Optical (includes Infrared) Patents (Class 244/3.16)
  • Patent number: 7652234
    Abstract: A method for obtaining a sky view of a battle site, comprising launching an interceptor (2) towards at least one detected flying threat (3); the interceptor (2) tracking the threat (3) using at least one remote sensor for achieving a kill of the threat (3) at a designated kill site (4) being at a large range from the at least one sensor; when the interceptor (2) approaches the kill site (4), releasing from the interceptor (2) at least one detachable vehicle (7) that includes at least one local sensor (8) for sensing the kill site (4) from a range considerably shorter than the large range and communicating the sensed data.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: January 26, 2010
    Assignee: Israel Aerospace Industries Ltd.
    Inventor: Eli Shukrun
  • Publication number: 20100012765
    Abstract: According to the invention, the system comprises an infrared detector (7) for alternately generating images (5?) of sources of light (5) in the near infrared emitted by a missile flying towards a target and thermal images of the observed scene, said thermal images being visible on the display means (11).
    Type: Application
    Filed: November 15, 2007
    Publication date: January 21, 2010
    Applicant: MBDA FRANCE
    Inventor: Thierry Solenne
  • Publication number: 20100001119
    Abstract: A laser target seeker device arranged to receive a laser beam reflected from an object. Detector elements are arranged to detect the reflected laser beam. A processor is arranged to determine the received radiation on the respective detector element in order to determine the origin of the laser beam. A diffractor is arranged relative to the detector elements and configured to diffract the reflected laser beam into portions prior to being detected by the detector elements. The detector elements are arranged to detect the respective portion. A flyable body is for hitting a target by means of a laser beam. A system for hitting a target by means of a laser beam. A method for detecting a laser beam reflected from an object. Use of a kinoform member in a laser target seeker for diffracting a laser beam.
    Type: Application
    Filed: September 28, 2006
    Publication date: January 7, 2010
    Applicant: SAAB AB
    Inventor: Mikael Lindgren
  • Patent number: 7631833
    Abstract: The present invention provides an unpowered low-cost “smart” micromunition unit for a weapon system for defense against an asymmetric attack upon ships and sea or land based facilities. A plurality of air dropped micromunition units are each capable of detecting and tracking a plurality of maneuvering targets and of establishing a fast acting local area wireless communication network among themselves to create a distributed database stored in each deployed micromunition unit for sharing target and micromunition unit data. Each micromunition unit autonomously applies stored algorithms to data from the distributed database to select a single target for intercept and to follow an intercept trajectory to the selected target. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 15, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Sam Ghaleb, James Bobinchak, Keith P. Gray, Rodney E. Heil, Philip T. Aberer
  • Patent number: 7582853
    Abstract: The invention relates to a method and device for producing an optical link using light flashes. According to the invention, an arrangement (13) comprising a plurality of capacitors (C1 to C5) is provided in order to power a flash lamp (3) and the connection of said capacitors within the arrangement is controlled in a programmed manner such that the resulting capacitance thereof increases from one flash in the next.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: September 1, 2009
    Assignee: MBDA France
    Inventor: Bernard Teneze
  • Patent number: 7575190
    Abstract: One aspect of the invention relates to a laser ranging system. In this version of the invention, a guided missile is provided with laser that directs laser radiation in the general direction of a target that is subsequently reflected from the target back to the missile. A receiving lens is mounted on the missile that receives the reflected laser radiation. A ferrule containing optical fibers divided into a plurality of pixels that receive the reflected laser radiation from the receiving lens, wherein each pixel in the plurality of pixels is provided a different pointing angle by arranging the fibers within the pixel such that the centroid of the field of view of the fibers is different from the centroids of the field of views of the other fibers in the other pixels.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 18, 2009
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Bradley Sallee
  • Patent number: 7575191
    Abstract: The present invention relates to a strap down SAL seeker that includes an optical system having an engineered diffuser for transforming a laser spot into a uniform distribution of optical energy with a predetermined shape. The predetermined shape is preferably a square “top hat” or uniform scatter pattern. The SAL seeker further includes a silicon quad detector, having a focal plane defined by at least two axes. The detector is operatively associated with the engineered diffuser, and it generates signals indicative of the position of the optical energy with respect to the focal plane of the detector.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: August 18, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Allen C. Layton
  • Patent number: 7566026
    Abstract: A guidance method for a powered ballistic missile involves using an onboard computer to numerically simulate the flight path of the missile in real time, using a model with at least 3 degrees of freedom. The results of this simulation are used to update in real time an aim point and/or a predicted intercept point. An iterative process may be used in adjusting the aim point and/or the predicted intercept point. The process may be carried out until a specified number of steps have been completed, and/or until a specified heading error threshold of the aim point and a specified time of flight threshold have been achieved. The use of real time updating of an aim point of the missile advantageously takes into account variations in missile velocity and position due to individual variations in the rocket motor of the missile.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: July 28, 2009
    Assignee: Raytheon Company
    Inventors: Frank C. Lam, Gerald C. Chiang
  • Patent number: 7564478
    Abstract: An apparatus for capturing an object scene, in particular a seeking head for target-tracking missiles, such that, with a detector 86 in fixed relationship with a structure, it is possible to capture a large spatial angle. For that purpose the imaging optical system (30) has a system portion (28) facing the object scene which is pivotable with a pitch frame (24) about a pitch axis (26) perpendicular to a roll axis (18). The pitch frame (24) is mounted pivotably about the pitch axis (26) in a roll frame (16) which is supported in the structure (10) rotatably about the roll axis (18). The system portion (28) includes first beam deflection structure (36) by which the imaging beam path of the imaging optical system (30) is deflectable in a direction along the pitch axis (26).
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: July 21, 2009
    Assignee: Bodenseewerk Gerätetechnikk GmbH
    Inventors: Rainer Baumann, Reiner Eckhardt
  • Patent number: 7554076
    Abstract: An optical sensor system and method includes a plurality of optical transceiver modules arranged across the surface of the optical sensor in a predetermined pattern. A given optical transceiver module includes an optical transmitter that produces at least one light beam and an optical receiver that detects reflected light from the at least one light beam. The optical transceiver module further includes housing for housing the optical transmitter and the optical receiver.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 30, 2009
    Assignee: Northrop Grumman Corporation
    Inventors: Yaujen Wang, Brendan J. D. Irwin, Raj K. Shori
  • Patent number: 7547865
    Abstract: An optical element mount is effective in high G environments to protect brittle optical elements in which tensile stresses are generated on surface S2 without degrading optical performance. A flexible spacer formed of a relatively low-stiffness material supports an optical element having a tapered outer periphery in an optical seat having a complementary tapered surface. When the optical assembly is exposed to the high G environment, the inertial loading drives the optical element in the aft direction into the flexible spacer and seat. This puts the optical element into a plate bending condition thereby inducing tensile stress on S2 which is at least partially offset by a compressive stress caused by the reaction force normal to the tapered interface. The stresses, both compressive and tensile, placed on the optical element in the high G environment can be very large.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: June 16, 2009
    Assignee: Raytheon Company
    Inventors: Gary H. Johnson, Douglas M. Beard, John A. Thomas, Rene D. Perez
  • Patent number: 7540226
    Abstract: A thermal radiation-generating decoy mounted adjacent an aircraft engine structure, such as an engine nacelle, includes a heat source inside of an aerodynamic enclosure with a mounting interface to attach the enclosure to the engine structure. The decoy can further be located at the lower extreme of and adjacent the forward-most portion of the engine nacelle in order to attract an infrared-seeking threat to the vicinity of the fan containment portion of the engine nacelle. The decoy can be designed to have a thermal signature that mimics a scaled overall aircraft thermal signature. In addition, the decoy can include a fuse shield adjacent the enclosure to detonate a threat in the case that the threat approach trajectory is imprecise and the threat bypasses the enclosure within an aspect of the fuse shield as viewed from the approach direction of the threat.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: June 2, 2009
    Assignee: The Boeing Company
    Inventors: Jamie J. Childress, Edward C. Marques
  • Patent number: 7540449
    Abstract: Methods and apparatus for a guidance system according to various aspects of the present invention comprise include an energy concentrator configured to transmit an energy entering the entrance through the exit if the energy enters the entrance within a predetermined acceptance angle, and reject the energy entering the entrance if the energy enters the entrance outside the predetermined acceptance angle. The system may further comprise a detector coupled to the exit of the energy concentrator and configured to generate signals corresponding to a location of the transmitted energy incident upon the detector.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: June 2, 2009
    Assignee: Raytheon Company
    Inventors: David G. Jenkins, Byron B. Taylor, Richard C. Juergens
  • Patent number: 7533849
    Abstract: An optically guided mortar comprising a three axis canard assembly, an optical seeker, a guidance and control processor, and a fuze mechanism. The optical seeker is a direct replacement for existing standard mortar fuzes. The resulting system significantly improves current mortar circular error probability (CEP) and results in overall reduction of cost of target prosecution, reduction in collateral damage, improved crew survivability, and adds compatibility against limited non-stationary targets. The optical seeker detects an optical illuminator located at a target and supplies signals to the guidance and control processor which through a guidance algorithm supplies steering commands to drive motors of the three axis canard assembly which move a plurality of guidance canards to accurately direct the munition toward a target.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: May 19, 2009
    Assignee: BAE Systems Information And Electronic Systems Integration Inc.
    Inventors: Paul D. Zemany, Mark A. Carlson, John A. Maynard
  • Publication number: 20090121072
    Abstract: The invention concerns a device for countering and tracking a threat with optical delay device in the form of a homing-head missile, comprising a homing head adapted to receive an incident coherent light beam and in deflecting same to produce a transmitted beam. The invention is characterized in that the homing head comprises a biprism dividing the transmitted beam into two sub-beams, the biprism being associated with an optical delay device introducing an optical path difference between the two sub-beams greater than the coherence length of the incident beam.
    Type: Application
    Filed: February 23, 2006
    Publication date: May 14, 2009
    Inventors: Julien Aragones, Jacques Robineau
  • Patent number: 7530528
    Abstract: Methods and apparatus for guidance systems according to various aspects of the present invention operate in conjunction with a projectile including a guidance system having a guidance controller, a detector, and an optical system. The guidance controller controls the path of the projectile according to signals from the detector. The detector generates signals according to an angle of incident energy. The optical system transfers the energy to the detector via a spreader and a condenser. The spreader spreads the incident energy, and the condenser converges the spread energy onto the detector.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: May 12, 2009
    Assignee: Raytheon Company
    Inventors: David G. Jenkins, Byron B. Taylor
  • Publication number: 20090114762
    Abstract: The invention relates to a remote control device from an attack module flying over a target, module of the projectile or sub-projectile, missile or attack drone type, for a target designator positioned on a terrain of operations, comprising means to emit a remote control signal that are arranged in the attack module and at least one receiver means for the remote control signal that are integral with the designator and are associated with means to activate the start-up of the designator, wherein the emitter means incorporate at least one light source oriented so as to illuminate the terrain and in that the receiver means incorporate a detector for the radiation emitted by the light source or sources.
    Type: Application
    Filed: September 29, 2008
    Publication date: May 7, 2009
    Applicant: NEXTER MUNITIONS
    Inventor: Michel Jean Hurty
  • Publication number: 20090100995
    Abstract: An integrated weapons pod includes a plurality of pod components such as a targeting system, a weapons bay, a central processing unit (“CPU”), a wireless data link, and an external shell. The external shell houses the targeting system, the weapons bay, the CPU, and the wireless data link in a single freestanding unit. The weapons bay is configured to house one or more weapons and deploy the one or more weapons at a target. The CPU is operable to control operation of the targeting system, the weapons bay, and the wireless data link. The targeting system is operable to provide to the one or more weapons location information identifying a location of the target, and the wireless data link is operable to exchange data with a remote operator.
    Type: Application
    Filed: June 11, 2008
    Publication date: April 23, 2009
    Applicant: EFW Inc.
    Inventor: Jeremy Francis Fisher
  • Patent number: 7521655
    Abstract: A method and apparatus for protecting a civil aircraft from missiles with infrared seeker heads includes detecting a launch of a missile from a location of launch, the missile having an infrared seeker head with an infrared sensitivity range, a power and an operation frequency, continuously determining instantaneous coordinates of the missile in flight after the launch and generating pulsed laser radiation. A wavelength range of the pulsed laser radiation is within the sensitivity range of the infrared seeker head, a power of the pulsed laser radiation exceeds the power of radiation of the aircraft engine in the sensitivity range of the infrared seeker head and a pulse repetition frequency of the pulsed laser radiation is at about the operation frequency of the infrared seeker head. The method includes sending the pulsed laser radiation to the instantaneous coordinates of the missile in flight.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: April 21, 2009
    Assignee: Zakrytoe Aktsionernoye obschestvo “STIVIT” (RU)
    Inventors: Alexander Vasilyevich Kisletsov, Peter Nikolaevich Sygurov, Vladimir Vasilyevich Butuzov, Sergey Dmitrievich Velikanov
  • Patent number: 7511253
    Abstract: An apparatus for detecting radiation includes an entry window configured to receive radiation from a target, the entry window having an outer surface and an inner surface, such that the outer surface is not parallel to the inner surface. The apparatus further includes a radiation transmission assembly configured to receive at least a portion of the radiation received by the entry window. The apparatus further includes a radiation sensor configured to receive at least a portion of the radiation from the radiation transmission assembly.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 31, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Turner
  • Publication number: 20090078817
    Abstract: SAL designation uses absolute time coding of the pulse-stream to disambiguate the designator in a manner that reduces the number of pulses in a pulse-stream and reduces the total pulse energy on the target. This requires timing synchronization between the designator and receiver. For improved rejection of unintended returns, more precise time gating (narrower absolute time window) is required. This can be achieved by removing the path length and or firing time uncertainty errors. Absolute time coding reduces the number of pulses and total energy on target in two ways. First, the designator may only have to transmit the pulse-code once. The “spot” appears for the brief time associated with a pulse-stream and disappears; continuous lasing of the target is not required. Second, the designator can be disambiguated using a combination of pulse-code (relative spacing of pulses) and pulse-position (absolute timing of pulses) modulation.
    Type: Application
    Filed: December 3, 2008
    Publication date: March 26, 2009
    Inventor: DARIN S. WILLIAMS
  • Patent number: 7503521
    Abstract: The homing tag (1) has a transmissive housing (3), which is attached to a cartridge case (5). The transmissive housing (3) includes an aft body (7) to provide an interface with the cartridge case (5). Rotating bands (9) are located at a leading edge of the aft body (7). The transmissive housing (3) further includes a central body (11). The ogive-shaped nose (13) is formed of transparent material. A pluralit of slots (15) are provided for cooling the transmissive housing (3).
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: March 17, 2009
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Maynard, James M. Ortolf, Mark A. Carlson, Paul D. Zemany
  • Patent number: 7494090
    Abstract: The present invention provides a MKV interceptor including multiple kill vehicles with autonomous management capability and kinematic reach to prosecute a large threat extent. Each KV can self-manage its own KV deployment and target engagement for a determined target volume assigned by a designated master KV. At least one KV is master capable of managing the post-separation of all of the KVs without requiring updates to the mission plan post-separation. The autonomous capability and increased kinematic reach provides for a more efficient use of boosters and more effective engagement of the threat.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: February 24, 2009
    Assignee: Raytheon Company
    Inventors: Michael A. Leal, Todd L. Baker, Kent P. Pflibsen
  • Patent number: 7494089
    Abstract: By sharing tasks between the CV and the KVs, the MKV interceptor provides a cost-effective missile defense system capable of intercepting and killing multiple targets. The placement of the acquisition and discrimination sensor and control sensor on the CV to provide target acquisition and discrimination and mid-course guidance for all the KVs avoids the weight and complexity issues associated with trying to “miniaturize” unitary interceptors. The placement of a short-band imaging sensor on each KV overcomes the latency, resolution and bandwidth problems associated with command guidance systems and allows each KV to precisely select a desirable aimpoint and maintain track on that aimpoint to impact.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: February 24, 2009
    Assignee: Raytheon Company
    Inventors: Darin S Williams, Kent P. Pflibsen, Thomas M. Crawford
  • Patent number: 7495198
    Abstract: A method for improving nighttime visual awareness of a pilot flying an aircraft carrying an air-to-air missile including one or more one gimbaled imaging sensor. The method includes providing a helmet for the pilot, a helmet tracking system for determining the attitude of the helmet relative to the aircraft, and a helmet-mounted display. The method also includes determining a current imaging sensor viewing direction of the imaging sensor of the air-to-air missile, sampling an image from the imaging sensor of the air-to-air missile and displaying the image on the helmet-mounted display. The determining and the displaying are performed so that the image displayed on the helmet-mounted display viewed by the pilot is spatially aligned with the scene viewed by the imaging sensor.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: February 24, 2009
    Assignee: Rafael Advanced Defense Systems Ltd.
    Inventor: Tsafrir Ben Ari
  • Publication number: 20090039197
    Abstract: An optically guided munition and control system has a replacement fuse assembly mounted on the front of a munition body or shell casing. An optical seeker subsystem detects an illuminated target and supplies signals to a processor. The processor develops steering commands sent to a flight control subsystem having a plurality of guidance canards which are actuated by drive motors through gear assemblies. The roll of the munition is established and left/right and up/down steering commands are sent to the canard drive motors based upon the optical seeker subsystem detection of the target illuminator. Range adjustment is based upon bore sight lockdown angle and cross range control is based upon left/right centering error. A code is contained in the optical radiation received from the illuminated target which must be validated by a preset code in the system processor to arm the munition.
    Type: Application
    Filed: February 7, 2006
    Publication date: February 12, 2009
    Applicant: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INTEGRATION INC.
    Inventors: John A. Maynard, Mark A. Carlson, Paul D. Zemany
  • Patent number: 7474856
    Abstract: A method and device produce an optical link with laser pulses between an emitter of the pulses and a receiver of the pulses. The optical link is used by a locating device for locating a body moving at constant speed away from the locating device. The locating device delays the start of emission of the laser pulses with respect to the departure of the moving body and varies the energy of the successive laser pulses in proportion to the square of the time elapsed since the start of emission of the pulses.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: January 6, 2009
    Assignee: MBDA France
    Inventors: Bernard Teneze, Frank Bernoux
  • Publication number: 20080302905
    Abstract: An optical element mount is effective in high G environments to protect brittle optical elements in which tensile stresses are generated on surface S2 without degrading optical performance. A flexible spacer formed of a relatively low-stiffness material supports an optical element having a tapered outer periphery in an optical seat having a complementary tapered surface. When the optical assembly is exposed to the high G environment, the inertial loading drives the optical element in the aft direction into the flexible spacer and seat. This puts the optical element into a plate bending condition thereby inducing tensile stress on S2 which is at least partially offset by a compressive stress caused by the reaction force normal to the tapered interface. The stresses, both compressive and tensile, placed on the optical element in the high G environment can be very large.
    Type: Application
    Filed: June 11, 2007
    Publication date: December 11, 2008
    Inventors: Gary H. Johnson, Douglas M. Beard, John A. Thomas, Rene D. Perez
  • Publication number: 20080272227
    Abstract: A target tracking device incorporating a Position Sensitive Detector (PSD) 1 is described. A target is illuminated by a laser of a suitable wavelength. The target reflects the laser radiation and the reflected radiation is incident on a flying vehicle carrying a target tracking device. The PSD in the device outputs a signal representative of the position of the incident laser spot. The output signal is input into control electronics, the control electronics incorporating a resistive transimpedance amplifier. A higher than usual bias voltage is applied to the PSD yielding improved pulse response of the target tracking device. Therefore, the tracking device is particularly suited for use with a target marking laser having a short pulse duration.
    Type: Application
    Filed: March 5, 2008
    Publication date: November 6, 2008
    Applicant: SELEX SENSORS & AIRBORNE SYSTEMS LIMITED
    Inventor: Michael Sharpe
  • Patent number: 7425693
    Abstract: A method of tracking a target. The method includes the steps of acquiring a first spectral image of a scene that includes the target, designating a spectral reference window, in the first spectral image, that includes a respective plurality of pixel vectors, acquiring a second spectral image, of the scene, that includes a respective plurality of pixel vectors, and hypercorrelating the spectral reference window with the second spectral image, thereby obtaining a hypercorrelation function, a maximum of the hypercorrelation function then corresponding to a location of the target in the scene.
    Type: Grant
    Filed: July 18, 2004
    Date of Patent: September 16, 2008
    Assignee: Rafael Advanced Defence Systems Ltd.
    Inventor: Ruth Shapira
  • Patent number: 7422175
    Abstract: The invention described herein provides an apparatus and a method to cooperatively track and intercept a plurality of highly maneuvering asymmetric threats using networks of small, low-cost, lightweight, airborne vehicles that dynamically self-organize into an ad hoc network topology. This is accomplished using distributed information sharing to maintain cohesion and avoid vehicle collisions, while cooperatively pursuing multiple targets. An oracle vehicle relays network information to a control base.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: September 9, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Bobinchak, Gary Hewer
  • Patent number: 7423245
    Abstract: A nose cover (10) for a dome (12) through which radiation can pass, for a missile, the nose cover having an outer structure (22) through which radiation can pass and which is aerodynamically better than a spherical shape, and having correction optics (24) through which radiation can pass and which can be placed in front of the dome (12). The nose cover (10) makes it possible to retrofit older missiles such that they have a greater range without this necessitating any modification of the existing structure of the missile.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: September 9, 2008
    Assignee: Diehl BGT Defence GmbH & Co., KG
    Inventor: Jörg Baumgart
  • Publication number: 20080112594
    Abstract: The present invention provides for simple and streamlined boresight correlation of FLIR-to-missile video. Boresight correlation is performed with un-NUCed missile video, which allows boresight correlation and NUC to be performed simultaneously thereby reducing the time required to acquire a target and fire the missile. The current approach uses the motion of the missile seeker for NUCing to produce spatial gradient filtering in the missile image by differencing images as the seeker moves. This compensates DC non-uniformities in the image. A FLIR image is processed with a matching displace and subtract spatial filter constructed based on the tracked scene motion. The FLIR image is resampled to match the missile image resolution, and the two images are preprocessed and correlated using conventional methods. Improved NUC is provided by cross-referencing multiple measurements of each area of the scene as viewed by different pixels in the imager.
    Type: Application
    Filed: September 15, 2004
    Publication date: May 15, 2008
    Inventors: Darin S, Williams, Edward N. Kitchen
  • Publication number: 20080087761
    Abstract: Methods and apparatus for a guidance system according to various aspects of the present invention comprise include an energy concentrator configured to transmit an energy entering the entrance through the exit if the energy enters the entrance within a predetermined acceptance angle, and reject the energy entering the entrance if the energy enters the entrance outside the predetermined acceptance angle. The system may further comprise a detector coupled to the exit of the energy concentrator and configured to generate signals corresponding to a location of the transmitted energy incident upon the detector.
    Type: Application
    Filed: October 12, 2006
    Publication date: April 17, 2008
    Inventors: David G. Jenkins, Byron B. Taylor, Richard C. Juergens
  • Patent number: 7338009
    Abstract: The invention described herein provides an apparatus and a method to cooperatively track and intercept a plurality of highly maneuvering asymmetric threats using networks of small, low-cost, lightweight, airborne vehicles that dynamically self-organize into an ad hoc network topology. This is accomplished using distributed information sharing to maintain cohesion and avoid vehicle collisions, while cooperatively pursuing multiple targets. An oracle vehicle relays network information to a control base.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: March 4, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Bobinchak, Gary Hewer
  • Patent number: 7339537
    Abstract: Disclosed are antenna embodiments and air vehicles so equipped that include a first antenna component, and a second antenna component, separated by a free space gap, where the antenna embodiments are adapted to capacitively couple the first antenna component and the second antenna component across one or more portions of the free space gap and where the first antenna component member has a degree or axis of rotation, relative to the second antenna component.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: March 4, 2008
    Assignee: Alliant Techsystems Inc.
    Inventor: Harold Kregg Hunsberger
  • Patent number: 7304283
    Abstract: A target tracking device (2) for a flight vehicle (10) is specified which has a position-sensitive photodiode (4) with at least two signal outputs (A1, A2, A3, A4) which are respectively connected to a readout electronics (6), a control unit (8) which is connected to both readout electronics (6), and an optical lens unit (12) for imaging an illuminated point (15) of an object scene (14) on the photodiode (4), the readout electronics (6) respectively having an integration element for integrating a signal of the photodiode (4).
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: December 4, 2007
    Assignee: Diehl BGT Defence GmbH & Co. K.G.
    Inventors: Hans Dieter Tholl, Joachim Barenz
  • Patent number: 7304296
    Abstract: A control mechanism pins an optical fiber assembly on and off gimbal and between gimbals to route the assembly from an off-gimbal optical source across the gimbal axis/axes to an on-gimbal optical element so that the fiber assembly moves with the rotation of the gimbals. To accommodate a relatively large range of motion, the control mechanism is suitably configured to route the fiber assembly in a “U-shaped” loop with one end pinned off-gimbal in a stationary guide track and the other end pinned on-gimbal point in a rotating guide track so that the loose fiber assembly is constrained in the concentric tracks on and off gimbal. As the gimbal rotates, the loop seats onto one guiding track and peels off of the other guiding track while always maintaining its U shape.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: December 4, 2007
    Assignee: Raytheon Company
    Inventors: James P. Mills, David G. Garrett, Wayne L. Sunne, David J. Knapp, Daniel W. Brunton, David G. Anthony, Emmet R. Anderson, Daniel C. Harrison, Frank E. Smith, III, Jim R. Hicks
  • Publication number: 20070272792
    Abstract: An optical matrix switch station (1) is shown mounting a plurality of optical switch units (15, 17), each of which includes a mirror (29), moveable in two axes, for purpose of switching light beams from one optical fiber to another. A mirror assembly (41) is formed from a single body of silicon and comprises a frame portion (43), gimbals (45), mirror portion (47), and related hinges (55). Magnets (53, 54) and air coils (89) are utilized to position the central mirror surface (29) to a selected orientation. The moveable mirror and associated magnets along with control LED's (71) are hermetically packaged in a header (81) and mounted with the air coils on mounting bracket (85) to form a micromirror assembly package (99) mounted in each optical switch unit.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 29, 2007
    Inventors: Herzel Laor, David A. Krozier, Leo A. Plouffe
  • Patent number: 7264198
    Abstract: A method and apparatus for guiding a vehicle to intercept a target is described. The method iteratively estimates a time-to-go until target intercept and modifies an acceleration command based upon the revised time-to-go estimate. The time-to-go estimate depends upon the position, the velocity, and the actual or real time acceleration of both the vehicle and the target. By more accurately estimating the time-to-go, the method is especially useful for applications employing a warhead designed to detonate in close proximity to the target. The method may also be used in vehicle accident avoidance and vehicle guidance applications.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: September 4, 2007
    Assignee: Lockheed Martin Corporation
    Inventor: Vincent C. Lam
  • Patent number: 7249730
    Abstract: Disclosed are a system, method, and program storage device implementing the method, of data fusion, wherein the method comprises determining pre-launch data affecting a flight of a self-sensing air-bursting ballistic projectile, the projectile comprising a plurality of independent data sensors; predicting a trajectory path of the projectile based on a target location of the projectile; calculating trajectory path errors based on the predicted trajectory path; generating in-flight data from each of the data sensors; combining the in-flight data into a single time-series output using a fusion filter; tracking a trajectory position of the projectile based on the single time-series output, pre-launch data, and the trajectory path errors; comparing the tracked trajectory path with the predicted trajectory path; analyzing the in-flight data to gauge successful navigation of the projectile to the target location; and self-guiding the projectile to the target location based on the trajectory position.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: July 31, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventor: Luther D. Flippen, Jr.
  • Patent number: 7247852
    Abstract: A sensor system according to various aspects of the present invention comprises a sensor viewing an area via an optical path and a strut at least partially interposed across the viewing area. The strut is configured to taper along the optical path towards the sensor. In an exemplary embodiment, the strut includes at least two sides forming an angle along their common edge exposed to the sensor along the optical path.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 24, 2007
    Assignee: Raytheon Company
    Inventor: David G. Jenkins
  • Patent number: 7221436
    Abstract: A method of tracking a target includes: (a) receiving energy from the target at a plurality of spatial orientations; (b) processing the received energy; (c) evaluating a penalty function at each of the plurality of spatial orientations; (d) selecting a new spatial orientation based on the evaluation; and (e) orienting a receiver to receive energy from the target at the new spatial orientation.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: May 22, 2007
    Assignee: ITT Manufacturing Enterprises Inc.
    Inventors: Scott Nelson Mendenhall, Benjamin R. Neff, Jeff D. Pruitt
  • Patent number: 7219853
    Abstract: A target identification and tracking system includes a carrier vehicle and one or more tracking vehicles. The carrier vehicle may determine an aimpoint of a target from a high resolution image of the target and may generate an offset from a tracking point to the aimpoint. The offset may be conveyed to an assigned tracking vehicle for tracking the tracking point of the target while navigating toward the aimpoint of the target. The tracking point may be the target's centroid. The carrier vehicle may employ a high-resolution LIDAR imaging system to identify the aimpoint from a target's features; while the tracking vehicle may employ a lower resolution optical imaging system for tracking the target's tracking point. The carrier vehicle may correct the offset for parallax and the offset may be revised as the tracking vehicle approaches the target.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: May 22, 2007
    Assignee: Raytheon Company
    Inventor: Darin S. Williams
  • Patent number: 7188801
    Abstract: The centroid of the discrete components forming the overall radar return from a target onto which a homing weapon is being guided may not coincide with a desired aimpoint on the target. Herein proposed is the discrimination and comparison of returns from different portions of the weapon sensor's field-of-view, i.e. different portions of the target and guidance of the weapon in dependence upon the relative values of the differences between those returns. As a result, the weapon can hit say the centre of a tank turret roof rather than the probably heavily armoured area forward of the turret roof.
    Type: Grant
    Filed: September 8, 1987
    Date of Patent: March 13, 2007
    Assignee: BAE Systems plc
    Inventor: Malcolm D Jones
  • Patent number: 7185845
    Abstract: A wide field-of-view optical system that may be used in determining a direction to a source of light, or for determine steering corrections to direct a vehicle toward a target, is disclosed. The optical system, which may be used as a seeker in a missile or other weapon, comprises a spherical ball lens truncated to provide one or more facets on which detectors may be mounted to measure relative intensities as a blur spot image of a source of light, which may be a reflection from a laser designated target, moves across the detectors, which may be individual elements in a quadrant detector. Narrow band filters may be used to suppress undesired wavelengths and enhance performance. The innovative design enables implementation of a wide field-of-view seeker with no moving parts. The spherical ball lens may be used directly as an aerodynamic surface without a need for a separate optical dome.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: March 6, 2007
    Inventors: Richard Leon Hartman, Randall Wayne Griffin
  • Patent number: 7183966
    Abstract: A dual-mode target seeking apparatus having a seeker dome defining an aperture and transmissive to microwave frequency energy of a first frequency and to light wave energy at a second frequency and at a third frequency. An optics system within the seeker dome is transmissive to the microwave frequency energy reflective to the light wave energy received via the aperture. A first detector receives the microwave frequency energy via the aperture, and a second detector images a target by the light wave energy of the second and third frequencies via the optics system.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: February 27, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Robert J. Schramek, Ronald E. Byrd, Michael E. Weinstein, Seong-Hwoon Kim, Allan J. Lyon
  • Patent number: 7145734
    Abstract: A system includes a dome window and an optical system having a central optical path that passes through the dome window. The optical system includes a refractive optical element having an axis of symmetry which passes through the optical element and which is tilted relative to the central optical path at a location where the central optical path and the axis of symmetry intersect within the optical element.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: December 5, 2006
    Assignee: Raytheon Company
    Inventor: Scott Sparrold
  • Patent number: 7140574
    Abstract: Systems and methods for contiguously and accurately updating target object information during an entire target engagement period are provided. The target tracking system includes a database for storing starfield information, an optical beam source configured to illuminate one or more optical beam pulses, first and second camera systems, and a processor. The processor instructs the first camera system to track the object based on recordation of the tracked object, instructs the second camera system to stabilize the tracking image based on the instructions sent to the first camera system, and determines inertial reference information of the tracked object based on the stabilized image and starfield information associated with the stabilized image.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: November 28, 2006
    Assignee: The Boeing Company
    Inventors: Richard L. Brunson, James D. Dillow, James E. Negro
  • Patent number: 7127138
    Abstract: An apparatus for directing light beams onto a target comprising a beam splitter for splitting a main beam into a first split beam and a second split beam; a first beam path for the first split beam, the first beam path including a first aperture, a first lens and a second lens; a second beam path for the second split beam, the second beam path including a second aperture, a third lens and a fourth lens; a plurality of mirrors arranged such that the first split beam and the second split beam intersect at the target. An apparatus can also include means for placing a target in the image plane of a first aperture and a second aperture.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: October 24, 2006
    Assignee: The Boeing Company
    Inventors: Oleg M. Efimov, Stanislav I. Ionov