHCARE S.A., BAXTER INTERNATIONAL INC.
    Inventor: Justin B. Rohde
  • Patent number: 8062430
    Abstract: Filters used in the beverage industry fouled by polyphenol-protein complexes and carbohydrate polymers can be cleaned by treating the filters either with the following methods: Solubilization of at least part of the carbohydrate polymers followed by a treatment of the resulting polyphenol protein complex with an oxidative chemical. Treatment of the fouled filters through a back-wash method using an oxidative chemical. In both cases it is not necessary to rinse the membranes after cleaning with a reductive chemical.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: November 22, 2011
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Jan Matthijs Jetten, Theodoor Maximiliaan Slaghek
  • Patent number: 8052876
    Abstract: A process is described for treating effluents from oil production units for discharge or reutilization, to remove oil and other soluble toxic contaminants such as sulphides, benzenes, toluenes, xylenes and polyaromatic hydrocarbons, before discharging or reusing this effluent, especially in an offshore environment. This process for effluent treatment includes a step of changing the thermodynamic equilibrium conditions of an oil-in-water emulsion, followed by a step of separating the oil and the water, to be carried out in an offshore oil production unit.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 8, 2011
    Assignee: Petroleo Brasileiro S.A.—Petrobras
    Inventors: Oswaldo de Aquino Pereira Junior, Marcel Vasconcelos Melo, Agenor Jacinto Junior
  • Patent number: 8048965
    Abstract: Disclosed is a method for extending a shelf life of vinyl ester resin or unsaturated polyester resin during transportation or general storage. The method includes the step of enhancing an oxygen content of the vinyl ester resin or the unsaturated polyester resin, such that the self-polymerization reaction of reactive functional groups having carbon-carbon unsaturated double bonds of the vinyl ester resin or the unsaturated polyester resin can be minimized, so as to slow down occurrence of a gelation phenomenon of the vinyl ester resin or the unsaturated polyester resin in a long-time transportation or storage, and further to decrease a monetary loss.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: November 1, 2011
    Assignee: Swancor Inc. Co., Ltd.
    Inventors: Feng-Mao Huang, Shih-Wen Yur, Ming-Zhou Chuang