Variable Patents (Class 244/46)
  • Publication number: 20120119017
    Abstract: A system and method to control flight of an aircraft. The aircraft having an engine with a rotatably nozzle assembly configured to create forward propulsion and yaw control of the aircraft. The engine exhaust passing through the nozzle is redirected with a valve disposed within the nozzle. Lift is created with a lift system carried by the wing of the aircraft. Additional lift is created during flight with a retractable wing extension disposed within the wing of the aircraft.
    Type: Application
    Filed: September 2, 2011
    Publication date: May 17, 2012
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Daniel B. Robertson, Kirk L. Groninga
  • Publication number: 20120091263
    Abstract: A system and method for assembling and operating a solar powered aircraft, composed of one or more modular constituent wing panels. Each wing panel includes at least one hinge interface that is configured to rotationally interface with a complementary hinge interface on another wing panel. When a first and second wing panel are coupled together via the rotational interface, they can rotate with respect to each other within a predetermined angular range. The aircraft further comprises a control system that is configured to acquire aircraft operating information and atmospheric information and use the same alter the angle between the wing panels, even if there are multiple wing panels. One or more of the wing panels can include photovoltaic cells and/or solar thermal cells to convert solar radiation energy or solar heat energy into electricity, that can be used to power electric motors.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 19, 2012
    Applicant: AURORA FLIGHT SCIENCES CORPORATION
    Inventor: ROBERT PARKS
  • Publication number: 20120085858
    Abstract: An aircraft having a variable geometry for adapting the flight characteristics to different flight situations includes a fuselage with a pair of wings projecting on both sides of the fuselage in the transverse direction (y), each of which wings has an inner wing section arranged stationarily with respect to the fuselage and an outer wing section adjacent thereto and pivotable about a pivot axis. The pivot axis is oriented in a direction deviating from the longitudinal direction (x) of the aircraft by a maximum of 40°.
    Type: Application
    Filed: October 10, 2011
    Publication date: April 12, 2012
    Applicant: EADS Deutschland GmbH
    Inventor: Jost Seifert
  • Patent number: 8146855
    Abstract: An unmanned air vehicle for military, land security and the like operations includes a fuselage provided with foldable wings having leading edge flaps and trailing edge ailerons which are operable during ascent from launch to control the flight pattern with the wings folded, the wings being deployed into an open unfolded position when appropriate. The vehicle is contained within a pod from which it is launched and a landing deck is provided to decelerate and arrest the vehicle upon its return to land.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 3, 2012
    Inventor: Anvar Ismailov
  • Patent number: 8115149
    Abstract: A Hybrid Projectile is provided for delivering an explosive payload to a target wherein the Hybrid Projectile may be steered in flight using relatively inexpensive means. The Hybrid Projectile is exteriorly configured in the same physical exterior configuration of conventional ammunition of various standard types so it can be launched in conventional manner from the same weapon systems. However, internal features allow the Hybrid Projectile to be transformed in flight from a command signal to deploy wings and fins, and in some projectiles to telescope open to deploy such wings and fins. An inexpensive televisual means is activated in the fore region of the round which through RF uplink command can be used to select a path, while motors on the wings can then be used to more precisely glide the projectile to a target, or otherwise to abort the target run.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: February 14, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leon R. Manole, Ernest L. Logsdon, Jr., Mohan J. Palathingal, Anthony J. Sebasto
  • Patent number: 8056853
    Abstract: A reconfigurable air vehicle wing may be selectively reconfigured to increase its chord. The wing has a leading edge portion and a trailing edge portion that are moved relative to one another to change the chord of the wing. The wing may be reconfigured from a compact configuration with a smaller chord, to and expanded configuration with a larger chord. The wing may include a foam material that forms part of the outer surface of the wing when the wing is in the expanded configuration. The foam may be a shape memory foam. Alternatively the leading edge section and the trailing edge section may be composed substantially fully of rigid materials. In either case the trailing edge section may be hingedly coupled to the leading edge section.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Raytheon Company
    Inventors: Rudy A. Eisentraut, Terry M. Sanderson, Brian J. Gowler
  • Patent number: 8014910
    Abstract: A reference value is arbitrarily selected from a range of possible aircraft rotation speeds. A position of a trimmable horizontal stabilizer is angled in accordance with a centering of the reference value. A deviation between the reference value and an accelerating speed value of the aircraft is determined. Elevators or the horizontal stabilizer are controlled, prior to rotation, in accordance with the determined deviation.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: September 6, 2011
    Assignee: Airbus France
    Inventors: Gerard Mathieu, Franck Delaplace, Xavier Le Tron
  • Publication number: 20110121131
    Abstract: The present invention to a flying vehicle having a wing and a shape memory alloy transition assembly partially housed within each side of the wing. The shape memory alloy transition assembly has ends rotatable with respect to each other and separately secured to the wing side in which the end is housed. The shape memory alloy transition assembly has a first position defined as having one wing side oriented at an angle of about 80° to about 180° relative to the other wing side. When the shape memory alloy transition assembly is in the first position the vehicle spins and will fly in a substantially hovering vertical orientation. The shape memory alloy transition assembly has a second position defined as having one wing side is oriented at an angle of about 0° relative to the other wing side. When the shape memory alloy transition assembly is in the second position the vehicle will fly in a substantially horizontal orientation.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventor: James Elson
  • Patent number: 7946527
    Abstract: An aircraft with wings that may be fixed for flight and which swing and fold for storage and for maneuvering and otherwise operating the aircraft while not in flight is disclosed. An embodiment includes wings which swing backwards and through the body of the aircraft and then fold by drooping elevons which span the trailing edges of the wings along the sides of the body. Another embodiment includes wings which swing forward and control surfaces which fold upwards at the sides of the aircraft. The invention provides for a narrow width for the aircraft when not in flight using a simple mechanism.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 24, 2011
    Inventor: Alan Glen Holmes
  • Patent number: 7896294
    Abstract: A cover skin for a variable-shape aerodynamic area, such as a wing structure, tail unit structure, control surface structure or flap structure is described. A cover skin is deformable in one direction without exhibiting substantial deformation in a transverse direction. A deformable framework structure is embedded in a layer of an elastic material, such as rubber or polymer. The framework structure may be comprised of non-deformable elements joined pivotably in auxetic and non-auxetic assemblies of elements that are capable of substantially eliminating transversal contraction, when the cover skin is longitudinal stretched, and substantially eliminating transversal expansion, when the cover skin is longitudinally contracted.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: March 1, 2011
    Assignee: Airbus Deutschland GmbH
    Inventor: Kay W. Dittrich
  • Publication number: 20110036941
    Abstract: The aircraft has a fuselage, a wing integral with the fuselage in a middle section in a longitudinal direction of the fuselage, and a tail assembly integral with the fuselage. The wing has a rigid central chamber at the fuselage determined in front by a front spar, in the rear by a rear spar, and laterally by root ribs of the wing. The wing is mounted to be movable longitudinally in translation relative to the fuselage between an extreme forward position Xav and an extreme rearward position Xar so that the center of gravity of the aircraft can be displaced longitudinally to be positioned precisely at any time relative to the point of application of the resultant of the aerodynamic lift forces. The wing is mounted to be movable relative to the fuselage through the intermediary of at least two parallel beams, parallel to the longitudinal axis of the fuselage and integral with the fuselage at the rear/forward bulkhead of the fuselage located on each side of the rigid central chamber.
    Type: Application
    Filed: May 28, 2010
    Publication date: February 17, 2011
    Applicant: AIRBUS OPERATIONS (S.A.S)
    Inventors: Olivier CAZALS, Thierry DRUOT
  • Publication number: 20110036939
    Abstract: A hybrid fixed wing aircraft converts into a roadworthy vehicle in a matter of seconds therefore operating efficiently in both air and ground transportation systems. The single piece wing is mounted on a skewed pivot that is on the lower portion of the fuselage and is operated by a pushbutton operating system. The aircraft includes telescopic twin boom tail design that when extended allows good pitch stability and damping. The aircraft's wing area may be increased with additional telescopic wing tip segments. This allows an increase in aspect ratio, hence improving efficiency at high loads. This feature will also creates a reduction in induced drag at cruise speed by simply retracting the tips in flight. The vehicle has a unique synchronized control system that switches from flight to ground mode without input from the operator, thereby providing a natural interface for the operator.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 17, 2011
    Inventor: William Craig Easter
  • Patent number: 7866610
    Abstract: This invention relates generally to a collapsible, nesting wing structure with or without wing warp flight control. The invention also incorporates means to maintain wing extension during flight, methods of wing construction for nesting collapsible wings, and control surfaces for collapsible wings.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 11, 2011
    Inventor: Samuel Hall Bousfield
  • Patent number: 7841559
    Abstract: Embodiments of the present invention relate a wing arrangement for an aerial vehicle configured to adjust the vehicles aspect ratio in response to flight mission parameters. The wing arrangement may include a pair of wing assemblies capable of deploying to a first winged position defining a first aspect ratio. Each wing assembly may have a forward inboard wing pivotally connected to the fuselage and an aft inboard wing pivotally connected to the carriage. The forward inboard wing and aft inboard wing of each assembly may be connected, forming a bi-plane configuration. Additionally, the each assembly may include a set of outboard wings configured to telescope from the inboard wings to an extended winged position defining a second aspect ratio greater than the first aspect ratio.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: November 30, 2010
    Assignee: MBDA Incorporated
    Inventor: Hank O'Shea
  • Patent number: 7816635
    Abstract: A stowable wing structure incorporates a wing having a span equal to a fuselage length and movable from a stowed position longitudinally aligned with the fuselage to a deployed position perpendicular to the fuselage. A pivot offset laterally from a centerline of the fuselage and aft from a symmetry point on the centerline with a corresponding offset forward toward the leading edge from a chord centerpoint on the wing allows rotation of the wing from the stowed position to the deployed position with the rotation resulting in an aft position of the chord center point relative to the fuselage symmetry point.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: October 19, 2010
    Assignee: The Boeing Company
    Inventor: Lawrence E. Fink
  • Patent number: 7789343
    Abstract: A morphing aircraft includes a lifting body and a telescopic lifting or control surface, such as a wing, coupled to the lifting body. The lifting surface is deployable between extended and retracted positions relative to the lifting body and configured such that, when disposed in the extended position, the flight characteristics of the aircraft correspond to those of a low-speed, high-lift aircraft, and when disposed in the retracted position, the flight characteristics of the air-craft correspond to those of a high-speed, low-lift aircraft, the lifting surface is disposed entirely within the lifting body, and an outboard end surface of the lifting surface blends continuously into an outer mold line surface of the lifting body.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: September 7, 2010
    Assignee: The Boeing Company
    Inventors: Branko Sarh, David J. File
  • Publication number: 20100213309
    Abstract: A system and method for assembling and operating a solar powered aircraft, composed of one or more modular constituent wing panels. Each wing panel includes at least one hinge interface that is configured to rotationally interface with a complementary hinge interface on another wing panel. When a first and second wing panel are coupled together via the rotational interface, they can rotate with respect to each other within a predetermined angular range. The aircraft further comprises a control system that is configured to acquire aircraft operating information and atmospheric information and use the same alter the angle between the wing panels, even if there are multiple wing panels. One or more of the wing panels can include photovoltaic cells and/or solar thermal cells to convert solar radiation energy or solar heat energy into electricity, that can be used to power electric motors.
    Type: Application
    Filed: September 15, 2008
    Publication date: August 26, 2010
    Inventor: Robert Parks
  • Publication number: 20100059623
    Abstract: An aircraft displaying a fuselage, a wing attached to the fuselage in an upper part and in a middle part along the length of the fuselage, a set of airfoils situated behind the wing and propulsion engines mounted on the wing. The wing, the set of airfoils and the propulsion engines are solidly fastened to an air propulsion unit that is affixed to the fuselage by a connection system permitting the controlled modification in flight of the position of the air propulsion unit relative to the fuselage in the three directions X, Y and Z of the reference aircraft and in rotation around the three directions X, Y and Z. The control of the relative movements of the air propulsion unit and fuselage permits an improved behavior in flight of the airplane and has advantages in the fabrication and operation of the plane.
    Type: Application
    Filed: August 14, 2009
    Publication date: March 11, 2010
    Applicant: AIRUBUS OPERATIONS
    Inventors: Olivier Cazals, Thierry Druot
  • Publication number: 20090308971
    Abstract: An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 17, 2009
    Applicant: U.S.A as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Qamar A. Shams, Tianshu Liu
  • Publication number: 20090206192
    Abstract: Methods and apparatus for systems having deployable elements according to various aspects of the present invention comprise a system including a deployable surface and an adaptive actuator including a polymer foam. In one embodiment, the system comprises a vehicle including a deployable wing comprising an exterior surface. The exterior surface may be adjusted by adjusting the shape, size, position, and/or orientation of the adaptive actuator.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 20, 2009
    Inventors: Terry M. Sanderson, Jamie W. Clark
  • Patent number: 7559505
    Abstract: An apparatus includes means for biasing a first airfoil of a vehicle toward a fully deployed position, means for restraining the first airfoil in a stowed position, means for releasing the first airfoil from the stowed position, means for restraining the first airfoil in a partially deployed position, and means for releasing the first airfoil from the partially deployed position. A method includes restraining an airfoil in a stowed position, releasing the airfoil from the stowed position, and biasing the airfoil from the stowed position toward a fully deployed position. The method further includes restraining the airfoil in a partially deployed position, releasing the airfoil from the partially deployed position, and biasing the airfoil from the partially deployed position toward the fully deployed position.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: July 14, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Ronald E. Janka
  • Publication number: 20090146000
    Abstract: Deployable aerodynamic devices with reduced actuator loads, and related systems and methods are disclosed. An external flow system in accordance with a particular embodiment includes an external flow body, a deployable device carried by and movable relative to the external flow body, and a coupling connected between the external flow body and the deployable device. The system can further include an actuator device operatively coupled between the external flow body and the deployable device, with the actuator device positioned to move the deployable device along a motion path between a stowed position and the deployed position. The motion path can have a first portion over which the load delivered by the actuator device increases as the deployed device moves toward the deployed position, and a second portion over which the load delivered by the actuator device decreases as the deployed device moves toward the deployed position.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Applicant: The Boeing Company
    Inventor: Glenn S. Bushnell
  • Patent number: 7510143
    Abstract: An aircraft is provided with a wing assembly mounted in a slipstream of a source of propulsion of the aircraft. The aircraft includes a body having a longitudinal axis, a wing assembly carried by the body and including a moveable portion moveable relative to the body and a wing carried by the moveable portion. A first actuator is coupled to the moveable portion to move it relative to the body in a direction generally parallel to the axis of the body. A second actuator is coupled to the wing to move the wing relative to the moveable portion and between first and second positions. The second actuator at least selectively permits uninhibited pivoted movement of the wing relative to the body in response to aerodynamic forces acting on the wing so that the wing may pivot to a position wherein the forces acting on the wing are balanced.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: March 31, 2009
    Inventors: William D. Bertelsen, William R. Bertelsen
  • Publication number: 20090014596
    Abstract: A long endurance powered aircraft includes a central spar, a propeller coupled to the central spar, and a wing coupled to the central spar. The wing includes a first spar and an opposing second spar. Leading ends of the first and second spars are coupled to the central spar and trailing ends of the first and second spars selectively diverge from the central spar to define a morphing wing configured change shape to optimize aircraft flight parameters in response to changes in at least one flight condition.
    Type: Application
    Filed: March 28, 2008
    Publication date: January 15, 2009
    Inventors: Jerome Pearson, Gerald M. Gregorek, Harry B. Wykes
  • Patent number: 7441724
    Abstract: An aircraft includes a fuselage, and first and second freewings. Each of the first and second freewings is separately mounted to the fuselage and independently freely pivotable about respective pivot axes. The aircraft includes an angular rate sensor configured to measure a roll rate of the fuselage and to output a first roll rate signal. The aircraft includes a controller in communication with the angular rate sensor and configured to receive a second roll rate signal from the pilot and to compare the first and second roll rate signals to generate first and second control surface control signals. The aircraft includes at least one control actuator in communication with the controller and configured to actuate a first control surface of the first freewing and a second control surface of the second freewing in response to the first and second control surface control signals, respectively, to control the roll rate of the aircraft.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: October 28, 2008
    Assignee: Aurora Flight Sciences Corporation
    Inventor: Robert Parks
  • Patent number: 7338010
    Abstract: An air-launched aircraft includes deployable wings, elevons, and vertical fins that deploy from a fuselage during flight. The aircraft may include a control system for operating the elevons, a communication system, and batteries for powering the systems. In addition, the aircraft may include a payload module that mates with an interface in the fuselage. The payload module may include any of a variety of payloads, including cameras, sensors, and/or radar emitters. The aircraft may be powered or unpowered, and may be very small, for example, less than on the order of 10 kg (22 pounds). The aircraft may be employed at a low cost for any of a wide variety of functions, such as surveillance, or as a decoy. The deployable surfaces of the aircraft may be configured to deploy in a pre-determined order, allowing the aircraft automatically to enter controlled flight after being launched in a tumbling mode.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: March 4, 2008
    Assignee: Raytheon Company
    Inventors: David A. Corder, Jeffrey H. Koessler, George R. Webb
  • Patent number: 7249734
    Abstract: An aerodynamic vehicle is comprised of a pair of forward wing sections and a pair of rearward wing sections that are connected together by four pivot assemblies as a four-bar linkage. The four-bar linkage surrounds an opening provided between the forward wing sections and rearward wing sections. Movement of the wing sections varies the cumulative area of the wing sections, and adjusts the shape of the opening between the forward wing sections and rearward wing sections. Movement of the wing sections improves the aerodynamic performance of the vehicle and allows the wing sections to assume optimum configurations for operation of the vehicle at high speed and low speed.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: July 31, 2007
    Assignee: The Boeing Company
    Inventor: Rudolph N. Yurkovich
  • Patent number: 7185847
    Abstract: A winged vehicle includes an elongated fuselage, and a wing mechanism affixed to the fuselage. The wing mechanism has a wing-support-body track affixed to and extending lengthwise along the fuselage, a translating wing-support body engaged to and translatable along the wing-support-body track, and exactly two deployable cantilevered wings. Each deployable cantilevered wing has a wing pivot mounted to the translating wing-support body so that the deployable cantilevered wing is pivotable about the translating wing-support body. The two deployable cantilevered wings are each pivotable between a stowed position and a deployed position. An actuation mechanism is operable to controllably move the translating wing-support body along the wing-support-body track and to controllably move the two deployable cantilevered wings between the stowed position and the deployed position.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: March 6, 2007
    Assignee: Raytheon Company
    Inventors: Mark L. Bouchard, Purna Gogineni, Rudolph A. Eisentraut, Juan A. Perez, Kevin Greenwood
  • Patent number: 7185846
    Abstract: Asymmetrical Control Surface System for Tube-Launched Air Vehicles places one control surface, such as a wing or a horizontal tail, above horizontal midplane axis of an air vehicle, such as a tube-launched missile, and the opposing control surface below the midplane axis. Such asymmetrical arrangement of the control surfaces increases the lift and maneuverability of the air vehicle during flight. For stowage inside the tube prior to launch, each control surface slides into its corresponding slot in the body of the vehicle, making the entire control system compact.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: March 6, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David A. Bittle, Gary T. Jimmerson, Julian L. Cothran
  • Patent number: 7083140
    Abstract: A method and structure for a full-bore artillery projectile fin deployment device comprising a projectile stabilization fin comprising an aperture and a movable pawl; a rod comprising a head portion and a shaft portion terminating with a beveled tip configured for engaging the pawl; a tailboom configured for housing the fin, wherein the tailboom comprises a hollow bore configured for receiving the rod; a pin slotted through the aperture and attached to the tailboom; and a bias member adjacent to the head portion of the rod. The rod is slotted to simultaneously engage a plurality of fins. The tailboom comprises a forward end and a rearward end and a slot configured for permitting the fin to articulate out of the tailboom, and wherein the tailboom connects to a projectile. Additionally, the power source for the device is the naturally occurring launch accelerations.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: August 1, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Robert B. Dooley
  • Patent number: 7051974
    Abstract: A pivoting aircraft wing and associated system and method are provided. The pivoting aircraft wing includes a wing member, a carry-through structure, and a spar box assembly pivotally connected to the carry-through structure. The spar box assembly extends longitudinally within the wing member. The spar box assembly comprises a spar box and a bearing support structure attached to the spar box. The aircraft wing further includes a plurality of bearings disposed within a plurality of bearing races defined by the bearing support structure and carry-through structure. The plurality of bearing races advantageously define an arcuate path of rotation such that the wing member is capable of rotating about a virtual axis of rotation.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: May 30, 2006
    Assignee: The Boeing Company
    Inventor: Victor Ken Stuhr
  • Patent number: 7028948
    Abstract: A morphing airfoil system includes a first airfoil having a first root, first span, first chord, and first tip. The first airfoil is attachable to an aircraft near the first root. A second airfoil has a second root, second span, second chord, and second tip. The second airfoil is attachable to the aircraft near the first root. At least one moveable connection is attached to at least one of the first airfoil and the second airfoil near their respective roots. The moveable connection is arranged to permit movement of at least one of the first airfoil and the second airfoil from a first position with their tips near each other to a second position with their tips spaced apart from each other. An endplate may connect the two airfoils near their respective tips.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: April 18, 2006
    Assignee: The Boeing Company
    Inventor: Dale M. Pitt
  • Patent number: 6986481
    Abstract: An extendable wing system for a fluid-born body has a forward wing and an aft wing pivotably coupled together at a location outward of their wing roots. A linkage mechanism mounted on the body provides both pivoting of the wing roots about a pivot point and translation of the wing roots and their pivot points to extend the joined wings from a stowed position to a deployed position. Translation of the forward wing root pivot point allows the stowed wing system to occupy additional space toward the nose of the body, thereby allowing use of wings having a longer wingspan and greater aspect ratio. The linkage mechanism can also be used to incorporate flight control, such as roll and pitch control, directly into the wing system. In another embodiment, the wings can incorporate actuator elements on or within the wings to effect flight control by deformation of the wing structure.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 17, 2006
    Assignee: Kazak Composites, Incorporated
    Inventors: Jerome P. Fanucci, Michael J. King, David P. Maass, Pavel Bystricky
  • Patent number: 6923404
    Abstract: An unmanned air vehicle (“UAV”) apparatus is configured to have a body and a body-conformal wing. The body-conformal wing is configured to variably sweep from a closed position to a fully deployed position. In the closed position, the body-conformal wing span is aligned with the body axis and in the fully deployed position the body-conformal wing span is perpendicular to the axial direction of the body. Delivery of the UAV comprises the steps of: positioning the span of a body conformal wing in alignment with the axis of the body of the UAV; initiating the flight of the UAV; and adjusting the sweep angle of the body-conformal wing as a function of the current speed, altitude, or attack angle of the UAV, with the adjustment starting at a 0 degree position and varying between a closed position and a fully deployed position. The UAV also has a control mechanism configured to variably adjust the sweep of the body-conformal wing to achieve a high lift over drag ratio through out the flight path of the UAV.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: August 2, 2005
    Assignee: ZONA Technology, Inc.
    Inventors: Danny D. Liu, Ping-Chih Chen, Darius Sarhaddi
  • Patent number: 6899298
    Abstract: An STOL aircraft structure has a variable-attitude, variable-area wing in addition to a traditional airfoil. The variable wing has an angle of attack that varies from 0° to a predetermined angle far in excess of the stall angle. The variable wing area can be adjusted from 0% to 100% by a roller furling arrangement. The aircraft structure operates during takeoff by deploying the variable wing with an attitude exceeding the stall angle, applying thrust to the aircraft so that the variable wing generates reaction lift and the aircraft attains a predetermined altitude, and stowing the variable wing so that the traditional airfoil is the primary lifting surface. Those steps are reversed for landing.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 31, 2005
    Inventor: John R. Lee
  • Patent number: 6834835
    Abstract: The present invention is a wing having telescoping segments deployed via an actuator composed of a heat activated material. The actuator is a coiled tube of shape memory alloy (SMA) with large force-displacement characteristics activated thermally by either a fluid or an electrical charge. Actuator motion extends an inner wing segment from an outer wing segment when the coiled tube is compressed. Compression is achieved by heating the coiled tube so as to cause a phase transformation from Martensite to Austenite. The inner wing segment may be retracted by a mechanical device or second SMA coil when the coiled tube is cooled and returned to its Martensite phase.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: December 28, 2004
    Assignee: QorTek, Inc.
    Inventors: Gareth Knowles, Ross W. Bird
  • Publication number: 20040217230
    Abstract: An extendable wing system for a fluid-born body has a forward wing and an aft wing pivotably coupled together at a location outward of their wing roots. A linkage mechanism mounted on the body provides both pivoting of the wing roots about a pivot point and translation of the wing roots and their pivot points to extend the joined wings from a stowed position to a deployed position. Translation of the forward wing root pivot point allows the stowed wing system to occupy additional space toward the nose of the body, thereby allowing use of wings having a longer wingspan and greater aspect ratio. The linkage mechanism can also be used to incorporate flight control, such as roll and pitch control, directly into the wing system. In another embodiment, the wings can incorporate actuator elements on or within the wings to effect flight control by deformation of the wing structure.
    Type: Application
    Filed: October 31, 2003
    Publication date: November 4, 2004
    Inventors: Jerome P. Fanucci, Michael J. King, David P. Maass, Pavel Bystricky
  • Patent number: 6745979
    Abstract: A spacecraft such as a fly back booster or a reusable launch vehicle, or an aerospace plane has a fuselage and a set of scissors wings consisting of two main wings. Both of the main wings are rotatably mounted on the fuselage and can be yawed at opposite directions. If the spacecraft is launched vertically, both of its main wings can be yawed to be generally parallel with its fuselage so that it can connect with other vehicle or vehicles to form different launch configurations. When the spacecraft or aerospace plane is flying in the air, landing, or taking off horizontally, it can yaw both of its main wings in opposite directions to maximize its lift-to-drag ratio by optimizing the yaw angle of the main wings according to flying conditions. It can also produce desired aerodynamic characteristics such as forming a high drag configuration by adjusting the yaw angle of its main wings.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: June 8, 2004
    Inventor: Zhuo Chen
  • Patent number: 6742741
    Abstract: An unmanned air vehicle includes a singular rear landing gear wheel on the aft end of the fuselage. Port and starboard wings with rear facing propellers are retractable to the aft of the fuselage. Upon retraction, the propellers may freewheel and a reversible motor-generator is provided to convert the freewheeling propeller energy into electric power. Photovoltaic cells also provide electric power to the unmanned air vehicle. Port and starboard nose fairings are control surfaces for the vehicle. The port and starboard nose fairings also include landing gear wheels. A method of flying an unmanned air vehicle includes retracting port and starboard wings to achieve a ballistic dive.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: June 1, 2004
    Assignee: The Boeing Company
    Inventor: Louis D. Rivoli
  • Patent number: 6705568
    Abstract: An STOL aircraft structure has a variable-attitude, variable-area wing in addition to a traditional airfoil. The variable wing has an angle of attack that varies from 0° to a predetermined angle far in excess of the stall angle. The variable wing area can be adjusted from 0% to 100% by a roller furling arrangement. The aircraft structure operates during takeoff by deploying the variable wing with an attitude exceeding the stall angle, applying thrust to the aircraft so that the variable wing generates reaction lift and the aircraft attains a predetermined altitude, and stowing the variable wing so that the traditional airfoil is the primary lifting surface. Those steps are reversed for landing.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: March 16, 2004
    Inventor: John R. Lee
  • Patent number: 6628995
    Abstract: Aircraft flight data collection is enhanced by changing the data sampling rate as a function of an operational condition of the aircraft, such as its flight phase. An algorithm is used to determine the flight phase. Then, the data is collected at a first sampling rate when the flight phase is one of a first set of flight phases and collected at a second sampling rate when the flight phase is one of a second set of flight phases. The second sampling rate is greater than the first sampling rate to maximize the data storage capacity of the system. Generally, the higher sampling rate is used with transient flight phases such as takeoff and thrust reverse.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: September 30, 2003
    Assignee: General Electric Company
    Inventors: Shannon Lee Korson, Bruce Gunter Schings, Packey Pasquale Velleca, Mary Beth Golding
  • Patent number: 6601795
    Abstract: An air vehicle, such as an aircraft, an unmanned air vehicle, a missile, or an aero bomb that has a fuselage and two main wings each of which has a left side wing and a right side wing. Both of the main wings are rotatably mounted on the fuselage via one or two pivots or hollow turrets so that both of them can be yawed during flight to optimize flying efficiency under various flying conditions.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: August 5, 2003
    Inventor: Zhuo Chen
  • Patent number: 6547181
    Abstract: A variable sweep winglet with a negative dihedral angle is provided for a ground effect vehicle. The winglet is positionable at a sweep angle to control the winglet tip clearance from ground. Variable winglet tip clearance reduces the risk of damage or instability due to collision with the ground or water, thereby permitting more efficient flight at lower altitude with an equivalent safety. The winglet is generally positioned by an actuator. The actuator is controlled by a flight control system, or by other manual or automatic systems. A sensor may also be included for determining whether an object lies in the path of the winglet. The sensor communicates with the flight control system in order to vary the sweep of the winglet to increase clearance from the ground or water, thus avoiding impact with the object.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: April 15, 2003
    Assignee: The Boeing Company
    Inventors: Zachary C. Hoisington, Blaine K. Rawdon
  • Patent number: 6398157
    Abstract: An aircraft capable of vertical take off and normal cruise flight has a fuselage and a pair of wings, the wings being movable relative to the fuselage from a rearwardly swept position to which the wings are moved for vertical take off, to a spread position to which the wings are moved for normal cruise flight.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: June 4, 2002
    Assignee: GKN Westland Helicopter Limited
    Inventor: David Barry Ingram
  • Patent number: 6345790
    Abstract: A subsonic aircraft having backswept lifting wings is equipped with individually rotatable winglets at the wing tips thereof, in order to reduce drag during cruise flight, to minimize the dangers posed by wing tip vortices to following aircraft during take-off and landing, and to minimize the total wingspan during ground operations, with respective different positions of the winglets. A streamline-shaped rotation body made up of at least two individually rotatably supported rotation segments is mounted on the wing tip of each lifting wing. A respective winglet is mounted on each respective rotation segment. Each rotation segment with its associated winglet is individually rotatable about a rotation axis of the rotation body extending substantially parallel to the aircraft lengthwise axis. Thereby, each winglet is individually pivotable to any selected pivot angle relative to a horizontal plane extending through the rotation axis.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: February 12, 2002
    Assignee: DaimlerChrysler Aerospace Airbus GmbH
    Inventor: Wolfgang Brix
  • Patent number: 6202958
    Abstract: To maintain control accuracy for the pivotable rudder blades (14), which lie in a combustion chamber, of a guided projectile (12) which can be fired by means of propellent charge, there is provide a mounting arrangement in which the trunnions (20) of the rudder blade holders (16) of the diametrally mutually opposite rudder blades (14) are torsionally stiffly rigidly connected through an associated coupling element (32) which is limitedly resilient in the radial direction of the guided projectile (12).
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: March 20, 2001
    Assignee: Diehl Stiftung & Co.
    Inventors: Josef Dommer, Werner Schroppel, Martin Staudenmeir
  • Patent number: 6116539
    Abstract: The instant invention generally relates to a forwardly swept wing 10 for an aircraft comprised of a pair of opposed single piece machined aluminum alloy wing boxes 20 and 40. Specifically, the invention provides for a forward swept wing construction utilizing known in the art computer numerical control machining techniques to produce an aluminum alloy wing 10 having an integral leading edge 24 thereby greatly reducing assembly time. A plurality of integral stiffeners 80 oriented at a forwardly swept angle of approximately 12 to 13 degrees between forward 62 and rear 64 spars provides for a wing 10 that minimizes the effects of aeroelastic divergence.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: September 12, 2000
    Assignee: Williams International Co. L.L.C.
    Inventors: Samuel B. Williams, John F. Jones
  • Patent number: 6089503
    Abstract: In accordance with the present invention, there is provided an aerodynamic control system which is attachable to an aircraft body and is operable between enhanced control and radar evasive modes. The aerodynamic control system is provided with an aerodynamic support structure which extends from the aircraft body. The support structure is rotatably attached to the aircraft body about a support structure rotational axis. The support structure has an outboard support and an inboard support which is disposed adjacent the aircraft body. The aerodynamic control system is further provided with an elongate torque member which extends from the aircraft body. The torque member has a torque rotational axis which is co-linear with the support structure rotational axis. The torque member further has an outboard end which is fixedly attached to the outboard support of the support structure. In the normal fight mode the inboard and outboard supports cooperatively rotate in response to rotation of the torque member.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: July 18, 2000
    Inventor: John Alan Volk
  • Patent number: 6073880
    Abstract: Pairs of aerofins used for stabilization and control of missile flight are deployed through shared longitudinal slots provided in the missile body. Before launch, the pairs of aerofins, each pair comprised of a canard and a deflector, are retained in a folded position by a releasable latch mechanism within the missile body. The deflectors are mounted in a laterally displaced position from the longitudinal slots and are constrained from sliding into alignment with the slots by the presence of the folded canards. When the canards are released by the latch mechanism and permitted to extend outward to their deployed positions, the deflectors are able to laterally shift, effectively displacing the canards in the alignment position and subsequently deploying. The latch mechanism is designed to simultaneously release all the canards following missile launch, with biasing torsional springs operating to urge the canards outward through the associated slots to the extended position upon release.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: June 13, 2000
    Assignee: Versatron, Inc.
    Inventors: Allan A. Voigt, John M. Speicher
  • Patent number: 5992796
    Abstract: A secondary wing system for use on an aircraft augments the lift, stability, and control of the aircraft at subsonic speeds. The secondary wing system includes a mechanism that allows the canard to be retracted within the contour of the aircraft fuselage from an operational position to a stowed position. The top surface of the canard is exposed to air flow in the stowed position, and is contoured to integrate aerodynamically and smoothly within the contour of the fuselage when the canard is retracted for high speed flight. The bottom portion of the canard is substantially flat for rotation into a storage recess within the fuselage. The single canard rotates about a vertical axis at its spanwise midpoint. The canard can be positioned between a range of sweep angles during flight and a stowed position in which its span is substantially parallel to the aircraft fuselage. The canard can be deployed and retracted during flight.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: November 30, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Brian E. Smith