Nitrogenous Patents (Class 210/903)
  • Patent number: 11339069
    Abstract: Provided are an anaerobic ammoxidation synergistic nitrogen removal process device of municipal sewage main and side streams and an application method thereof, comprising a municipal sewage raw water tank (1), a biological reaction pool (2), a secondary sedimentation pool (3), a sludge digestion solution raw water tank (4) and a sludge digestion solution AOB strengthening pool (5); wherein, the municipal sewage raw water tank (1) is connected with a water inlet valve (2.2) of the biological reaction pool (2) through a water inlet pump (2.1) of the biological reaction pool (2); the biological reaction pool (2) is connected with the secondary sedimentation pool (3) through a secondary sedimentation pool connection pipe (3.3); the sludge digestion solution raw water tank (4) is connected with a water outlet valve (4.1) of the sludge digestion solution raw water tank (4) through a water inlet pump (4.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: May 24, 2022
    Assignees: BEIJING DRAINAGE GROUP CO., LTD, BEIJING DRAINAGE TECHNOLOGY CO., LTD
    Inventors: Xiaoyu Han, Shujun Zhang, Dan Zhao, Jiawei Wang, Yong Jiang, Jing Huang, Gangxin Chen
  • Patent number: 9039897
    Abstract: The present invention describes a method of optimizing CO2 concentration to increase the specific growth rate of Anammox bacteria and methanogens in wastewater and sludge treatment, as well as novel systems and methods of treating wastewater and sludge. The specific growth rate or doubling time of the Anammox bacteria and methanogens were determined to be sensitive to dissolved CO2 concentration. Optimizing dissolved CO2 concentration increases the specific growth rate of the Anammox bacteria, which may be used as an alternative biological nitrogen removal process for the treatment of domestic wastewater. In the method and system of treating sludge, the CO2 stripper returns biogas with low CO2 concentration to the headspace of an anaerobic digester in order to lower the headspace CO2 concentration and therefore, the soluble CO2 concentration. The lower soluble CO2 concentration increases the specific growth rate of the methanogens for a more efficient anaerobic digestion process.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: May 26, 2015
    Assignee: University of South Florida
    Inventor: Peter George Stroot
  • Patent number: 8992776
    Abstract: A system of treating high nitrogen content waste water is disclosed, where the system includes a precipitation and conditioning subsystem, an ammonia stripper subsystem, and a denitrification subsystem. The system is adapted to reduce nitrogen contamination to level below about 10 ppm and in certain embodiments below 3 ppm.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 31, 2015
    Inventors: Randy A. Galgon, Allen Ray Stickney, Richard B. Steinberg
  • Patent number: 8980090
    Abstract: Disclosed are apparatus and method for alternative aeration-effluent wastewater treatment using a ceramic membrane, which allows the biological treatment to be performed sufficiently in an intermittent aeration tank by combining an anaerobic tank with a plurality of intermittent aeration tanks and selectively changing an inflow path of influent water according to an operation status of the intermittent aeration tanks. The present disclosure is directed to providing an apparatus and method for alternative aeration-effluent wastewater treatment, which allows the aeration and treated water to continuously discharge through two intermittent aeration tanks by independently forming an air injection line and a treated water discharge line at a ceramic membrane provided in each intermittent aeration tank.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: March 17, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Yong Su Choi, Seok Won Hong, Jae Shik Chung, Yong Bae Park, Gyo Bum Kim, Yun Chul Chung
  • Patent number: 8974669
    Abstract: Novel methods and systems for efficient and economic treatment of wastewater, and other fluidized and solid organic wastes, comprise heating the aerobic digestion process with waste heat given off by the generation of power fueled by the biogas by-product of a co-located anaerobic digestion process. Other power generation processes may be utilized for supplying supplemental waste heat.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: March 10, 2015
    Assignee: Ecocyclet LLC
    Inventor: David Anthony Del Porto
  • Patent number: 8916046
    Abstract: The invention relates to a method for controlling oxygen supply in a tank (2) for biologically treating wastewater by alternating aeration including consecutive cycles, wherein each cycle comprises a first aeration phase and a second anoxic phase for reducing nitrites and nitrates formed during the preceding aeration phase, the tank is provided with sensors for measuring ammonia nitrogen (4b) and for measuring nitrate (4c) and optionally for measuring oxygen (4a) that is dissolved in the tank liquor or in the liquor thereof exiting the tank, a method according to which the oxygen supply is controlled in the aeration phase when the reduction speed of the nitrate measurement is less than a bottom threshold and the cutoff of the oxygen supply is also controlled in the aeration phase when at least one of the following triggering events occurs: the reduction speed in the measurement of ammonia nitrogen becomes lower than a bottom threshold; the total sum of ammonia nitrogen and nitrate measurements becomes higher
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: December 23, 2014
    Assignee: Degremont
    Inventors: Jean-Pierre Hazard, Patrick Descamps
  • Patent number: 8894857
    Abstract: A method and system of treating wastewater is disclosed. The treatment system has a nitrification-denitrification system comprising a sorption system, a biofilm system, and an anaerobic digester that digests or converts at least a portion of the solids or sludge from the sorption system and biofilm system.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 25, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventors: Wenjun Liu, Edward John Jordan, Paul M. Gallagher
  • Patent number: 8894849
    Abstract: An improved upward flow constructed wetland cell for treatment of water contaminated with chlorinated aliphatics is disclosed. The improvements include adding ammonia-oxidizing microorganisms to the methane-oxidizing microorganisms already present in an oxygenated root zone and adding improved pore-water sample chambers for measuring the performance of the constructed wetland cell.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 25, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Michael Shelley, Abinash Agrawal, Ke Qin, Garrett Struckhoff, Carl Enfield, James Waldron, Christina Powell
  • Patent number: 8894856
    Abstract: A hybrid method and system of treating wastewater with reduced energy usage is disclosed. The treatment system has a sorption system, an anaerobic digester that digests or converts at least a portion of the solids or sludge from the sorption system, and an aerobic treatment tank that partially reduces oxygen demand of a portion of the sludge from the sorption tank.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 25, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventors: Wenjun Liu, Edward John Jordan, George W. Smith
  • Patent number: 8845891
    Abstract: A filtration device for an aquarium comprising a filtering chamber for receiving water and a filter medium therein wherein said filter medium comprises fibers having a diameter from 0.1 nm to 3000 nm and an aspect ratio of length to diameter of 5:1 to 10,000 to 1 wherein said fibers provide for colonization of nitrosomonas bacterium and/or nitrobacteria.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 30, 2014
    Assignee: T.F.H. Publications, Inc.
    Inventor: Glen S. Axelrod
  • Patent number: 8845900
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: September 30, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventor: Daniel R. Miklos
  • Patent number: 8821727
    Abstract: A wastewater treatment system includes one or more aeration tanks for receiving wastewater, a controller for controlling the amount of air delivered to each of the one or more aeration tanks by a blower assembly, and a sensor assembly for periodically measuring values corresponding to the amount of dissolved oxygen in at least one of the one or more aeration tanks. When the sensor assembly measures values that are less than a low setpoint value, the controller causes the blower assembly to incrementally deliver more air until the sensor assembly measures values that are not less than the low setpoint value. When the sensor assembly measures values that exceed the low setpoint value, the controller causes the blower assembly to incrementally deliver less air until either the sensor assembly measures values that are not greater than the low setpoint value, or the blower assembly reaches a preselected low operating threshold.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 2, 2014
    Assignee: Aero-Mod Incorporated
    Inventors: John Maurice McNellis, Brian Scott Thiemann, Robin Dale Mahan, Jeri Louis Meyer, Todd Lee Steinbach
  • Patent number: 8801931
    Abstract: A hybrid method and system of treating wastewater with reduced energy usage is disclosed. The treatment system has a sorption system, an anaerobic digester that digests or converts at least a portion of the solids or sludge from the sorption system, and an aerobic treatment tank that partially reduces oxygen demand of a portion of the sludge from the sorption tank.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: August 12, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventors: Wenjun Liu, Edward John Jordan, George W. Smith
  • Patent number: 8801932
    Abstract: A process for treating wastewater containing nitro-hydroxy-aromatic compounds using oxidative sub-critical conditions. The wastewater to be treated is adjusted to contain excess hydroxide equivalent to greater than three moles of free hydroxide per mole of total nitro-hydroxy-aromatic compounds, and a sub-stoichiometric amount of an oxidant is supplied to the wastewater. The nitro-hydroxy-aromatic compounds may include nitro-phenol salts or nitro-cresol salts.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: August 12, 2014
    Assignee: Noram International Limited
    Inventor: Michael Gattrell
  • Patent number: 8778184
    Abstract: A modular, vertical bioreactor system includes a plurality of vertical bioreactor chambers each of which encloses an interior volume and has a height dimension which is greater than its width dimension; a drain manifold which maintains the bioreactor chambers in a spaced apart relationship and defines a fluid channel which is in fluid communication with each of the vertical bioreactor chambers; and, a fluid delivery assembly which delivers a fluid to each of the bioreactors. The system may be reconfigured so as to accommodate varying applications. The system may be integrated with an aquaculture system.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: July 15, 2014
    Inventor: Derek Byrd
  • Patent number: 8764986
    Abstract: A system and method are provided for removal of undesirable substances from a body of liquid. The system can include an aeration structure having a continuously inclined surface configured to provide an interaction of air bubbles against substantially an entire length of the continuously inclined surface while the air bubbles are moving toward a top of the body of liquid. The continuously inclined surface can be substantially submerged in the body of liquid. A bio-film of diverse bacteria colonies is disposed on the continuously inclined surface, and a high surface area-to-volume structure is located in proximity to the aeration structure, upon which a bio-film of bacteria colonies can be formed.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 1, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Kraig Johnson, Lawrence D. Reaveley, Fred Jaeger, Hua Xu, Joyce A. Okey
  • Patent number: 8753512
    Abstract: An anoxic packed-bed biological and chemical system for removing nitrates/perchlorate from water includes a vessel having a distribution plate that partitions the vessel into a lower influent-receiving chamber and an upper biological and chemical denitrification chamber. A granular media is supported by the distribution plate to provide a packed bed that has sites for biological growth. A recycle system recycles partially treated water into the closed lower end of the vessel for upflow through the distribution plate.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 17, 2014
    Inventor: George Slajchert
  • Patent number: 8747671
    Abstract: Methods and systems are provided for treating wastewater to simultaneously remove nitrogen, carbon, and phosphorus. The process includes an anoxic tank that receives at least two streams, including plant influent wastewater and return activated sludge. These streams are mixed in the anoxic tank to promote phosphorus release and fermentation of particulate and dissolved organic matter. The mixed liquor is transferred to an aerated tank having low dissolved oxygen concentrations to promote development of phosphorus-release bacteria that is eventually recycled to the anoxic tank by way of the return activated sludge. Simultaneous nitrification, denitrification, and phosphorus release occur in the aerated tank. A membrane tank separates treated effluent from activated sludge in a membrane tank.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 10, 2014
    Assignee: American Water Works Company, Inc.
    Inventors: Eugenio Giraldo, Yanjin Liu, Swarna Muthukrishnan
  • Patent number: 8747672
    Abstract: Methods and systems for recovery of phosphorus from wastewater and producing inorganic phosphorus complexes.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 10, 2014
    Assignee: Multiform Harvest Inc.
    Inventor: Keith E. Bowers
  • Patent number: 8734646
    Abstract: A system for converting urine into potable water for drinking and use in a hand washing station (165) comprises a commode (100), a three-way valve (110) at the outlet of the commode, a urine reactants tank (145), a storage container (160), a pump (170), and a spigot (175). A user turns an actuator (111) on the valve in one direction to direct feces and feces-plus-urine into a reactants tank for feces, and in another direction to direct urine into the urine reactants tank. The urine reactants tank contains a plurality of baffles (210) separating the tank into chambers. A first chamber contains algae and microorganisms supplied by a seed (150). These organisms absorb nutrients from the urine as they grow into a mass (152). A last chamber contains only purified water which flows from the tank into the storage container from which it can be pumped to the spigot.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: May 27, 2014
    Inventors: Allen John Schuh, Jordan Timothy Porter, Jake Timothy Porter
  • Patent number: 8734647
    Abstract: Process for the biological treatment of organic wastes, includes a first anaerobic digestion phase and a second aerobic digestion phase in succession, a respective filtration phase of the solid substance being provided between the two digestion phases, a separation phase of the biogas released in the anaerobic digestion phase and a nitrogen recovery phase from the exhaust gases rich in ammoniac substances separated from the aerobic digestion phase. The solid substance coming from each of the filtration phases is separately returned to the respective digestion phase, while the liquid phase coming from the filtration phase downstream of the anaerobic digestion phase is sent to aerobic phase. In the nitrogen recovery phase the gaseous current consisting of exhaust gases rich in ammoniac substances is treated with a solution of carbonic acid supplied in countercurrent in a first gas/liquid contactor to obtain a mixture of nitrogen salts (ammonium bicarbonate, ammonium carbonate, etc.).
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: May 27, 2014
    Assignee: Bioenergia S.r.l.
    Inventors: Paolo Bresciani, Andrea Manfredini, Andrea Peri, Federico Peri, Mario Peri, Vanessa Pizzaballa, Martino Pretalli, Antonio Tabarelli, Antonio Trilli
  • Patent number: 8721887
    Abstract: Methods and systems for utilizing biological wastewater treatment processes to remove nutrients from wastewater containing reduced sulfide compounds may include treating the wastewater in an anaerobic zone, an anoxic zone, and an aerobic zone. The wastewater is first treated in the anaerobic zone to uptake residual biodegradable organic material using specialized bacteria known as phosphorus accumulating organisms (“PAOs”) and glycogen accumulating organisms (“GAOs”). After treatment in the anaerobic zone, the wastewater is treated in an anoxic zone to convert nitrates to nitrogen gas and sulfur to sulfates. Following treatment in the anoxic zone, the wastewater is treated in the aerobic zone to oxidize ammonia to nitrate and to complete removal of phosphorus. After treatment in the aerobic zone, the wastewater may be treated in other zones, or may be delivered to a liquid-solids treatment stage.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: May 13, 2014
    Assignee: CH2M Hill, Inc.
    Inventors: Glen T. Daigger, Julian Sandino, Steven J. Goodwin
  • Patent number: 8721886
    Abstract: Provided are an apparatus and a method for river water purification using a treatment soil layer and a permeable filtering medium layer. The river water purification apparatus includes a treatment soil layer and a permeable filtering medium layer which are sequentially and alternately stacked. The treatment soil layer includes a plurality of unit soil layers which are arranged at intervals. A reservoir part which stores a predetermined amount of river water and supplies the river water to an inside of the unit soil layer is provided in an upper end part of the unit soil layer. The permeable filtering medium layer has a higher hydraulic conductivity than that of the treatment soil layer. The river water purification apparatus increases a treatment flux of river water regardless of a coefficient of water permeability of soil and effectively removes nitrogen, phosphorus and nutrient salts by stably forming an anaerobic condition.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 13, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyu Hong Ahn, Kyung Guen Song, Kang Woo Cho, Dong-Won Ki, Jin Woo Cho, Se Yeon Won, Hae Seok Oh, Ki Pal Kim
  • Patent number: 8721888
    Abstract: A wastewater treatment method using annularly arranged microorganism carriers in a reaction tank, which defines therein an upper reaction area, a lower reaction area and a passage area surrounded by the microorganism carriers and kept in communication between the upper reaction area and the lower reaction area. Microorganisms including nitrifying bacteria and autotrophic denitrifying bacteria are attached to the surface of each microorganisms carriers and suspending in the water of the reaction tank for causing Anammox reaction to convert NH4+ and NO2? in wastewater into nitrogen gas, achieving removal of total nitrogen compounds from water. The microorganism carriers are used to retain microorganisms in the reaction tank, enhancing the treatment efficiency.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: May 13, 2014
    Assignees: Leaderman & Associates Co., Ltd., National Chiao Tung University
    Inventors: Der-Ming Lee, Ming-Kuei Chiang, Chin-Te Chen, Keng-Chuan Sung, Jih-Gaw Lin, Sin-Han Su
  • Patent number: 8715502
    Abstract: A biological nutrient removal (BNR) system to treat a typical U.S. municipal/domestic wastewater. This BNR system consists of four main directly interflowing of anaerobic, aerobic, anoxic and re-aeration. In the municipal/domestic wastewater treatment industry, the past multi-stage suspended waste activated sludge treatment facilities have been adding coagulant chemicals such as alum to remove total phosphorous (TP) and total nitrogen (TN) to 1.0 mg/l and 3.0 mg/l, respectively. This BNR system is a unique activated sludge biological configuration capable of treating wastewater biologically for clarifier effluent TP and clarifier effluent TN to a level less than 1.0 mg/l for each pollutant without any coagulant chemical additions.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: May 6, 2014
    Inventor: Hossein Eshaghi
  • Patent number: 8691094
    Abstract: A method and system for treating domestic sewage and organic garbage are provided. The method comprises the steps of: multi-phase separation, retting, generating sewage gas, and optional biological denitrification and dephosphorization, which can convert the domestic sewage and organic garbage into clear water, sewage gas, organic manure and sludge. The system comprises a multi-phase separation device, a retting device, a sewage gas generating device and a biological denitrification and dephosphorization device, which can treat the domestic sewage and organic garbage effectively and environmental friendly to achieve a reduction in pollution emission.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: April 8, 2014
    Assignee: Huge Asia Limited
    Inventor: Ming Lu
  • Patent number: 8685247
    Abstract: The present invention relates to systems and processes of wastewater treatment and, in particular, to systems and methods of treating wastewater utilizing biological treatments utilizing two mixed liquor recycle streams for nutrient removal.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: April 1, 2014
    Assignee: Evoqua Water Technologies LLC
    Inventor: John Edward Olson
  • Patent number: 8685246
    Abstract: Methods and systems are provided for treating wastewater to simultaneously remove nitrogen, carbon, and phosphorus, while recovering energy in the form of methane and carbon dioxide. An ammonia-containing stream is directed to a pretreatment tank that produces excess sludge, biogas, and a pretreated stream. The pretreated stream has at least 45% less carbon than the ammonia-containing stream. The pretreated stream is then directed to an anoxic tank, which promotes phosphorus release and fermentation of particulate and dissolved organic matter. The mixed liquor is transferred to an aerated tank having low dissolved oxygen concentrations to promote development of phosphorus-release bacteria that is eventually recycled to the anoxic tank by way of the return activated sludge. Simultaneous nitrification, denitrification, and phosphorus release occur in the aerated tank. A membrane tank separates treated effluent from activated sludge in a membrane tank.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 1, 2014
    Assignee: American Water Works Company, Inc.
    Inventor: Eugenio Giraldo
  • Patent number: 8673152
    Abstract: Wastewater treatment systems, methods and apparatus for polishing a wastewater stream comprising a plurality of contaminants are provided. One system includes a vessel containing a plurality of natural media filtration agents selected to remove selected ones of the plurality of contaminants from the wastewater stream. In one embodiment, the vessel includes a bed of bauxite residue and at least one other natural media filtration agent. In another embodiment, the vessel includes a bed of compost and at least one other natural media filtration agent. The vessel includes a wastewater inlet that is in fluid communication with one or more of the natural media filtration agents. The vessel includes a wastewater outlet that is in fluid communication with one or more of the natural media filtration agents.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignees: Alcoa Inc., Corporate Environmental Solutions LLC
    Inventors: John R. Smith, Jaw K. Fu, Rajat Ghosh, Kevin Kitzman, Jonell Kerkhoff, Robert C. Horger, Dennis L. Fulmer, Aniruddha Bhattacharyya, Andrew C. Middleton, Robin L. Weightman
  • Patent number: 8663479
    Abstract: Methods and compositions for removing radium from drinking water using a natural zeolite.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: March 4, 2014
    Assignee: WRT International LLC
    Inventors: John E. Litz, Charles S. Williams
  • Patent number: 8652329
    Abstract: In a sewage disposal system, a de-nitrification station is configured as a heap of foam cubes located in an airtight enclosure from which oxygen is excluded. Carbon is added to the incoming nitrified water. The heap of foam cubes is arranged as a free-draining trickle filter, but here under asphyxiant conditions in the enclosure. Anaerobic microbiological reactions reduce the nitrate to nitrogen gas. Effluent from the de-nitrifier is polished by feeding back a fraction of the effluent through the aeration station from which the nitrate water is derived, or a separate polishing station can be provided.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 18, 2014
    Assignee: Rowanwood IP Inc.
    Inventor: E. Craig Jowett
  • Patent number: 8603329
    Abstract: A wastewater treatment apparatus of the present invention is configured to biologically filter wastewater through multimedia by consecutively performing two stages (the first and second stages) for a multimedia biological filtration process. A carbon source and coagulant are respectively injected during the first and second multimedia biological filtration processes. The first stage multimedia biological filtration process is carried out in anoxic conditions and the second stage multimedia biological filtration process is carried out in aerobic conditions. The media for the first and second stage biological filtration processes are arranged in large-middle-middle large-small size. Thus, the present invention can secure excellent treated water while minimizing loss of water-head by maximizing reflux capability of solids.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: December 10, 2013
    Assignee: Bookang Tech Co., Ltd.
    Inventors: Dae Hwan Rhu, Yeong Ki Yeo, Se Wook Seo, Yong June Yune, Bong Choel Choi, Byung Suk Lee, Hwa Sun Lee
  • Patent number: 8585900
    Abstract: In accordance with particular process, method and system aspects there is provided a biological manner of treating water/wastewater. Treatment is undertaken in bioreactor configured to treat the water/wastewater through a first process of denitrification followed by a second process of biological phosphorus removal. The bioreactor may be defined by multiple stages arranged in compact vertical alignment, for example, to reduce a footprint of the bioreactor and to feed the water/wastewater between the stages using gravity. The stages may comprise, in order, a Deaeration stage, an Anoxic stage, an Anaerobic stage, and an Aerobic stage. Continuous vacuum operation in the Deaeration stage enhances the physical removal of oxygen and other dissolved gases.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: November 19, 2013
    Inventors: Manuel Alvarez-Cuenca, Maryam Reza
  • Patent number: 8580219
    Abstract: The methods are utilized to recover ammonium from waste water using CO2 acidified absorption water. The process is particularly suited for utilization of cellular matter and a CO2 rich tail gas from a syngas fermentation process and derives significant benefit from the recovery of ammonium bicarbonate and ammonium carbonate. Ammonia and ammonium are recovered from the treatment of the syngas as an ammonium rich solution, at least a portion of which is recycled to the fermentation zone to aid in the production of liquid products. A carbon dioxide rich gas produced by fermentation is used to capture the ammonia and ammonium, forming the ammonium rich solution.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: November 12, 2013
    Assignee: Coskata, Inc.
    Inventor: Robert Hickey
  • Patent number: 8568592
    Abstract: A method for removing phosphorus and nitrogen from an activated sludge wastewater treatment system is provided consisting of one or more anaerobic zones followed by two or more activated sludge reactors operating in parallel each having independent aeration/mixing means, whereby the utilization of the influent organic carbon under anoxic conditions; and thereby, the selection of denitrifying phosphate accumulating organisms (DNPAOs) over non-denitrifying phosphate accumulating organisms (PAOs), is maximized in order to further maximize the removal of phosphorus and nitrogen in the wastewater treatment system.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 29, 2013
    Assignee: dTEC Systems LLC
    Inventor: Thomas E. Coleman
  • Patent number: 8568593
    Abstract: Wastewater systems, methods and/or kits configured such that one or more screens and one or more gases introduced into the system allow the one or more gases to at least partially contact the one or more screens to dislodge or discourage the media or solids from and/or the biology growth on the one or more screens without substantially affecting the oxygen level in the proximity of the one or more screens.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: October 29, 2013
    Assignee: Entex Technologies, Inc.
    Inventors: Wayne J. Flournoy, Richard L. Pehrson
  • Patent number: 8545704
    Abstract: Provided is a method for recovering high-concentration and high-purity amine from amine-containing waste water generated from nuclear power plants and thermal power plants. The method includes: capturing amine and concentrating waste water using a cation exchange resin; separating amine from the concentrated amine-containing waste water; and carrying out further separation of amine via distillation. The method may be applied to treat amine, which causes an increase in biochemical oxygen demand (BOD) and total nitrogen concentration, drastically at the time of its generation from waste water of nuclear power plants and thermal power plants. In this manner, the method may prevent an increase in load of existing waste water treating plants and avoid a need for modifying the equipment in the existing plants.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 1, 2013
    Assignee: Soonchunhyang University Industry Academy Cooperation Foundation
    Inventors: In H. Rhee, Byung G. Park, Hyun J. Jung
  • Patent number: 8491795
    Abstract: An apparatus and methods for converting seawater to drinking water at room temperature include using the processes of osmosis, vacuum stripping, nanofiltration, ion exchange, and breakpoint chlorination, to provide a low-cost alternative to prior seawater conversion methods.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 23, 2013
    Inventor: Kenneth Yat-Yi Chen
  • Patent number: 8486359
    Abstract: The processes are utilized to recover ammonium from waste water using CO2 acidified absorption water. The process is particularly suited for utilization of cellular matter and a CO2 rich tail gas from a syngas fermentation process and derives significant benefit from the recovery of ammonium bicarbonate and ammonium carbonate. Ammonia and ammonium are recovered from the treatment of the syngas as an ammonium rich solution, at least a portion of which is recycled to the fermentation zone to aid in the production of liquid products. A carbon dioxide rich gas produced by fermentation is used to capture the ammonia and ammonium, forming the ammonium rich solution.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: July 16, 2013
    Assignee: Coskata, Inc.
    Inventor: Robert Hickey
  • Patent number: 8465646
    Abstract: To provide an apparatus for treating a nitrate waste liquid that includes a denitrification tank (12A) which accommodates active sludge that adsorbs or takes in the radioactive substance in a nitrate waste liquid (11) and in which an anaerobic microorganism that reduces the nitric acid to nitrogen gas grows, and a reaeration tank (14) in which a denitrification-treated liquid (24) treated in the denitrification tank (12A) is aerated and mixed with active sludge.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: June 18, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Naoki Ogawa, Katsushi Shibata, Kazuhiko Kuroda, Hiromitsu Nagayasu, Kuniaki Takahashi, Yoshimi Kawato, Yoshihiro Meguro
  • Patent number: 8454830
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: June 4, 2013
    Assignee: Siemens Industry, Inc.
    Inventor: Daniel R. Miklos
  • Patent number: 8409438
    Abstract: To provide an apparatus for treating a radioactive nitrate waste liquid that includes a denitrification tank (12A) which accommodates active sludge that adsorbs or takes in the radioactive substance in a nitrate waste liquid (11) and in which an anaerobic microorganism that reduces the nitrate to nitrogen gas grows, and a reaeration tank (14) in which a denitrification-treated liquid (24) treated in the denitrification tank (12A) is aerated and mixed with active sludge. A pH adjuster (21), a carbon source (22), and nitrogen gas are supplied to the denitrification tank (12A) so as to separate a denitrified liquid into a solid content and the denitrification-treated liquid (24) by using a first solid-liquid separating film (25), and the denitrification-treated liquid (24) treated with the active sludge in the reaeration tank (14) is reaerated and separated into a solid content and a reaeration-treated liquid (27) by using a second solid-liquid separating film (28).
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: April 2, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Naoki Ogawa, Katsushi Shibata, Osamu Kohanawa, Kazuhiko Kuroda, Hiromitsu Nagayasu
  • Patent number: 8404210
    Abstract: An iron composition having a plurality of elemental components is disclosed. The major component is an iron component of at least about 68% to about 92% iron by weight. Other components by weight include manganese; cerium; carbon; phosphorous; sulfur; aluminum; silicon; chromium; copper; and zinc. Combined with layers of sand, brick chips and/or charcoal, the iron composition can be used to create a water filter for filtering inorganic arsenic species and soluble metal ions out of water. To enhance hydrous ferric oxide complexation and precipitation, the iron composition may be treated with food grade acids or a water mixture.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: March 26, 2013
    Assignee: George Mason Research Foundation, Inc.
    Inventor: Abul Hussam
  • Patent number: 8398855
    Abstract: A waste treatment process comprised of an ammonification system to convert soluble organic nitrogen into ammonia nitrogen, followed by a physico-chemical process to remove a substantial amount of the ammonia as a recovered ammonium sulfate fertilizer or ammonium hydroxide (“aqua ammonia”), and followed by an ammonia oxidation process to oxidize the remaining ammonia from the physico-chemical process. The process reduces ammonia and carbonaceous organic matter to less than 10 mg/l and recovers ammonia in the form of either ammonium sulfate or ammonium hydroxide.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 19, 2013
    Inventors: Philip Bruno Pedros, Mark Mathew Simon, Stephen Howard Brown
  • Patent number: 8394272
    Abstract: This invention relates to a method that uses heterothrophic ammonia oxidation bacteria (HAOB) to remove carbon and nitrogen pollutants in wastewater. The method includes the cultivation of the heterotropic bacteria in an activated sludge environment and the removal of carbon and nitrogen from the wastewater. According to the physiological characteristics of HAOB and the principles of combined oxidation of carbon and nitrogen, the method is able to achieve simultaneous removal of carbon and nitrogen under the condition that the cells do not grow. The process is able to be carried out in the temperature range of 6-40° C. No excess sludge is produced in the process. The invention is able to control the process and product composition of anaerobic ammonia oxidation through the control of organic carbon source, and is able to realize zero-accumulation of NO3?N in the nitrification process. The invention can fully utilize existing activated sludge systems to remove carbon and nitrogen.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 12, 2013
    Inventor: Guanghao Peng
  • Patent number: 8382984
    Abstract: The invention relates to a method for biologically treating waste water, using a set of micro-organisms having different metabolic spectra, in order to eliminate carbon and nitrogen, even phosphorus. Some of the micro-organisms are fixed to mobile solid carriers (2) and form a fluidised fixed biomass. Some of the micro-organisms are free to be used in an activated mud treatment. To this end, a first non-aerated treatment zone (21a) is followed by a second aerated treatment zone (21b); the treated effluent is subjected to a solid/liquid separation by flotation (6) at a speed higher than 10 m/H; and part of the mud recovered by flotation is recirculated (8) towards the activated mud treatment, said recirculation being controlled (9, 10, 11) so that the MES concentration of the effluent subjected to the liquid/solid separation remains compatible with the retained flotation.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: February 26, 2013
    Assignee: Degremont
    Inventor: Laure Graveleau
  • Patent number: 8372284
    Abstract: Disclosed are a wastewater treatment plant and a wastewater treatment method. The wastewater treatment plant includes: a reactor including a gas outlet, a treated water outlet, and an inlet through which wastewater and gas are supplied, through which the wastewater is introduced, to perform aeration and denitrification; a sludge separation means including plural reaction unit bodies stacked inside the reactor to divide the interior of the reactor into upper and lower sides and separating sludge in a aeration process by forming a gas hold-up space for collecting the gas rising from a lower portion of the reactor; and a aeration unit introducing gas into the reactor.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 12, 2013
    Assignee: Ecodays Co., Ltd.
    Inventor: Hong Bok Choi
  • Patent number: 8361319
    Abstract: A wastewater treatment system includes wastewater having nitrogen-containing compounds, an anoxic zone having denitrifying bacteria, and an aerobic zone having nitrifying bacteria. The anoxic zone is coupled to the aerobic zone, and wastewater flows from the anoxic to the aerobic zone or vice versa. A fluidized bed heat exchanger configured to accept heat from a heat engine and to transfer the heat from the heat engine to the wastewater is positioned in the aerobic zone or the anoxic zone. The fluidized bed heat exchanger includes particulate media, and fluidization of the particulate media scrubs bacterial growth from portions of the fluidized bed heat exchanger. Treating wastewater can include flowing wastewater having nitrogen-containing compounds into a biological reactor having an anoxic zone and an aerobic zone, and heating the wastewater with heat from a heat engine to facilitate denitrification reactions in the anoxic zone and nitrification reactions in the aerobic zone.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: January 29, 2013
    Inventor: Alexander Fassbender
  • Patent number: 8303811
    Abstract: An aquarium filter element having a removable insert. The removable insert may include a chemical agent or biological agent for treating aquarium water.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: November 6, 2012
    Assignee: Central Garden and Pet Company
    Inventor: Brad L Mihlbauer
  • Patent number: 8303817
    Abstract: A nitrification carrier having made nitrifying bacteria dominant therein and a denitrification carrier having made anaerobic ammonium-oxidizing bacteria dominant therein are mixed in a treatment tank. Both of a nitrification reaction with the nitrification carrier and a denitrification reaction with denitrification carrier are allowed to proceed in the treatment tank to decompose ammonium nitrogen in wastewater to nitrogen gas. The ratio of the bacterial loads of the nitrifying bacteria and the anaerobic ammonium-oxidizing bacteria can be easily controlled by immobilizing the nitrifying bacteria and the anaerobic ammonium-oxidizing bacteria on different carriers from each other (nitrification carrier and denitrification carrier) and by controlling the volume ratio (ratio of the feeding amounts) of the nitrification carrier and the denitrification carrier.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 6, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Kazuichi Isaka, Yuya Kimura, Tatsuo Sumino