Abstract: Various thermal interface structures and methods are disclosed. In one aspect, a method of manufacturing is provided. The method includes providing plural carbon nanotubes in a thermal interface structure. The thermal interface structure is soldered to a side of a semiconductor chip. In another aspect, an apparatus is provided. The apparatus includes a thermal interface structure that has plural carbon nanotubes. A semiconductor chip is soldered to the thermal interface structure.
Abstract: A method for bonding two partially form-fitting surfaces of two metal bodies which contain the same metal is carried out by generating a first layer on the surface of a first one of the two bodies, the first layer containing a mixture of the metal and the oxide of the metal; generating a second layer on the first layer, the second layer containing the metal but less oxide of the metal than does the first layer; placing the partially form-fitting surfaces of the two metal bodies adjacent to each other; heating the bodies placed adjacent to each other to a temperature which lies in a target range below the melting point of the metal and above the eutectic temperature of the eutectic of the metal and the metal oxide; and holding the temperature within the target range over a predetermined or a controllable duration of time.
Type:
Application
Filed:
October 31, 2007
Publication date:
July 29, 2010
Applicant:
PERKIN ELMER OPTOELECTRONICS GMBH & CO. KG
Inventors:
Ulrich Traupe, Stefan Weise, Pellegrino Ballacchino, Edgar Spandl
Abstract: The present invention provides a bonding method in which a bonded portion having a sufficient bonding strength can be obtained at a relatively low temperature, for example, in die bonding a semiconductor chip. A metal paste 20 was applied to a semiconductor chip 10, the metal paste 20 consisting of metal powder of one or more kinds selected from gold powder, silver powder, platinum powder, and palladium powder having a purity not lower than 99.9 wt % and an average particle diameter of 0.005 ?m to 1.0 ?m and an organic solvent. After being applied, the metal paste 20 was dried in a vacuum in a dryer. The chip was heated at 230° C. for 30 minutes to sinter the metal paste, by which a metal powder sintered compact 21 was formed. Next, a nickel plate 30 was placed on the semiconductor chip 10, and bonded to the semiconductor chip 10 by heating and pressurization.
Abstract: The method forms a sputter target assembly by attaching a sputter target to an insert and applying a bond metal layer between the insert and a backing plate. Then pressing the insert and backing plate together forms a solid state bond with the bond metal layer, attaches the insert to the backing plate and forms at least one cooling channel between the insert and the backing plate. A filler metal secures the outer perimeter of the insert to the backing plate in order to eliminate leakage from the cooling channel during sputtering of the sputter target.
Type:
Grant
Filed:
May 24, 2002
Date of Patent:
March 23, 2004
Assignee:
Praxair S.T. Technology, Inc.
Inventors:
Holger J. Koenigsmann, Andrew C. Perry, Thomas J. Hunt, Paul S. Gilman
Abstract: The method forms a sputter target assembly by attaching a sputter target to an insert and applying a bond metal layer between the insert and a backing plate. Then pressing the insert and backing plate together forms a solid state bond with the bond metal layer, attaches the insert to the backing plate and forms at least one cooling channel between the insert and the backing plate. A filler metal secures the outer perimeter of the insert to the backing plate in order to eliminate leakage from the cooling channel during sputtering of the sputter target.
Type:
Application
Filed:
May 24, 2002
Publication date:
November 27, 2003
Inventors:
Holger J. Koenigsmann, Andrew C. Perry, Thomas J. Hunt, Paul S. Gilman
Abstract: A permanent magnet of a hard magnetic material, such as rare earth-cobalt intermetallic compounds or AlNiCo, is joined to a mounting surface by way of intermediate layers. These layers avoid heating the magnet above the maximum service temperature of the magnetic material, and thus prevent losing the magnetic properties.
Type:
Grant
Filed:
October 9, 1984
Date of Patent:
February 17, 1987
Assignee:
North American Philips Corporation
Inventors:
Robert L. Bronnes, Richard C. Sweet, James K. McKinlay
Abstract: A method of brazing a stainless steel with a stainless steel or another metal wherein, in brazing the stainless steel with a stainless steel or another metal, the stainless steel side of both opposed jointing parts is plated with copper, then a copper base-tin alloy of a melting point of 850.degree. to 1081.degree. C. is used as a brazing material and said brazing material is heated together with the jointing parts to a temperature lower than the melting point of copper in a nonoxidizing gas atmosphere such that the brazing material may be melted at said temperature.The brazed stainless steels are cooled by being quickly passed through a temperature range of 850.degree. to 600.degree. C. The bonding force of the resulting stainless steels is much higher than heretofore obtained.