Semiconductor Patents (Class 219/638)
  • Patent number: 10952286
    Abstract: The invention relates to the skin-effect based induction-resistive heating units and can be used in devices intended for prevention of paraffin-hydrate deposits formation in oil-and-gas wells and pipelines, as well as for warming up of viscous products in pipelines and vessels for the purpose of their transporting and pumping. The skin-effect based heating cable contains the center conductor, the inner insulation layer and the ferromagnetic outer conductor coaxially located around them. The invention enables to simplify using due to increase of the heating cable flexibility and due to reduce the energy consumption at its operation.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 16, 2021
    Inventor: Mikhail Leonidovich Strupinskiy
  • Patent number: 10556601
    Abstract: Aspects and embodiments of inductively heated tank cars are described. In one embodiment, an inductive heating system includes an inductive heating module with a radially-curved pancake coil. The heating module can be positioned by an actuator assembly to inductively heat the contents of a tank car. In one example, the actuator assembly includes an assembly base including at least one base pole, an extension channel, and an extension actuator. The actuator assembly also includes an extension arm to retract into and extend out from the extension channel based on the extension actuator, an inductive heating module pivotally secured about an end of the extension arm, and a heating module lift actuator to lift the inductive heating module about the pivot at the end of the extension arm. By lifting and/or pivoting the inductive heating module, it can be positioned proximate to the tank car for inductive heat transfer.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: February 11, 2020
    Assignee: Hydra Heating Industries, LLC
    Inventor: Michael Hoffman
  • Patent number: 10525988
    Abstract: Aspects and embodiments of inductively heated tank cars are described. In one embodiment, an inductive heating system for tank cars includes a radially-curved pancake coil, a coil housing that surrounds at least a portion of the radially-curved pancake coil, and a frame structure comprising at least one attachment mechanism to secure the frame structure to an exterior surface of a tank car. The system can also include an induction heating power supply to supply power for inductively heating the tank car using the radially-curved pancake coil. When installed to the tank car, the coil housing is assembled with the frame structure to secure the radially-curved pancake coil to the exterior surface of the tank car. Any number of radially-curved pancake coils can be secured to the exterior surface of the tank car to heat the contents of the tank car through inductive heating.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: January 7, 2020
    Assignee: HYDRA HEATING INDUSTRIES, LLC
    Inventor: Michael Hoffman
  • Patent number: 9737689
    Abstract: A guide wire comprising an elongate, flexible core having a proximal region, a proximal end, a distal region, and a distal end; and a plurality of wire strands wrapped helically parallel to one another and disposed on at least a portion of the distal region of the core.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: August 22, 2017
    Assignee: Covidien LP
    Inventors: Garland L. Segner, Kent D. Anderson, Douglas B. P. Molland, Thomas L. Clubb, Michael J. Urick
  • Patent number: 9084296
    Abstract: An induction heating coil melts granules composed of semiconductor material on a plate with an outlet tube. The induction heating coil has a coil body provided with current-guiding slots, the coil body having an upper side and a lower side and having a passage opening for granules in a region of the coil body that lies outside the center of the coil, and current-carrying segments which project from the center of the lower side of the coil body and which are electrically conductively connected by a web at a lower end.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 14, 2015
    Assignee: Siltronic AG
    Inventors: Ludwig Altmannshofer, Joerg Fischer, Helge Riemann, Wilfried von Ammon
  • Patent number: 8968470
    Abstract: Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surrounded by an induction coil, wherein a plurality of slits are vertically formed through the outer wall and an inner wall of the crucible such that an electromagnetic force created by an electric current flowing in the induction coil acts toward an inner center of the crucible to prevent a silicon melt from contacting the inner wall of the crucible.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo Yun Jang, Young Soo Ahn, Joon Soo Kim, Sang Hyun Park, Dong Kook Kim, Gwon Jong Yu
  • Patent number: 8941037
    Abstract: A substrate processing apparatus that can accurately control the temperature of a focus ring without causing abnormal electric discharge and the back-flow of radio frequency electrical power during the application of radio frequency electrical power. A wafer is mounted on a mounting stage disposed in a housing chamber. An annular focus ring is mounted on the mounting stage in such a manner as to surround the peripheral portion of the mounted wafer. The pressure in the housing chamber is reduced, radio frequency electrical power is applied to the mounting stage, and the focus ring generates heat by itself.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: January 27, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Daisuke Hayashi, Kazuya Nagaseki
  • Patent number: 8874254
    Abstract: An object of the present invention is to perform temperature setting of a heating plate so that a wafer is uniformly heated in an actual heat processing time. The temperature of a wafer is measured during a heat processing period from immediately after a temperature measuring wafer is mounted on the heating plate to the time when the actual heat processing time elapses. Whether the uniformity in temperature within the wafer is allowable or not is determined from the temperature of the wafer in the heat processing period, and if the determination result is negative, a correction value for a temperature setting parameter of the heating plate is calculated using a correction value calculation model from the measurement result, and the temperature setting parameter is changed.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: October 28, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Shuji Iwanaga, Nobuyuki Sata
  • Patent number: 8674273
    Abstract: Provided is a heat treatment apparatus which, when simultaneously heating substrates placed on susceptors, is capable of controlling the uniformity of temperature within each substrate. The heat treatment apparatus includes: a reaction tube which performs predetermined treatment to wafers; a plurality of susceptors each of which has a mounting surface for mounting the wafer and is made of a conductive material; a rotatable quartz boat wherein the susceptors spaced apart in a direction perpendicular to the mounting surfaces are arranged and supported in the reaction tube; a magnetic field generating unit which is arranged on a sidewall of the processing chamber and includes a pair of electromagnets which generate an AC magnetic field in a direction parallel to the mounting surfaces of the susceptors and inductively heat the susceptors; and a control unit which controls the AC magnetic field generated by the magnetic field generating unit.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Tomihiro Yonenaga, Yumiko Kawano
  • Patent number: 8444800
    Abstract: A manufacturing apparatus of silicon seed rod in which two silicon seed rods are joined into one long silicon seed rod by welding, having: an upper seed rod holding part holding an upper silicon seed rod vertically; an elevating device holding a lower silicon seed rod which faces a lower end of the upper silicon seed rod in a state in which the lower silicon seed rod is movable vertically; an induction-heating coil being arranged around the lower end of the upper silicon seed rod; a preheating ring being disposed below the induction-heating coil; and a moving device of the preheating ring that moves the preheating ring between a heat position in which the preheating ring is induction-heated around an upper end of the lower silicon seed rod by the induction-heating coil and a wait position which is distant from the heat position.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: May 21, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Akimichi Nagaura, Mamoru Nakano
  • Patent number: 8420989
    Abstract: An apparatus to package a semiconductor chip includes a coil configured to use induction heating to reflow a solder ball of the semiconductor chip. The coil includes a first body, a second body parallel to the first body, a third body extending from the first body to the second body. The first and second bodies are symmetrical with respect to a vertical plane disposed therebetween. The first and second bodies have inclined surfaces facing each other, and the inclined surfaces are distant from each other downward.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minill Kim, Kwang Yong Lee, Jonggi Lee, Ji-Seok Hong, Hyun jeong Woo
  • Patent number: 8330086
    Abstract: A heating blanket comprises a conductor for receiving current and generating a magnetic field in response to the current. The heating blanket may include a susceptor sleeve formed of magnetic material having a Curie temperature. The susceptor sleeve may extend along the conductor and may be inductively heated in response to the magnetic field.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: December 11, 2012
    Assignee: The Boeing Company
    Inventors: Robert J. Miller, David F. Taylor, Marc R. Matsen
  • Patent number: 8330171
    Abstract: A single optical receiver having a photo-detector with a wide optical bandwidth and high efficiency within the wide optical bandwidth, the photo-detector comprising: a first diode region of first doping type for receiving light; a second diode region of second doping type and of second thickness; an active region for converting the received light to an electronic signal, the active region having a third thickness and configured to reside between the first diode region and the second diode region; and a reflector coupled to the second diode region and having a silicon layer with a fourth thickness, the silicon layer residing between silicon oxide layers of fifth thicknesses, wherein the active region is configured to absorb the light of wavelengths of less than 900 nm, and wherein the reflector is configured to reflect the light of wavelengths from a range of 1260 nm to 1380 nm.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Intel Corporation
    Inventors: Olufemi I. Dosunmu, Ansheng Liu
  • Patent number: 8014895
    Abstract: An object of the present invention is to perform temperature setting of a heating plate so that a wafer is uniformly heated in an actual heat processing time. The temperature of a wafer is measured during a heat processing period from immediately after a temperature measuring wafer is mounted on the heating plate to the time when the actual heat processing time elapses. Whether the uniformity in temperature within the wafer is allowable or not is determined from the temperature of the wafer in the heat processing period, and if the determination result is negative, a correction value for a temperature setting parameter of the heating plate is calculated using a correction value calculation model from the measurement result, and the temperature setting parameter is changed.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: September 6, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Shuji Iwanaga, Nobuyuki Sata
  • Patent number: 7427329
    Abstract: A reactor for heat treatment of a substrate having a process chamber within a substrate enclosing structure, and a support structure configured to position a substrate at a predetermined spacing between the upper part and the bottom part within the process chamber during processing. Streams of gas may lift the substrate from the support structure so that the substrate floats. A plurality of heating elements is associated with at least one of the upper part and the bottom part and are arranged to define heating zones. A controller controls the heating elements individually so that each heating zone is configured to have a predetermined temperature determined by the controller. The heating zones provide for a non-uniform heating laterally across the substrate.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: September 23, 2008
    Assignee: ASM International N.V.
    Inventors: Vladimir Kuznetsov, Ernst H. A. Granneman
  • Publication number: 20080149598
    Abstract: A substrate processing apparatus that can accurately control the temperature of a focus ring without causing abnormal electric discharge and the back-flow of radio frequency electrical power during the application of radio frequency electrical power. A wafer is mounted on a mounting stage disposed in a housing chamber. An annular focus ring is mounted on the mounting stage in such a manner as to surround the peripheral portion of the mounted wafer. The pressure in the housing chamber is reduced, radio frequency electrical power is applied to the mounting stage, and the focus ring generates heat by itself.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 26, 2008
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Daisuke HAYASHI, Kazuya Nagaseki
  • Patent number: 7390367
    Abstract: A housing assembly for an induction heating device defines a processing chamber and includes a susceptor and a thermally conductive liner. The susceptor surrounds at least a portion of the processing chamber. The thermally conductive liner is interposed between the susceptor and the processing chamber. The liner is separately formed form the susceptor. The liner is removable from the susceptor without requiring disassembly of the susceptor.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: June 24, 2008
    Assignee: Cree, Inc.
    Inventors: Joseph John Sumakeris, Michael James Paisley
  • Patent number: 6896738
    Abstract: A heating device for controllably heating an article defines a processing chamber to hold the article and includes a housing and an EMF generator. The housing includes a susceptor portion surrounding at least a portion of the processing chamber, and a conductor portion interposed between the susceptor portion and the processing chamber. The EMF generator is operable to induce eddy currents within the susceptor portion such that substantially no eddy currents are induced in the conductor portion. The conductor portion is operative to conduct heat from the susceptor portion to the processing chamber. The heating device may further include a platter and an opening defined in the conductor portion, wherein the opening is interposed between the susceptor portion and the platter.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: May 24, 2005
    Assignee: Cree, Inc.
    Inventors: Joseph John Sumakeris, Michael James Paisley
  • Patent number: 6887316
    Abstract: A ceramic heater improving a uniformity of temperature distribution in a work heating face, wherein a resistance heating body formed on a face of a ceramic substrate opposite to the work heating face thereof is such that the scattering of thickness is within ±50% of an average thickness, and a surface roughness of the resistance heating body is a range of 0.05-100 ?m as Rmax and not more than 50% of the average thickness.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: May 3, 2005
    Assignee: Ibiden Co., Ltd.
    Inventors: Yasuji Hiramatsu, Yasutaka Ito
  • Patent number: 6577926
    Abstract: Faults occurring in the operation of a rapid thermal process system are detected and dynamically controlled in-situ. A data set is generated which represents the power applied to heating elements which are spatially arranged in a plurality of zones. The data is converted to a sequence of fractions respectively representing the power applied to each zone relative to the total applied power. The fractions are sequentially arranged and a least squares straight line fit for the fractions is calculated. The slope of the calculated straight line fit is used in a statistical process control system to determine whether a fault has occurred, and to make appropriate corrections in process control parameters, such as the length of time the process is carried out.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: June 10, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih Hui Chang, Kuo-Hsien Cheng, Cheng Kun Lin, Wen Zen Chiu
  • Patent number: 6395648
    Abstract: A wafer processing system which requires no isolation between the operational areas within the processing system. The system of the present invention includes operational areas, such as a loading area, a transport area, and a reactor or thermal processing area. Advantageously, since there are no isolation devices or gate valves separating the areas, the processing system effectively has each operational area combined into a “single” chamber. Preferably, the single chamber has a single slit valve, hinge door, or other vacuum sealable door disposed proximate to the loading area to allow for the removal/insertion of the wafers into the loading area. Once the door to the loading area has been closed the internal pressure within the chamber can be kept uniform throughout each operational area.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: May 28, 2002
    Assignee: WaferMasters, Inc.
    Inventor: Woo Sik Yoo
  • Patent number: 6316754
    Abstract: An induction heating systems using a plurality of zones in a coil provides selective heating control for better uniformity especially for semiconductor and other thin film processing applications. By arranging the zones to have different resonance frequencies, the power supply may control the various zones by altering its frequency output. The power supply may also act to control the differential heating by switching among zones in conjunction with the frequency control, by sweeping through a variety of frequencies, by simultaneously providing power over different frequencies, by altering the residence time at each frequency, or by outputting different powers to each frequency or the like. Each zone may thus be tuned as appropriate to achieve the desired induction heating characteristic.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: November 13, 2001
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Douglas S. Schatz, John M. Dorrenbacher
  • Patent number: 6288378
    Abstract: Induction heating apparatus has a series inductor between an AC source and a parallel tank circuit.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: September 11, 2001
    Assignee: Powell Power Electronics, Inc.
    Inventors: Donald F. Patridge, Henry W. Koertzen
  • Patent number: 6188052
    Abstract: A new apparatus and process for soldering surface-mount and through-hole type electronic components into a printed circuit board (PCB) in an automated fashion utilizing localized electromagnetic induction heating. Current manufacture technology for packaging electronic components depends exclusively on the reflow and wave soldering processes. Both processes heat up to relatively high temperature the entire assembly, namely its PCB and all the electronic components been soldered into it. Such high temperature environment frequently causes components damage resulting in rejects and/or demanding rework. With this invention however, during a soldering operation only the leads and pads, or joints, being soldered are heated but neither the body, or casing, of said electronic components nor the dielectric material forming said PCB are heated. Because of this selectively localized heating, the invention permits to reduce cost and improve the quality and reliability of manufactured products.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: February 13, 2001
    Inventor: Horacio Andrés Trucco
  • Patent number: 5902508
    Abstract: An induction heating coil used in a floating zone melting method, characterized in that the path of a high-frequency current is controllable in the body surface of the coil and by the use of the coil a more uniform resistivity profile across a diameter is achieved as compared with those from the prior art. In the coil a second metal or alloy different in electric conductivity from a first metal or alloy of the coil is disposed in a predetermined place(s) to control the path of a high-frequency current, wherein the second metal or alloy has, for example, higher electric conductivity than the first metal or alloy and a long narrow and thin strip made of the second metal or alloy is disposed in such a manner that it meanders on the body surface of the coil between the outer and inner peripheries periodically.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: May 11, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Masanori Kimura, Naosato Yoshida
  • Patent number: 5550354
    Abstract: A high-frequency induction heating coil is provided which enables a semiconductor single crystal in the process of growth to incorporate impurities uniformly therein, permits ready adjustment of the heat distributing property, and precludes the discharge of electricity across a slit. The high-frequency induction heating coil comprises a pair of annular conductors 21 and 22, a pair of power source terminals 23a and 23b for feeding a high-frequency electric current to the pair of annular conductors 21 and 22, and a plurality of small coils 24a through 24f and 25a through 25f having the pair of annular conductors as opposite electrodes and projecting toward the axis of the pair of annular conductors extending from a first annular conductor 21 to a second annular conductor 22.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: August 27, 1996
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Masanori Kimura, Hirotoshi Yamagishi
  • Patent number: 5514439
    Abstract: A fixture for supporting a semiconductor wafer during rapid thermal processing, comprising a two-piece assembly of parts, one of which is a silicon carbide wafer support section having a wafer contact face shaped by direct contact with a mold, during its formation by chemical vapor deposition. The other piece is a holding section shaped to keep the wafer support section in place within the reactor. The two-piece assembly improves thermal performance, compared with a one-piece fixture, because the rate of heat conduction across the gap between parts is always less than the rate of heat conduction through a one-piece fixture having the same dimensions.
    Type: Grant
    Filed: October 14, 1994
    Date of Patent: May 7, 1996
    Inventor: Thomas Sibley
  • Patent number: 5448041
    Abstract: A process for assembling at least two parts made from a composite material incorporating a ceramic or vitroceramic matrix reinforced by ceramic fibers. A continuous connection between these parts is achieved by approaching two of the parts along their respective edges to be assembled, forming a joint between the two parts by sewing with a tie or link of ceramic fibers from each of the parts to be assembled and heating the joints by a heating device employing a powerful and extremely localized heating until the two parts are welded together.
    Type: Grant
    Filed: June 10, 1993
    Date of Patent: September 5, 1995
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "SNECMA"
    Inventors: Joel. M. D. Benoit, Gilles J.-M. Bessenay, Gerard P. Gauthier