Forming Or Treating An Article Whose Final Configuration Has A Projection Patents (Class 216/11)
  • Patent number: 8728331
    Abstract: A method of fabricating an imprint mold is disclosed. The method includes: forming a first photo resist pattern on a substrate; etching the substrate using the first photo resist pattern as an etch mask to form a first pattern in the substrate; ashing the first photo resist pattern to form a second photo resist pattern; and etching the substrate using the second photo resist pattern to form a second pattern derived from the substrate and a third pattern derived from the first pattern.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: May 20, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Doo Hee Jang, Dhang Kwon, Hang Sup Cho, Ho Su Kim
  • Publication number: 20140116980
    Abstract: Methods are disclosed for depositing a template for directed self-assembly of a self-assemblable block polymer on a surface of a substrate. The method involves providing a chemical epitaxy pattern of alternating first and second regions having differing chemical affinities for first and second blocks of the polymer on the surface by photolithography, and providing spaced graphoepitaxy features on the surface by photolithography. The chemical epitaxy pattern is aligned with and located between pairs of spaced graphoepitaxy features. The spaced graphoepitaxy features and chemical epitaxy pattern are arranged to act together to direct self-assembly of the self-assemblable block copolymer. The resulting template may be used to direct self-assembly of a suitable self-assemblable polymer and the resulting aligned and oriented self-assembled polymer may itself be used as a resist for lithography of the substrate.
    Type: Application
    Filed: June 14, 2012
    Publication date: May 1, 2014
    Applicant: ASML Netherlands B.V.
    Inventor: Sander Frederik Wuister
  • Patent number: 8691099
    Abstract: A process for fabricating a MEMS device with movable comb teeth and stationary comb teeth. A single mask is used to define, during a series of processing steps, the location and width of both movable comb teeth and stationary comb teeth so as to assure self alignment of the comb teeth. MEMS devices are fabricated from a single multi-layer semi-conductor structure of semiconductor material and insulator material. In a preferred embodiment the process is employed to provide a MEMS mirror device having a movable structure, a movable frame, a first set of two torsional members, a first set of at least four comb drives, an outer fixed frame structure, a second set of two torsional members, and a second set of at least four comb drives.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 8, 2014
    Inventors: John Gritters, Ezekiel John Joseph Kruglick, Mathew Last
  • Patent number: 8691100
    Abstract: A method comprising providing a first substrate and forming a first sacrificial layer over the first substrate, the first sacrificial layer comprising a curved surface portion, and forming a curved micromirror by depositing a reflective material over at the curved surface portion.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Dah-Chuen Ho, Eugene Chu, Yuh-Haw Chang, Fei-Yun Chen, Michael Wu, Eric Chao
  • Patent number: 8679354
    Abstract: A controlled method of releasing a microstructure comprising a silicon oxide layer located between a substrate layer and a layer to be released from the silicon oxide layer is described. The method comprises the step of exposing the silicon oxide layer to a hydrogen fluoride vapor in a process chamber having controlled temperature and pressure conditions. A by-product of this reaction is water which also acts as a catalyst for the etching process. It is controlled employment of this inherent water source that results in a condensed fluid layer forming, and hence etching taking place, only on the exposed surfaces of the oxide layer. The described method therefore reduces the risk of the effects of capillary induced stiction within the etched microstructure and/or corrosion within the microstructure and the process chamber itself.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: March 25, 2014
    Assignee: Memsstar Limited
    Inventor: Anthony O'Hara
  • Patent number: 8679392
    Abstract: A process using the nanoimprint technique to form the diffraction grating for the DFB-LD is disclosed. The process includes (a) coating a resist for the EB exposure on a dummy substrate, (b) irradiating the resist as varying the acceleration voltage, (c) forming a resist pattern by developing the irradiated resist, (d) coating the SOG film on the patterned resist, (e) attaching the silica substrate on the cured SOG film, and (f) removing the dummy substrate with the resist from the SOG film and the silica substrate. Using the mold thus formed, the diffraction grating for the DFB-LD is formed by the nanoimprint technique.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: March 25, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masaki Yanagisawa
  • Publication number: 20140078154
    Abstract: A device includes an array of devices formed on a first substrate. A second substrate is spaced away from the first substrate such that the array of devices are positioned between the first and second substrates. A plurality of spacers are coupled to the first substrate to maintain at least a minimum gap between the first substrate and the second substrate. The plurality of spacers include a first set of spacers and a second set of spacers. The spacers in the first set of spacers are shorter than the spacers in the second set of spacers. In some implementations, the device is a display device and the MEMS devices are modulators.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: Pixtronix, Inc.
    Inventors: Richard S. Payne, Timothy J. Brosnihan, Eugene E. Fike, III
  • Patent number: 8668834
    Abstract: A method of protecting a mold having at least one substantially planar surface provided with a plurality of mold cavities includes inserting a plurality of mandrels into respective ones of the plurality of mold cavities, depositing a layer of mold protection material onto the at least one substantially planar surface and the plurality of mandrels, and removing the plurality of mandrels from the mold substrate.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporations
    Inventors: Bradley P. Jones, Sarah H. Knickerbocker, Richard P. Volant
  • Publication number: 20140065472
    Abstract: A metal-resin composite having high gas sealing properties is provided. An aluminum alloy structure having a shape surrounding the copper 63 is firstly formed, and the attached aluminum alloy is made closely contact with the copper electrode 63 and further made engaged into the copper electrode 63 by pressing or forging. It is then machined into a predetermined shape so as to prepare the copper alloy 63 attached with an aluminum alloy part 61a. Subsequently, the surface treatment of the NMT or NMT 2 is given to three members of an aluminum electrode 62, the copper electrode 63 attached with the aluminum alloy part 61a and an aluminum alloy lid 61. These three members are inserted into an injection mold, and a thermoplastic resin composition 64 of PPS resin is injected. The lithium-ion battery lid 60 having a structure as shown in FIG. 11 is thus obtained.
    Type: Application
    Filed: November 25, 2011
    Publication date: March 6, 2014
    Applicant: TAISEI PLAS CO., LTD.
    Inventors: Masanori Naritomi, Naoki Andoh
  • Patent number: 8643128
    Abstract: The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 4, 2014
    Assignee: Pixart Imaging Incorporation
    Inventor: Chuan Wei Wang
  • Patent number: 8623223
    Abstract: A method using directed self-assembly of BCPs enables the making of a master disk for nanoimprinting magnetic recording disks that have patterned data islands and patterned binary encoded nondata marks. The method uses guided self-assembly of a BCP to form patterns of sets of radial lines and circumferential gaps of one of the BCP components, which can be used as an etch mask to make the master disk. The sets of radial lines and circumferential gaps can be patterned so as to encode binary numbers. The pattern is replicated as binary encoded nondata marks into the nanoimprinted disks, with the marks functioning as binary numbers for data sector numbers and/or servo sector numbers. If the disks also use a chevron servo pattern, the binary numbers can function to identify groups of tracks associated with the chevron servo pattern.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 7, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Elizabeth Ann Dobisz, Jeffrey S. Lille, Guoliang Liu, Ricardo Ruiz, Gabriel Zeltzer
  • Publication number: 20140001146
    Abstract: Methods, systems, and computer readable media for using actuated surface-attached posts for assessing biofluid rheology are disclosed. According to one aspect, a method for testing properties of a biofluid specimen includes placing the specimen onto a micropost array having a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end, and generating an actuation force in proximity to the micropost array to actuate the microposts, thereby compelling at least some of the microposts to exhibit motion. The method further includes measuring the motion of at least one of the microposts in response to the actuation force and determining a property of the specimen based on the measured motion of the at least one micropost.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Superfine, Richard Chasen Spero, Adam Richard Shields, Benjamin Aaron Evans, Briana Lee Fiser
  • Patent number: 8617407
    Abstract: Systems and methods may provide electrical contacts to an array of substantially vertically aligned nanorods. The nanorod array may be fabricated on top of a conducting layer that serves as a bottom contact to the nanorods. A top metal contact may be applied to a plurality of nanorods of the nanorod array. The contacts may allow I/V (current/voltage) characteristics of the nanorods to be measured.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: December 31, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Hantschel, Noble M. Johnson, Peter Kiesel, Christian G. Van de Walle, William S. Wong
  • Patent number: 8613860
    Abstract: A fabrication method produces a mechanically patterned layer of group III-nitride. The method includes providing a crystalline substrate and forming a first layer of a first group III-nitride on a planar surface of the substrate. The first layer has a single polarity and also has a pattern of holes or trenches that expose a portion of the substrate. The method includes then, epitaxially growing a second layer of a second group III-nitride over the first layer and the exposed portion of substrate. The first and second group III-nitrides have different alloy compositions. The method also includes subjecting the second layer to an aqueous solution of base to mechanically pattern the second layer.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: December 24, 2013
    Assignee: Alcatel Lucent
    Inventors: Aref Chowdhury, Hock Ng, Richart Elliott Slusher
  • Publication number: 20130334441
    Abstract: Embodiments disclosed herein relate to a filter (100). In one embodiment, the filter includes a pattern (120). The pattern may reflect or fluoresce non-visible light.
    Type: Application
    Filed: January 28, 2011
    Publication date: December 19, 2013
    Inventors: Daniel I. Croft, Bany T. Phillips, Brad Benson, Cary G. Addington, Angus Wu, Stephan R. Clark, Guy Adams
  • Publication number: 20130337217
    Abstract: An information recording medium (100) of the present invention includes a substrate (1) and a recording layer provided on the substrate (1) and having optical properties that can be changed by irradiation with a laser beam. The recording layer is formed of a plurality of arrayed minute recording regions (e.g., phase-change particles (2)). A part or all of the recording region is made of a recording material containing Te and O. The recording region has a length of 30 nm or less in an information recording direction. Preferably, the recording material further contains an element M, where M is at least one element selected from the group consisting of Pd, Au, and Pt.
    Type: Application
    Filed: February 6, 2012
    Publication date: December 19, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Haruhiko Habuta, Kazuya Hisada, Teruhiro Shiono, Shigeru Furumiya
  • Patent number: 8597759
    Abstract: A graphic for application to a textile is disclosed. The graphic includes a front surface configured to be viewable when the graphic is applied to the textile. The graphic further includes a back surface opposite the front surface and configured to contact the textile. The graphic further includes an attachment mechanism, other than stitching, that attaches the graphic to the textile. The graphic also includes a simulated stitching pattern “etched” onto the front surface of the graphic extending around a perimeter of the graphic and includes projections simulating stitch ends.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 3, 2013
    Assignee: Stahl's Inc.
    Inventors: Fred Ciaramitaro, James R. Johnson, Jr.
  • Patent number: 8585918
    Abstract: A method is described of selectively etching a silicon substrate in small local areas in order to form columns or pillars in the etched surface. The silicon substrate is held in an etching solution of hydrogen fluoride, a silver salt and an alcohol. The inclusion of the alcohol provides a greater packing density of the silicon columns.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: November 19, 2013
    Assignee: Nexeon Ltd.
    Inventors: Mino Green, Feng-Ming Liu
  • Publication number: 20130301980
    Abstract: An opto-electric hybrid board capable of suppressing the increase in light propagation losses and excellent in flexibility, and a method of manufacturing the same, are provided. The opto-electric hybrid board includes an electric circuit board, an optical waveguide, and a metal layer. The electric circuit board includes an insulative layer having front and back surfaces, and electrical interconnect lines formed on the front surface of the insulative layer. The optical waveguide is formed on the back surface of the insulative layer. The metal layer is formed between the cladding layer and the insulative layer. At least part of the metal layer is formed in one of first and second patterns. The first pattern includes a distribution of dot-shaped protrusions, and the second pattern includes a distribution of dot-shaped recesses. A first cladding layer fills a site where the metal layer is removed by the patterning.
    Type: Application
    Filed: April 19, 2013
    Publication date: November 14, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yuichi Tsujita, Yasuto Ishimaru, Hiroyuki Hanazono, Naoyuki Tanaka, Yasufumi Yamamoto, Shotaro Masuda, Mayu Ozaki
  • Patent number: 8580126
    Abstract: An exemplary method for a producing a piezoelectric vibrating piece having at least one mesa step includes forming a metal film on a main surface of a piezoelectric wafer. A through-groove is formed through the thickness of the wafer to form a plan profile of a desired piezoelectric substrate. A film of photoresist is formed on the surface of the metal film. A resist is applied, exposed, and formed into a resist pattern that defines a first mesa step along at least a portion of the plan profile. In regions not protected by the metal film, the piezoelectric substrate is etched to a defined depth to form a mesa step. The denuded edge surface of the metal film is edge-etched. A second mesa step, inboard of the first mesa step, can be formed by repeating the edge-etching and substrate-etching steps using the metal film as an etch protective film.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 12, 2013
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Hiroyuki Sasaki, Kenji Shimao, Manabu Ishikawa
  • Publication number: 20130293883
    Abstract: An optical fiber is provided for optical sensing including a core extending along a length of the optical fiber, a cladding surrounding the core, the cladding including a plurality of channels extending along the length of the optical fiber; and a protrusion at a sensing end of the optical fiber, wherein the protrusion has a porous structure and a curved surface. There is also provided a method of manufacturing the optical fiber, a method of optically sensing an analyte, and an apparatus for optical sensing.
    Type: Application
    Filed: April 1, 2013
    Publication date: November 7, 2013
    Inventor: Xia Yu
  • Publication number: 20130284690
    Abstract: The present invention relates to an improved process for producing highly ordered nanopillar or nanohole structures, in particular on large areas, which can be used as masters in NIL, hot embossing or injection molding processes. The process involves decorating a surface with an ordered array of metal nanoparticles produced by means of a micellar block- copolymer nano-lithography process; etching the primary substrate to a depth of 50 to 500 nm, where the nanoparticles act as a mask and an ordered array of nanopillars or nanocones corresponding to the positions of the nanoparticles is thus produced; using the nanostructured master or stamp in a structuring processes. Also the finished nanostructured substrate surface can be used as a sacrificial master which is coated with a continuous metal layer and the master is then etched away to leave a metal stamp having an ordered array of nanoholes which is a negative of the original array of nanopillars or nanocones.
    Type: Application
    Filed: October 12, 2011
    Publication date: October 31, 2013
    Applicants: Max-Planck-Gesellschaft zur Foerderung der Wissens chaften e.V., FACHHOCHSCHULE JENA
    Inventors: Christoph Morhard, Claudia Pacholski, Joachim P. Spatz, Robert Brunner
  • Patent number: 8569168
    Abstract: Method of forming a semiconductor structure which includes forming first conductive spacers on a semiconductor substrate; forming second conductive spacers with respect to the first conductive spacers, at least one of the second conductive spacers adjacent to and in contact with each of the first conductive spacers to form combined conductive spacers; recessing the second conductive spacers with respect to the first conductive spacers so that the first conductive spacers extend beyond the second conductive spacers; depositing an ILD to cover the first and second spacers except for an exposed edge of the first conductive spacers; patterning the exposed edges of the first conductive spacers to recess the edges of the first conductive spacers in predetermined locations to form recesses with respect to the ILD; and filling the recesses with an insulating material to leave unrecessed edges of the first conductive spacers as vias to subsequent wiring features.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8562842
    Abstract: A method of fabricating a nanoimprint stamp includes forming a resist pattern having a nano size width on a stamp substrate by performing imprint processes repeatedly. In the imprint processes, resist layers that are selectively etched are sequentially used. The stamp substrate is etched using the resist pattern as an etch mask.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: October 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Du-hyun Lee, Byung-kyu Lee, Woong Ko
  • Patent number: 8545708
    Abstract: A mold of the present invention includes: a flexible polymer film; a curable resin layer provided on a surface of the polymer film; and a porous alumina layer provided on the curable resin layer, the porous alumina layer having an inverted moth-eye structure in its surface, the inverted moth-eye structure having a plurality of recessed portions whose two-dimensional size viewed in a direction normal to the surface is not less than 10 nm and less than 500 nm. According to the present invention, a method for easily forming a flexible moth-eye mold which can be deformed into the form of a roll is provided.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 1, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Akiyoshi Fujii, Kiyoshi Minoura, Akinobu Isurugi, Hidekazu Hayashi
  • Publication number: 20130248483
    Abstract: A method for fabricating a sharpened needle-like emitter, the method including: electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof; performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion; performing a second etching in which the tip portion is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion at a predetermined number or less; and heating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 26, 2013
    Applicant: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Yasuhiko SUGIYAMA, Kazuo AITA, Fumio ARAMAKI, Tomokazu KOZAKAI, Osamu MATSUDA, Anto YASAKA
  • Publication number: 20130248482
    Abstract: Disclosed is a method of patterning a layered material. A layered material is provided, and a photoresist layer is formed thereon. The photoresist layer is patterned by a focused laser beam to expose a part of the layered material. The exposed layered material is etched to pattern the layered material.
    Type: Application
    Filed: September 11, 2012
    Publication date: September 26, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chin-Tien YANG, Ming-Chia LI, Chung-Ta CHENG
  • Patent number: 8540889
    Abstract: The present invention relates to methods of generating liquidphobic surfaces, and surfaces prepared by these methods. The methods include generating sub-micron-structured surfaces and coating these surfaces with a liquidphobic coating, such as a hydrophobic coating.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: September 24, 2013
    Assignee: Nanosys, Inc.
    Inventors: Jason Hartlove, Ronald Barr, Robert S. Dubrow
  • Publication number: 20130236881
    Abstract: The invention relates to a method for producing column-shaped or conical nanostructures, wherein the substrate surface is covered with an arrangement of metal nanoparticles and etched, the nanoparticles acting as an etching mask and the etching parameters being set such that column structures or cone structures are created below the nanoparticles and the nanoparticles are preserved as a structural coating.
    Type: Application
    Filed: May 30, 2011
    Publication date: September 12, 2013
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissensdchaften e.V.
    Inventors: Joachim P. Spatz, Claudia Pacholski, Tobias Schoen, Lindarti Purwaningsih, Tobias Wolfram
  • Patent number: 8529778
    Abstract: Methods for creating nano-shaped patterns are described. This approach may be used to directly pattern substrates and/or create imprint lithography molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates in a high throughput process.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 10, 2013
    Assignees: Molecular Imprints, Inc., Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shuqiang Yang, Frank Y. Xu, Dwayne L. LaBrake
  • Patent number: 8529774
    Abstract: Superlyophobic Surface Structure, including a substrate having a surface; a plurality of nanoscale raised features on the substrate surface, each nanoscale raised feature having a length measured in a direction approximately perpendicular to the substrate surface, each nanoscale raised feature having a raised feature diameter along the length and measured in a direction approximately parallel to the substrate surface; a nanoscale top feature on each of a plurality of the nanoscale raised features, each nanoscale top feature having a top feature diameter measured in a direction approximately parallel to the substrate surface; in which an average top feature diameter is greater than an average raised feature diameter. Method of fabricating a Superlyophobic Surface Structure.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 10, 2013
    Assignee: Alcatel Lucent
    Inventors: Thomas Nikita Krupenkin, Joseph Ashley Taylor
  • Patent number: 8524520
    Abstract: First and second sacrificial materials are deposited on a substrate. The first and second patterns are respectively formed in the first and second sacrificial materials. The first pattern made from the first sacrificial material is arranged on the second pattern made from a second sacrificial material. The first pattern leaves an area of predefined width free on the periphery of a top surface of the second pattern. The active layer covers at least the whole of the side walls of the first and second patterns and said predefined area of the second pattern. The active area is patterned so as to allow access to the first sacrificial material. The first and second sacrificial materials are selectively removed forming a mobile structure comprising a free area secured to the substrate by a securing area.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: September 3, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Pierre-Louis Charvet
  • Patent number: 8524092
    Abstract: A dry adhesive and a method of forming a dry adhesive. The method includes forming an opening through an etch layer and to a barrier layer, expanding the opening in the etch layer at the barrier layer, filling the opening with a material, removing the barrier layer from the material in the opening, and removing the etch layer from the material in the opening.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: September 3, 2013
    Assignee: Carnegie Mellon University
    Inventors: Metin Sitti, Seok Kim
  • Patent number: 8513125
    Abstract: A method for manufacturing a device comprising a structure with nanowires based on a semiconducting material such as Si and another structure with nanowires based on another semiconducting material such as SiGe, and is notably applied to the manufacturing of transistors.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: August 20, 2013
    Assignee: Commissariat a l'energie atomique et aux alternatives
    Inventors: Emeline Saracco, Jean-Francois Damlencourt, Michel Heitzmann
  • Patent number: 8513136
    Abstract: Memory devices and methods of forming memory devices including forming a plurality of preliminary electrodes, each of the plurality of preliminary electrodes including a protruding region, protruding from a first mold insulating layer, forming a second mold insulating layer on the first mold insulating layer, removing at least a portion of the plurality of preliminary electrodes to form a plurality of openings in the second mold insulating layer and a plurality of lower electrodes, and forming a plurality of memory elements in the plurality of openings. Memory devices and methods of forming memory devices including forming one or more insulating layers on sidewalls of all or part of a plurality of lower electrodes and/or a plurality of memory elements.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Park, Gyu-hwan Oh, Dong-whee Kwon, Kyung-min Chung
  • Publication number: 20130211310
    Abstract: Disclosed are surfaces for resisting and reducing biofilm formation, particularly on medical articles (100). The surfaces include a plurality of microstructures (120) including a plurality of nanofeatures (140) arranged according to at least one unit cell. Also disclosed are methods for creating anti-adherent surfaces.
    Type: Application
    Filed: October 28, 2011
    Publication date: August 15, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: G. Marco Bommarito, Matthew T. Scholz, Michael J. Svarovsky, Jeremy M. Yarwood, Scott M. Schnobrich, Robert J. DeVoe, Jun-Ying Zhang, Terry L. Smith
  • Publication number: 20130209747
    Abstract: The disclosure generally relates to method and apparatus for forming three-dimensional MEMS. More specifically, the disclosure relates to a method of controlling out-of-plane buckling in microstructural devices so as to create micro-structures with out-of-plane dimensions which are 1×, 5×, 10×, 100× or 500× the film's thickness or above the surface of the wafer. An exemplary device formed according to the disclosed principles, includes a three dimensional accelerometer having microbridges extending both above and below the wafer surface.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Inventors: Brian Lee Wardle, Fabio Ferruccio Fachin, Stefan Nikles, Matthew Varghese
  • Publication number: 20130207310
    Abstract: Fluctuations in the thickness of resist films after imprinting are eliminated, in a nanoimprinting method that employs a fine pattern of protrusions and recesses. A nanoimprinting mold is produced by forming a fine pattern of protrusions and recesses on the surface of a substrate. A substrate having a surface shape after a mold release process is administered thereon and before the pattern of protrusions and recesses is formed with a 3? o value related to a height difference distribution within a range from 1 nm to 3 nm is employed as the substrate.
    Type: Application
    Filed: March 26, 2013
    Publication date: August 15, 2013
    Applicant: FUJITSU Corporation
    Inventor: FUJIFILM Corporation
  • Patent number: 8506833
    Abstract: A method for producing a molded body, said method comprising: providing a film comprising a thermoplastic plastic and having a film thickness D ranging from 1 ?m to 1000 ?m; irradiating the film with ionizing radiation, to produce irradiated regions in the film; thermally reshaping the film into a molded body and generating at least one hollow structure, wherein a temperature of the thermal reshaping remains below the melting temperature for the thermoplastic plastic; removing the irradiated regions, to create pores having a diameter ? from about 10 nm to about 10 ?m in the molded body; and removing the molded body from a mold.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 13, 2013
    Assignee: Karlsruhe Institute of Technology
    Inventors: Stefan Giselbrecht, Roman Truckenmüller, Christina Trautmann
  • Patent number: 8501020
    Abstract: A method for making a three-dimensional nano-structure array includes following steps. First, a substrate is provided. Next, a mask is formed on the substrate. The mask is a monolayer nanosphere array or a film defining a number of holes arranged in an array. The mask is then tailored and simultaneously the substrate is etched by the mask. Lastly, the mask is removed.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: August 6, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20130193103
    Abstract: The embodiments disclose a method of self-aligned fully integrated stack fabrication that includes writing fully integrated self-aligned data and servo two dimensional low-frequency guiding patterns that include encoded servo-information to create various types of self-assembly low-frequency guiding structures, guiding high density self-assembly processes using the low-frequency guiding structures to create high density data and servo fields and etching the high density data and servo fields and low-frequency encoded servo-information into a template substrate to create fully integrated stack master templates to use in the fabrication of stacks such as bit patterned media.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: SEAGATE TECHNOLOGY, LLC
    Inventor: René Johannes Marinus Van de Veerdonk
  • Publication number: 20130196019
    Abstract: The present invention describes the synthesis of silicon-containing monomers and copolymers. The synthesis of a monomer, trimethyl-(2-methylenebut-3-enyl)silane (TMSI) and subsequent synthesis of diblock copolymer with styrene, forming polystyrene-block-polytrimethylsilyl isoprene, and synthesis of diblock copolymer Polystyrene-block-polymethacryloxymethyltrimethylsilane or PS-b-P(MTMSMA). These silicon containing diblock copolymers have a variety of uses. One preferred application is as novel imprint template material with sub-100 nm features for lithography.
    Type: Application
    Filed: March 17, 2011
    Publication date: August 1, 2013
    Applicant: National University of Sinapore
    Inventors: C. Grant Willson, Christopher M. Bates, Jeffrey Strahan, Christopher John Ellison, Brennen Mueller
  • Patent number: 8491803
    Abstract: A method of hydrophobizing a frontside surface of an integrated circuit. The method includes the steps of: (a) depositing a hydrophobic polymeric layer onto the frontside surface; (b) depositing a protective metal film onto the hydrophobic polymeric layer; (c) depositing a sacrificial material onto the metal film; (d) patterning the sacrificial material; (e) etching through the metal film, the hydrophobic polymeric layer and the frontside surface; (f) performing MEMS processing steps on a backside of the integrated circuit; (g) subjecting the integrated circuit to an oxidizing plasma, wherein the metal film protects the hydrophobic polymeric layer from the oxidizing plasma; and (h) removing the protective metal film to provide an integrated circuit having a relatively hydrophobic patterned frontside surface.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: July 23, 2013
    Assignee: Zamtec Ltd
    Inventors: Gregory John McAvoy, Emma Rose Kerr, Kia Silverbrook
  • Patent number: 8486280
    Abstract: The present invention provides a method of forming a nanostructured surface (NSS) on a polymer electrolyte membrane (PEM) of a membrane electrode assembly (MEA) for a fuel cell, in which a nanostructured surface is suitably formed on a polymer electrolyte membrane by plasma treatment during plasma assisted etching in a plasma-assisted chemical vapor deposition (PACVD) chamber, where catalyst particles or a catalyst layer are directly deposited on the surface of the polymer electrolyte membrane having the nanostructured surface.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: July 16, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Kwang Ryeol Lee, Myoung Woon Moon, Sae Hoon Kim, Byung Ki Ahn
  • Publication number: 20130178722
    Abstract: Carbon nanotube needles and needle arrays are described in which the precursor pillars are etched by oxygen plasma treatment to provide tapered and/or sharp-tip needles. Processes, products by process, and devices incorporating the sharp-tip needles are further described.
    Type: Application
    Filed: December 14, 2012
    Publication date: July 11, 2013
    Applicant: California Institute of Technology
    Inventor: California Institute of Technology
  • Publication number: 20130158482
    Abstract: The present invention generally relates to systems and methods for delivering and/or receiving a substance or substances such as blood, from subjects, e.g., from the skin and/or from beneath the skin. In one aspect, the present invention is generally directed to devices and methods for receiving or extracting blood from a subject, e.g., from the skin and/or from beneath the skin, using devices containing a fluid transporter (for example, one or more microneedles), and a storage chamber having an internal pressure less than atmospheric pressure prior to receiving blood. In some cases, the device may be self-contained, and in certain instances, the device can be applied to the skin, and activated to receive blood from the subject. The device, or a portion thereof, may then be processed to determine the blood and/or an analyte within the blood, alone or with an external apparatus.
    Type: Application
    Filed: July 12, 2011
    Publication date: June 20, 2013
    Applicant: Seventh Sense Biosystems, Inc.
    Inventors: Shawn Davis, Donald E. Chickering, Remin Haghgooie
  • Patent number: 8465655
    Abstract: A fabrication method for forming polymer nanopillars using an anodic aluminum oxide (AAO) membrane and an imprint process. A substrate is cleaned and a water soluble tape is applied to the substrate to define a coating area. The substrate is spin-coated with a polymer solution and an AAO membrane is placed on top of the coated area on the substrate and turned over whereby a silicon wafer is attached onto the AAO membrane forming an AAO membrane assembly, which is pressed in an imprintor. Then, the AAO membrane assembly is removed from the imprintor, it is disassembled, and the AAO membrane is dissolved in a NaOH solution forming a polymer substrate with nanopillars.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: June 18, 2013
    Assignee: University of Massachusetts
    Inventors: Hongwei Sun, Sai Liu
  • Publication number: 20130148260
    Abstract: A thin-film device system includes a substrate and a plurality of pillars. The plurality of pillars project from a surface of the substrate. Each of the plurality of pillars have a perimeter that includes at least four protrusions that define at least four recessed regions between the at least four protrusions. Each of the at least four recessed regions of each of the plurality of pillars receives one protrusion from an adjacent one of the plurality of pillars. A thin-film device is fabricated over the plurality of pillars.
    Type: Application
    Filed: February 5, 2013
    Publication date: June 13, 2013
    Applicant: MEDTRONIC, INC.
    Inventor: Medtronic, Inc.
  • Publication number: 20130140267
    Abstract: The invention discloses a method of manufacturing a microneedle including the steps of forming an island etching mask having thickness distribution on a substrate, and processing the substrate into a needle by taking advantage of a difference in etching rates between the etching mask and the substrate. The invention enables to readily control a point angle and height of the manufactured needle.
    Type: Application
    Filed: January 29, 2013
    Publication date: June 6, 2013
    Applicant: TOPPAN PRINTING CO., LTD.
    Inventor: TOPPAN PRINTING CO., LTD.
  • Publication number: 20130140268
    Abstract: A TAMR (Thermally Assisted Magnetic Recording) write head is formed with a narrow pole tip, a trailing edge magnetic shield and, optionally, a plasmon shield. The narrow pole tipped write head uses the energy of laser generated edge plasmons, formed in a plasmon generating layer, to locally heat a PMR magnetic recording medium slightly below its Curie temperature, Tc. When combined with the effects of the narrow tip, this local heating to a temperature below Tc is sufficient to create good transitions and narrow track widths in the magnetic medium. The write head is capable of writing effectively on state-of-the-art PMR recording media having Hk of 20 kOe or more.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 6, 2013
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventor: HEADWAY TECHNOLOGIES, INC.