Electric Course Control Patents (Class 244/175)
  • Patent number: 8695921
    Abstract: A method of aiding the piloting of an airplane ensures the availability of an automatic pilot and a thrust regulation system on board the airplane. To this end, the method includes determining first information by measuring the actual airspeed of the airplane, and this first information is used to control the automatic pilot and the thrust regulation system in a primary mode during normal operations of the airplane. When the first information is lost by becoming unavailable or unreliable, the automatic pilot and the thrust regulation system are each controlled in a secondary mode by control parameters determined using additional flight data independent from the actual airspeed of the airplane and the first information. Consequently, an alternative or redundant control is supplied for ensuring the continued operation of an automatic pilot without necessary intervention from crew members on board the airplane.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Airbus Operations (SAS)
    Inventors: Thierry Bourret, Pascale Louise, Jean Muller, Xavier Dal Santo
  • Patent number: 8700306
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: Davis S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8676403
    Abstract: The present invention relates to methods of controlling the flight path of an aircraft to follow as closely as possible a predetermined four-dimensional flight path, such as when flying continuous descent approaches. A method of controlling an aircraft to follow a predetermined four-dimensional flight path is provided that comprises monitoring an actual along-track position and an actual vertical position of the aircraft relative to corresponding desired positions on the predetermined flight path. Throttle commands are generated based on deviations of the actual vertical position of the aircraft from the desired vertical position. Elevator commands are generated based on the deviation of the actual along-track position from the desired along-track position and on the deviation of the actual vertical position from the desired vertical position.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 18, 2014
    Assignee: The Boeing Company
    Inventors: David Garrido-Lopez, Ramon Gomez Ledesma
  • Publication number: 20140027579
    Abstract: An unmanned aerial vehicle including a controller operating in a search mode of operation where a receiver of an acquisition sensor searches for a target and causes flight control surfaces to guide the vehicle in a downward spiral path, a terminal mode of operation where the acquisition sensor detects a target and causes flight control surfaces to direct the vehicle toward the target, and an activation mode of operation where a trigger sensor detects a target within a predetermined distance to the vehicle and the controller activates a responder.
    Type: Application
    Filed: March 8, 2013
    Publication date: January 30, 2014
    Inventors: Gerald Miller, James Stewart
  • Patent number: 8616503
    Abstract: A system for controlling yaw associated with an airship may include one or more vertical control surfaces associated with the airship, a first power source and a second power source, each configured to provide a thrust associated with the airship, and a yaw control configured to receive an input indicative of a desired yaw angle. The system may further include a controller communicatively connected to the yaw control, the one or more vertical control surfaces, and the first and second power sources. The controller may be configured to receive an output signal from the yaw control corresponding to the desired yaw angle and to generate a control signal configured to modify a state associated with at least one of the one or more vertical control surfaces, the first power source, and the second power source, such that the airship substantially attains the desired yaw angle.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 31, 2013
    Assignee: LTA Corporation
    Inventor: Pierre Balaskovic
  • Patent number: 8594864
    Abstract: A torque based power limit cueing system is provided and includes an engine computer to compile data relating to torque and additional information of each of one or more engines, an active stick by which tactile cueing are provided to a pilot and by which the pilot inputs control commands, a multi-function display (MFD) by which visible cues are provided to the pilot and a flight control computer (FCC) operably coupled to the engine computer, the active stick and the multi-function display, the FCC being configured to receive the data from the engine computer and to output tactile cue commands and visible commands in accordance with the torque and the additional information of each of the one or more engines to the active stick and the MFD, respectively.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 26, 2013
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Aaron L. Greenfield, Alex Faynberg, Vineet Sahasrabudhe, John Rucci, Glen Knaust
  • Patent number: 8583352
    Abstract: A method and hold path computation system for automatically generating a hold path for an aircraft flying in a holding pattern, wherein the holding pattern is defined by one or more orbits within a selectable holding area are provided. The system includes a processor configured to receive a hold departure time indicating a time the aircraft is to leave the hold path to meet a required time of arrival (RTA) at a waypoint, determine a present position of the aircraft within the holding pattern, and determine an amount of time to complete a current hold orbit. The processor is also configured such that if the determined amount of time to complete a current hold orbit is less than or equal to the hold departure time, maintain the aircraft flying in the holding pattern and determine an amount of time by which to shorten the next orbit to exit the holding pattern at the hold departure time.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 12, 2013
    Assignee: GE Aviation Systems, LLC
    Inventors: Joel Kenneth Klooster, Joachim Karl Ulf Hochwarth
  • Patent number: 8548650
    Abstract: The present invention relates to a missile or munition with a hierarchical, modular, closed-loop flow control system, more particularly to aircraft or munition with flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system. Various embodiments of the flow control system involve elements including flow sensors, active flow control devices or activatable flow effectors, and logic devices with closed loop control architecture. The sensors are used to estimate or determine flow conditions on the surfaces of a missile or munition. The active flow control device or activatable flow effectors create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: October 1, 2013
    Assignee: Orbital Research Inc.
    Inventors: Troy S. Prince, Richard Kolacinski, Mehul Patel
  • Patent number: 8534599
    Abstract: A flight control system includes a dual stage actuator for moving a control surface. Each stage includes several control valves that are controlled independently to provide a desired redundancy. A flight controller generates a position command that is indicative of the position desired for the control surface. A first communication link is provided between several flight controllers to share information. Each of the flight controllers forwards the position command to actuator remote processing unit. The actuator remote processing unit receives position commands and generates a command signal that controls movement of the actuator using the control valves. Each of the actuator remote processing units is linked through a second communication link. Feedback and balancing of the different control valves is provided by the visibility accorded each actuator remote processing unit by the second communication link.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: September 17, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Christopher Noll, Steven A. Avritch
  • Publication number: 20130233975
    Abstract: A method and apparatus for carrying out a symmetric deflection of the spoilers so as to reduce the lift of the aircraft during a takeoff roll thereby improving lateral and directional control on the ground.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 12, 2013
    Applicant: Airbus Operations (SAS)
    Inventors: Benoit JOALLAND, Martin DELPORTE
  • Publication number: 20130233964
    Abstract: A tethered unmanned aerial vehicle (“UAV”) may be outfitted with a sensor payload for data gathering. The tethered UAV may be tethered to a ground station for constricting the flight space of the UAV while also providing the option for power delivery and/or bidirectional communications. The tethered UAV's flight path may be extended by introducing one or more secondary UAVs that cooperate to extend the horizontal flight path of a primary UAV. The ground station, which may be coupled with the tethered aerial vehicle, may comprise a listening switch configured to determine a condition of the tether such that the supply of power to the tether may be terminated when tether damage or a tether severance is detected.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: AURORA FLIGHT SCIENCES CORPORATION
    Inventors: Adam Woodworth, James Peverill
  • Patent number: 8511602
    Abstract: A ducted fan air-vehicle capable of generating control moments. The ducted fan air-vehicle includes an air duct, a fan, a center body, a plurality of control vanes. The vanes are independently controlled and are deflected in the same direction but at different angles, thereby providing an increased control moments to the vehicle compared to the prior art. The increased pitching moment allows for additional control authority. Additional control authority is useful in forward flight and is especially desirable when the ducted fan air-vehicle is maneuvering in unsteady or turbulent winds or with various types of cargo that may effect the vehicle center of gravity location.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Honeywell International Inc.
    Inventors: William T. Campbell, Armand Losinski, Jonathan Fleming
  • Patent number: 8492692
    Abstract: A sonar buoy includes a fuselage having a tube-like shape, one or more wings coupled to the fuselage, an engine coupled to the fuselage and operable to propel the sonar buoy through flight, and a guidance computer operable to direct the sonar buoy to a predetermined location. The sonar buoy further includes a sonar detachably coupled to the fuselage and forming at least a part of the fuselage, and a rocket motor detachably coupled to the fuselage. The one or more wings are operable to be folded into a position to allow the sonar buoy to be disposed within a launch tube coupled to a vehicle and to automatically deploy to an appropriate position for flight after the sonar buoy is launched from the launch tube. The rocket motor propels the sonar buoy from the launch tube and detaches from the fuselage after launch.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: July 23, 2013
    Assignee: Elbit Systems of America, LLC
    Inventor: Jeremy F. Fisher
  • Patent number: 8494761
    Abstract: A device and method aids the evaluation of a flight trajectory that is intended to be followed by an aircraft within a constrained environment. The method includes receiving information from a processing unit regarding stationary and moving obstacles, implementing a collision trial based on this information, and displaying any collision risks to the pilot on a display device in the cockpit. Consequently, a pilot can know within the constrained environment whether a flight trajectory needs to be modified to avoid potential collisions.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: July 23, 2013
    Assignee: Airbus Operations (SAS)
    Inventors: Andrea Giovannini, Thomas Pastre
  • Patent number: 8467916
    Abstract: A method of a flight management system (FMS) of an aircraft for generating an equi-time point (ETP) for an emergency landing of the aircraft includes receiving at least two reference points for landing the aircraft upon an occurrence of an emergency. The method also includes determining an equi-distance point (EDP) for the aircraft by locating a first point on the remaining flight path of the aircraft which is equidistant from the at least two reference points. The method further includes generating an ETP for the aircraft by locating a second point on the remaining flight path such that time difference between any two of expected flight times of the aircraft from the second point to the at least two reference points is less than a threshold value.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 18, 2013
    Assignee: Airbus Engineering Centre India
    Inventors: Veeresh Kumar Masaru Narasimhulu, Dinesh Kumar Kushwaha
  • Patent number: 8463468
    Abstract: A method of a flight management system (FMS) of an aircraft for computing flight time from an equi-distance point (EDP to a reference point for an emergency landing of the aircraft includes receiving at least two reference points for landing the aircraft upon an occurrence of an emergency and determining a remaining flight path for the aircraft based on a current location of the aircraft and a flight plan serviced by the FMS. Further, the method includes generating the EDP for the aircraft by locating a point in the remaining flight path, and calculating an expected flight time of the aircraft from the EDP to each of the at least two reference points based on a plurality of factors affecting the flight time of the aircraft.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 11, 2013
    Assignee: Airbus Engineering Centre India
    Inventors: Veeresh Kumar Masaru Narasimhulu, Dinesh Kumar Kushwaha
  • Patent number: 8457872
    Abstract: The invention relates to a method for managing the flight of an aircraft flying along a trajectory and being subject to an absolute time constraint (on a downstream point) or relative time constraint (spacing with respect to a downstream aircraft), the said aircraft comprising a flight management system calculating a temporal discrepancy to the said time constraint, wherein the said method includes the following steps: the calculation of a distance on the basis of the temporal discrepancy, the modification of the trajectory: if the temporal discrepancy to the time constraint corresponds to an advance, the lengthening of the trajectory by the distance; if the temporal discrepancy to the time constraint corresponds to a delay, the shortening of the trajectory by the distance.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 4, 2013
    Assignee: Thales
    Inventor: Guy Deker
  • Patent number: 8428793
    Abstract: According to an example embodiment, a method includes receiving an emergency status signal indicating that an aircraft is in an emergency condition, formatting a downlink message in response to receiving the emergency status signal, the downlink message describing the emergency condition and an autopilot response to the emergency condition, and transmitting the downlink message to a controller of the aircraft.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 23, 2013
    Assignee: Honeywell International Inc.
    Inventor: W. Jerry Mettes
  • Patent number: 8417395
    Abstract: The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system. Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: April 9, 2013
    Assignee: Orbitol Research Inc.
    Inventors: Troy Prince, Richard Kolacinski, Mehul Patel
  • Patent number: 8414260
    Abstract: A control system and method of controlling a propeller aircraft engine during takeoff limits the amount of engine power developed at the very beginning of the takeoff in order to maximize thrust and minimize rollout distances. The control system limits the amount of power developed by the engine, even in the face of a nominal demand by the pilot for maximum engine power. Instead, the control system provides something significantly less than full power at the beginning of takeoff and gradually increases the power developed by the engine to full power as the airspeed increases. This gradual increase from partial engine power toward full power helps prevent stalling of the propeller, thereby maximizing the effectiveness of the propeller and engine in assisting the aircraft to takeoff quickly. The control system is particularly helpful for taking off from high-altitude runways.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: April 9, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: James R. Johnson
  • Publication number: 20130048792
    Abstract: A turret assembly for attachment on the undersurface of an aircraft that reduces performance limitations due to gimbal lock and reduces the cross section profile of the assembly. The assembly includes a roll actuator including a drive shaft. A yoke having a cross member is coupled to the drive shaft and a pair of prongs. The yoke is rotated via the roll actuator and drive shaft along a roll axis oriented substantially parallel to the body of the aircraft. A turret is mounted on the prongs of the yoke. A tilt actuator is contained within the turret. The tilt actuator tilts the turret on a tilt axis relative to the yoke. The tilt axis is perpendicular to the roll axis.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: AeroVironment, Inc.
    Inventors: Thomas Szarek, Thomas Omer, Manolis Pavlos Dimotakis, Jefferson C. McBride
  • Publication number: 20130043353
    Abstract: A system for controlling yaw associated with an airship may include one or more vertical control surfaces associated with the airship, a first power source and a second power source, each configured to provide a thrust associated with the airship, and a yaw control configured to receive an input indicative of a desired yaw angle. The system may further include a controller communicatively connected to the yaw control, the one or more vertical control surfaces, and the first and second power sources. The controller may be configured to receive an output signal from the yaw control corresponding to the desired yaw angle and to generate a control signal configured to modify a state associated with at least one of the one or more vertical control surfaces, the first power source, and the second power source, such that the airship substantially attains the desired yaw angle.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 21, 2013
    Applicant: LTA CORPORATION
    Inventor: LTA CORPORATION
  • Patent number: 8380425
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 19, 2013
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8376266
    Abstract: A method of controlling the yaw attitude of a hybrid helicopter including a fuselage and an additional lift surface provided with first and second half-wings extending from either side of the fuselage, each half-wing being provided with a respective first or second propeller. The hybrid helicopter has a thrust control suitable for modifying the first pitch of the first blades of the first propeller and the second pitch of the second blades of the second propeller by the same amount. The hybrid helicopter includes yaw control elements for generating an original order for modifying the yaw attitude of the hybrid helicopter by increasing the pitch of the blades of one propeller and decreasing the pitch of the blades of the other propeller, the original order is optimized as a function of the position of the thrust control to obtain an optimized yaw control order that is applied to the first and second blades.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: February 19, 2013
    Assignee: Eurocopter
    Inventors: Bernard Gemmati, Nicolas Queiras, Paul Eglin
  • Patent number: 8379087
    Abstract: Vehicle attitude is estimated relative to a ground surface over which the vehicle is traveling. An actual image of the ground surface over which the vehicle is traveling is compared with stored or predicted model images of the ground surface. The model images have corresponding known vehicle attitudes associated therewith. For one of the model images that most closely matches the actual image, the known vehicle attitude associated therewith is an estimate of an actual vehicle attitude relative to the ground surface over which the vehicle is traveling.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: February 19, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Richard Rikoski
  • Patent number: 8366054
    Abstract: An unmanned aerial vehicle including a controller operating in a search mode of operation where a receiver of an acquisition sensor searches for a target and causes flight control surfaces to guide the vehicle in a downward spiral path, a terminal mode of operation where the acquisition sensor detects a target and causes flight control surfaces to direct the vehicle toward the target, and an activation mode of operation where a trigger sensor detects a target within a predetermined distance to the vehicle and the controller activates a responder.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gerald Miller, James Stewart
  • Patent number: 8332080
    Abstract: The invention relates to a method and device to assist in navigation in an airport sector. The inventive method and device make it possible to automatically calculate the points of intersection between the path of the flight plan and the zones having speed limitations all around an airport and calculate a speed profile conforming to these limitations. The inventive method and device also make it possible to use an automatic guidance automatically defining flight instructions corresponding to the calculated speed profile. Furthermore, the invention calculates predictions concerning the flight parameters.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: December 11, 2012
    Assignee: Thales
    Inventors: Manuel Gutierrez-Castaneda, Stéphane Paris
  • Publication number: 20120280087
    Abstract: In accordance with particular embodiments, a system includes a path creation module configured to create future flight paths for unmanned aerial vehicles (UAVs). Each future flight path comprises one or more branch points marking changes in the UAV's flight path. The system also includes a display that is configured to present a graphical user interface that may include a 3D view of a geographic area; flight paths; and a menu of commands. The system also includes a gamepad that may include two thumb-sticks to adjust the displayed geographic area and the perspective of the displayed geographic area. The gamepad also includes time buttons configured to scroll through a flight time that begins with a current actual time and ends with the end of the UAV's flight. The gamepad further includes buttons configured to select a command from the menu and to select a first future flight path of the one or more future flight paths to be sent to the UAV.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Applicant: Raytheon Company
    Inventors: Jason R. Coffman, Lee Solomon
  • Patent number: 8292234
    Abstract: A system operates to guide an aircraft to or along a route designed to maintain the aircraft within a safe glide distance of an acceptable —radar or radio coverage—area. The system uses a database of —radar or radio coverage—areas with glide characteristics of an aircraft to determine a route that minimizes travel time or other specified parameter, while keeping the aircraft within a safe glide distance of a —radar or radio coverage—area in the database meeting the —radar or radio coverage—requirements for the aircraft.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: October 23, 2012
    Assignee: Hoshiko Limited Liability Company
    Inventor: Gary Stephen Shuster
  • Publication number: 20120248254
    Abstract: In the method of communication on a vehicle including an aircraft or a spacecraft, the vehicle transmits an electromagnetic signal from at least one transmitter on-board the vehicle directly to at least one receiver on-board the vehicle and with transmission taking place solely through an environment outside the vehicle. Transmission takes place several times over, and during transmission at least one member from the group including the transmitter and the receiver is set into movement relative to a support in direct contact with the member and with a portion of the vehicle carrying the member.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 4, 2012
    Applicant: AIRBUS
    Inventor: Jean-Paul DOMERGUE
  • Patent number: 8280564
    Abstract: The method of optimizing the exit of an aircraft traversing for a known duration (D) a holding circuit forming a racecourse comprising two parallel branches of the same distance, the branches being traversed in a first time (t1), and two arcs of the same radius linking respectively the ends of each branch, the two arcs being traversed in a second time (t2), the holding circuit comprising an exit point situated at the end of one of the branches is characterized in that the distance of the branches of the holding circuit for the last two loops performed are adjusted so that the aircraft is substantially in proximity to the exit point when the duration (D) has elapsed.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: October 2, 2012
    Assignee: Thales
    Inventors: Jérôme Sacle, Manuel Gutierrez-Castaneda
  • Patent number: 8275499
    Abstract: The invention relates to a device for formulating a flight plan ensuring sufficient safety margins for a duration of a few minutes in relation to the set of flight constraints that could arise and comprising means for: detecting the surrounding moving objects (aircraft or meteorological phenomena), evaluating their type and the danger that they represent, formulating a reconfiguration flight plan ensuring a separation with these phenomena and taking best account of the constraints of the initially followed flight plan, avoiding prohibited or regulated airspaces and avoiding the surrounding relief with ad hoc operational margins.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: September 25, 2012
    Assignee: Thales
    Inventors: Francois Coulmeau, Manuel Gutierrez-Castaneda, Nicolas Marty
  • Patent number: 8249761
    Abstract: The invention relates to a method for calculating a flight path avoiding a collision with the ground when an aircraft dives towards the ground. The method includes receiving signals including information of a dive angle of the aircraft in relation to the imaginary ground plane, and a present roll angle of the aircraft, and calculating a flight path that avoids collision with the ground on the basis of the information. The calculation includes calculating a need for rolling the aircraft based on the present roll angle, and calculating a need for changing the direction of the velocity vector of the aircraft so that the change has a component in an upward direction in relation to the reference frame of the aircraft.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 21, 2012
    Assignee: Saab AB
    Inventors: Hasse Persson, Jonas Lovgren
  • Publication number: 20120199698
    Abstract: A gust-insensitive unmanned air vehicle (UAV) for imaging the ground, comprising a substantially neutrally stable air frame having a fuselage and at least three wings which include control surfaces. The wings are arranged in symmetrical relation about the fuselage and confer the UAV with a roll stability about a longitudinal axis of the fuselage for any roll angle. The UAV also includes a propulsion device for propelling the UAV in flight, an image sensor for imaging the ground, and a flight control system for controlling the in-flight operation of the UAV. The flight control system includes flight control sensors and is operative to render the UAV gust insensitive in response to inputs from the flight control sensors.
    Type: Application
    Filed: September 6, 2011
    Publication date: August 9, 2012
    Applicant: CRANFIELD AEROSPACE LTD
    Inventors: Peter Geoffrey THOMASSON, Robert Idris JONES, David Ian Alistair POLL
  • Patent number: 8234068
    Abstract: A present novel and non-trivial system, module, and method for constructing a flight path used by an avionics system are disclosed. A processor receives flight plan data and object data associated with terrain and obstacles. Free cells are extracted above the objects using a recursive space decomposition technique, and a reference path is formed through traversable free space determined from the availability of free cells. In an additional embodiment, threat data associated with hostile military weaponry and significant meteorological conditions could affect the availability of free cells. A genetic algorithm applying genetic operators which include mutators is employed with aircraft kinematic constraints to refine the reference path used to form a population of best path candidates. When a best path is reached after cycling through a re-generation process of path candidates, flight path data representative of the best path is generated and provided to at least one avionics system.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: July 31, 2012
    Assignee: Rockwell Collins, Inc.
    Inventors: Shih-Yih Young, Kristen M. Jerome
  • Publication number: 20120181388
    Abstract: An air vehicle configured to augment effective drag to change the rate of descent of the air vehicle in flight via propeller shaft rotation direction reversal, i.e., thrust reversal.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 19, 2012
    Inventor: Martyn Cowley
  • Publication number: 20120175468
    Abstract: A system for delivering cooling water to building roofs by means of drone aircraft is disclosed. Control systems for navigation and precisely targeting a water spray are disclosed.
    Type: Application
    Filed: February 11, 2011
    Publication date: July 12, 2012
    Inventor: Eric Zerof
  • Patent number: 8214136
    Abstract: The invention relates to assistance in the navigation of an aircraft in the cruising phase, particularly in an emergency rerouting situation. The invention relates to a method of assisting in the choice of rerouting airports for an aircraft having a position P and a speed V.: generating A first list LAC—1 of airport names Ai is generated. The first list LAC—1 has N airport names, with i being an index between 1 and N which uniquely identifies an airport that an organization operating the aircraft chooses as a relevant destination. A number m is determined which is a minimum between a predefined number M and the number N. M airport names are presented from the first list LAC—1 to an operator of the aircraft in a predefined order.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: July 3, 2012
    Assignee: Thales
    Inventor: Christophe Caillaud
  • Patent number: 8190305
    Abstract: The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system. Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 29, 2012
    Assignee: Orbital Research Inc.
    Inventors: Troy S. Prince, Richard Kolacinski, Mehul Patel
  • Patent number: 8190308
    Abstract: A method and device for detecting a risk of collision of an aircraft, having a profile unit having knowledge of the terrain profile, a determination unit for determining effective values of particular flight parameters, a checking unit for verifying whether a flight path determined by the effective values is compatible with the terrain profile, and a transmitting unit for emitting a warning signal in case of incompatibility. The checking unit includes at least one element for calculating a height variation due to an energy transfer and a total slope variation generated by a speed reduction, during an evasive action, an element deter mining an evasive course using the height variation, and an element verifying whether the evasive course determined is compatible with the terrain profile.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: May 29, 2012
    Assignee: Airbus Operations SAS
    Inventors: Fabien Pitard, Jean-Pierre Demortier, Florence Aubry
  • Publication number: 20120061521
    Abstract: An airplane transfer system for transferring an airplane comprising an airplane control component. The system comprises: a transfer module comprising at least one motor and adapted to transfer an airplane; and a controller coupled to the transfer module and configured to: i) receive a at least one transfer signal that is responsive to one or more commands provided via the airplane control component; and ii) control the transfer module in response to the transfer signal, wherein the commands are a priori capable of controlling the airplane or components thereof.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 15, 2012
    Applicant: ISRAEL AEROSPACE INDUSTRIES LTD.
    Inventors: Arie PERRY, Ran BRAIER
  • Patent number: 8128034
    Abstract: In rotorcraft having rotors on multiple masts, a controller causes opposing roll mast moments to be applied to the different rotors. In preferred embodiments, the opposing roll moment is the result of increasing the lift on the advancing blade and reducing the lift on the retreating blade on the second rotor. This can be accomplished in any suitable manner, such as by applying differential cyclic roll control to the two rotors by tilting the two Swashplates of the two rotors or by using Individual Blade Control (IBC).
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: March 6, 2012
    Inventor: Abe Karem
  • Patent number: 8121747
    Abstract: Embodiments of a process and a program product are provided suitable for implantation by a flight management system (FMS), which is deployed onboard an aircraft and including a display device and a user interface. The FMS operable in a plurality of non-precision approach modes. In one embodiment, the process includes the steps of: (i) receiving data via the user interface designating an approach in a flight plan; (ii) enabling the pilot to utilize the user interface to select a non-precision approach mode from the plurality of non-precision approach modes if the designated approach is a non-precision approach; and (iii) placing the FMS in the selected non-precision approach mode during the designated approach.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: February 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Dennis David Loots, Erwan Paricaud, Yannick Thebault
  • Patent number: 8115149
    Abstract: A Hybrid Projectile is provided for delivering an explosive payload to a target wherein the Hybrid Projectile may be steered in flight using relatively inexpensive means. The Hybrid Projectile is exteriorly configured in the same physical exterior configuration of conventional ammunition of various standard types so it can be launched in conventional manner from the same weapon systems. However, internal features allow the Hybrid Projectile to be transformed in flight from a command signal to deploy wings and fins, and in some projectiles to telescope open to deploy such wings and fins. An inexpensive televisual means is activated in the fore region of the round which through RF uplink command can be used to select a path, while motors on the wings can then be used to more precisely glide the projectile to a target, or otherwise to abort the target run.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: February 14, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leon R. Manole, Ernest L. Logsdon, Jr., Mohan J. Palathingal, Anthony J. Sebasto
  • Patent number: 8087616
    Abstract: A system operates to guide an aircraft to or along a route designed to maintain the aircraft within a safe glide distance of an acceptable emergency landing area. The system uses a database of emergency landing areas with glide characteristics of an aircraft to determine a route that minimizes travel time or other specified parameter, while keeping the aircraft within a safe glide distance of a landing area in the database meeting the landing requirements for the aircraft.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 3, 2012
    Assignee: Hoshiko, LLC
    Inventor: Gary Stephen Shuster
  • Patent number: 8089033
    Abstract: A method and apparatus for attacking a plurality of dispersed targets are herein presented. In particular, the method and apparatus herein presented allow the user to upload target data onto a pod mounted on a host aircraft. Upon reaching the pre loaded target location, the pod releases a plurality of individually targeted Micro Air Vehicles (MAVs), thereby allowing the user to attack a plurality of dispersed targets from a single aircraft standing off at a significant distance from the target area.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 3, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul A. Zank, Paul D. Zemany
  • Publication number: 20110315546
    Abstract: The present disclosure relates to an altitude-adjustable apparatus comprising: a platform; a device for controllably raising the altitude of the platform; a water supply combined with said platform; a device for converting water into the components thereof through solar power; and means for liquefying and storing the resulting liquefied hydrogen in tanks, the latter being built into flying bodies that are designed to arrive at a target area and dispense the liquefied hydrogen.
    Type: Application
    Filed: March 10, 2010
    Publication date: December 29, 2011
    Applicant: ASTRIUM SAS
    Inventor: Jean-François Geneste
  • Patent number: 8085168
    Abstract: An electronic display instrument configured to secure in a desired position over multiple pre-existing instrument holes in a dashboard of an aircraft in place of multiple conventional display instruments, each conventional instrument having a conventional readout. The instrument comprises a display screen having a plurality of readouts corresponding to the conventional readouts of the multiple conventional instruments that the electronic display instrument replaces. The instrument further includes a body having a front and a back opposite the front and a top and a bottom opposite the top. The body is positioned adjacent and connected to the display screen. The instrument also includes an electronics module protruding from the back of the body to position in one of the pre-existing instrument holes in the dashboard panel of the aircraft.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: December 27, 2011
    Inventor: Jeffrey D. Bethel
  • Patent number: 8025255
    Abstract: An aircraft piloting method and device for picking up a vertical profile of a flight plan. The device combines a manual piloting device that enables a pilot to control the start of the picking-up of a vertical profile and an automatic piloting device for automatically ending the vertical profile picking-up and following the vertical profile.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 27, 2011
    Assignee: Airbus Operations SAS
    Inventors: Patrice Rouquette, Erwan Cadot, Martin Legay
  • Patent number: 7970502
    Abstract: Apparatuses and methods for controlling autoflight systems are disclosed herein. An apparatus for use with an aircraft having an autoflight system can include an autoflight performance selector configured to limit the response of the autoflight system to flight guidance instructions in at least two of the pitch, roll and yaw axes. The autoflight performance selector has at least a first selection and a second selection different than the first selection. Selecting the first selection causes the response of the autoflight system to flight guidance instructions to not exceed a first level in the at least two axes, and selecting the second selection causes the response of the autoflight system to the flight guidance instructions to not exceed a second level in the at least two axes different than the first level.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 28, 2011
    Assignee: The Boeing Company
    Inventors: Daniel J. Boorman, Peter D. Gunn, John C. Griffin, III