Aircraft Control Patents (Class 244/75.1)
  • Publication number: 20120056040
    Abstract: An electric and hybrid Vertical-Take Off and Landing (“VTOL”) aircraft is disclosed comprising a plurality of small Electric Ducted Fans (“EDFs”) of various sizes and orientations. The thrust of each fixed EDF is individually controlled by modulation of motor power by one or more onboard microcomputers connected to a plurality of onboard laser distance measuring sensors, at least three onboard three-axis accelerometers and at least one GPS thereby allowing extremely precise and safe VTOL operation. The aircraft may be employed to allow robotic and passenger vehicles to transition extremely quickly between normal linear flight and VTOL and tb operate in extreme and gusty conditions.
    Type: Application
    Filed: March 22, 2010
    Publication date: March 8, 2012
    Applicant: GEOLA TECHNOLOGIES, LTD.
    Inventors: David Brotherton-Ratcliffe, Jerzy Lelusz
  • Patent number: 8126628
    Abstract: A method and system adjusts blade tip clearance between rotating aircraft gas turbine engine blade tips and a surrounding shroud in anticipation of and before an engine command that changes an engine rotational speed. The method may include determining when to begin adjusting the tip clearance by expanding or contracting the shroud before the engine command and may be based on monitored aircraft and/or aircraft crew data indicative of the engine. The aircraft and/or aircraft crew data may include communications between aircraft crew and air traffic control authorities or air traffic control surrogates. Determining when to begin adjusting the tip clearance may include using learning algorithms which may use the aircraft gas turbine engine's operating experience and/or operating experience of other jet engines on an aircraft containing the aircraft gas turbine engine and/or on other aircraft.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: February 28, 2012
    Assignee: General Electric Company
    Inventors: John Erik Hershey, Brock Estel Osborn, Donald Lee Gardner, Rafael Jose Ruiz, William Lee Herron
  • Patent number: 8121745
    Abstract: Methods and apparatuses for displaying and receiving tactical and strategic flight guidance information are disclosed. A method in accordance with one aspect of the invention includes displaying at least one first indicator to an operator of the aircraft, with a first indicator corresponding to a first instruction input by the operator for directing a first aircraft behavior and implemented upon receiving an activation instruction from the operator. At least one second indicator corresponding to a second instruction for directing a second aircraft behavior at least proximately the same as the first aircraft behavior is displayed, with the at least one second instruction to be automatically implemented at a future time. The at least one second indicator is at least approximately the same as the at least one first indicator. Indicators can be hierarchically organized to simplify presentation and reduce pilot training time.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 21, 2012
    Assignee: The Boeing Company
    Inventors: Daniel J. Boorman, John C. Griffin, III, Peter D. Gunn, Randall J. Mumaw
  • Patent number: 8115149
    Abstract: A Hybrid Projectile is provided for delivering an explosive payload to a target wherein the Hybrid Projectile may be steered in flight using relatively inexpensive means. The Hybrid Projectile is exteriorly configured in the same physical exterior configuration of conventional ammunition of various standard types so it can be launched in conventional manner from the same weapon systems. However, internal features allow the Hybrid Projectile to be transformed in flight from a command signal to deploy wings and fins, and in some projectiles to telescope open to deploy such wings and fins. An inexpensive televisual means is activated in the fore region of the round which through RF uplink command can be used to select a path, while motors on the wings can then be used to more precisely glide the projectile to a target, or otherwise to abort the target run.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: February 14, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leon R. Manole, Ernest L. Logsdon, Jr., Mohan J. Palathingal, Anthony J. Sebasto
  • Patent number: 8103393
    Abstract: A computer-implemented function monitors and displays exhaust gas temperatures (EGT) in a plurality of cylinders in an engine. The invention provides an easy way to read exhaust gas temperature on a specific cylinder, and to provide a means for leaning the engine while in a climb. Efficient leaning in a climb reduces fuel consumption and reduces the chance of harmful conditions that can lead to engine failure.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 24, 2012
    Assignee: Vertical Power, Inc.
    Inventors: Marc Ausman, Kevin DeVries
  • Patent number: 8103398
    Abstract: Unmanned aerial vehicle control systems are disclosed herein. In one embodiment, a method of controlling an unmanned aerial vehicle includes transmitting an indication of a take-off or landing location to the unmanned aerial vehicle. The unmanned aerial vehicle is launched. A control mode of the unmanned aerial vehicle is switched from an autonomous mode to a manual mode. The control mode of the unmanned aerial vehicle is switched from the manual mode to another autonomous mode, and the unmanned aerial vehicle is landed at the landing location.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 24, 2012
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8095252
    Abstract: A piloting method and device for avoiding pilot induced oscillations filters a piloting order with a non-linear filtering function that is controlled by speed comparison information.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: January 10, 2012
    Assignee: Airbus Operations SAS
    Inventor: Pierre Fabre
  • Patent number: 8089033
    Abstract: A method and apparatus for attacking a plurality of dispersed targets are herein presented. In particular, the method and apparatus herein presented allow the user to upload target data onto a pod mounted on a host aircraft. Upon reaching the pre loaded target location, the pod releases a plurality of individually targeted Micro Air Vehicles (MAVs), thereby allowing the user to attack a plurality of dispersed targets from a single aircraft standing off at a significant distance from the target area.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 3, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul A. Zank, Paul D. Zemany
  • Patent number: 8082074
    Abstract: An unmanned aerial vehicle variable autonomy control system is disclosed herein. In one embodiment, the system includes a control mode interface that provides a plurality of selectable control modes for an unmanned aerial vehicle, wherein one of the plurality of selectable control modes comprises a target tracking mode. Also included is a target editor interface provided in response to a selection of the target tracking mode, wherein the target editor interface facilitates receipt of an input indicative of a ground based moving target. The system also includes a communications component that transmits a command to the unmanned aerial vehicle, wherein the command is based at least in part on the input indicative of a target.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 20, 2011
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8068949
    Abstract: An unmanned aerial vehicle variable autonomy control system is disclosed. In one embodiment, the system includes a control mode interface that provides a plurality of selectable control modes for an unmanned aerial vehicle, wherein one of the plurality of selectable control modes comprises an autonomous landing mode. Also included is a route editing interface that, following a selection of the autonomous landing mode, facilitates a receipt of an input indicative of a landing location. The system also includes a communications component that transmits a command to the unmanned aerial vehicle, wherein the command is based at least in part on the input indicative of the landing location.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 29, 2011
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8068950
    Abstract: Unmanned aerial vehicle take-off and landing systems are disclosed herein. In one embodiment, a method of landing an unmanned aerial vehicle includes programming a landing location for the unmanned aerial vehicle utilizing a user input device. The unmanned aerial vehicle is launched. Communications between the unmanned aerial vehicle and the user input device are interrupted, and the unmanned aerial vehicle is landed at the landing location based on the programmed landing location and not based on any real-time communication between the unmanned aerial vehicle and the user input device.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 29, 2011
    Assignee: L-3 Unmanned Systems, Inc.
    Inventors: David S. Duggan, David A. Felio, Billy B. Pate, Vince R. Longhi, Jerry L. Petersen, Mark J. Bergee
  • Patent number: 8068943
    Abstract: A flight control system is provided that includes a reference system and flight control actuators. The reference system includes one or more sets of gyroscopes and accelerometers. At least one set of the gyroscopes and accelerometers are configured to provide a first output of a first set inertial signals for normal mode flight control and second output of a second different set of inertial signals for backup mode flight control. The flight control actuators are configured to be controlled by one of the first set of inertial signals and the second set of inertial signals.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Mark Manfred, Tom Ryno, Mark E. Wright
  • Patent number: 8065044
    Abstract: A vehicle guidance system comprising: a measurement system; a processor arranged to receive information from the measurement system and convert said information into at least one time-to-contact based parameter; and a control system arranged to receive the at least one time-to-contact based parameter from the processor and use the at least one time-to-contact based parameter to either automatically guide the vehicle or to provide vehicle guidance information to a pilot.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: November 22, 2011
    Assignee: The University of Liverpool
    Inventors: Michael Jump, Gareth D. Padfield, David N. Lee
  • Patent number: 8055394
    Abstract: A method for estimating engine thrust values of an aircraft is disclosed, the method comprising calculating estimated thrust value of an engine based on an equation of longitudinal motion, aircraft data measured during flight and calibrated drag/lift models, and a method for determining the thrust of an aircraft engine, based on information available from tracking the aircraft air-speed, acceleration, and position, the method comprising calculating the thrust, using the following equation: Thrust=mg{dot over (H)}/V+m{dot over (V)}+Drag.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: November 8, 2011
    Assignee: Elbit Systems Ltd.
    Inventor: Aviv Tzidon
  • Patent number: 8049148
    Abstract: Embodiments of a missile, an airframe and a structure comprising piezoelectric fibers and a method for active structural response control are generally described herein. In some embodiments, a housing structure includes a composite material containing a plurality of piezoelectric fibers adapted to generate an electrical signal in response to a deformation in the structure and to deform the structure to provide low frequency stiffness and strength performance while attenuating high frequency vibrations.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: November 1, 2011
    Assignee: Raytheon Company
    Inventors: Andrew B. Facciano, Robert T. Moore, Gregg J. Hlavacek, Craig D. Seasly
  • Patent number: 8033500
    Abstract: An actuator load path monitoring system for an aircraft having an aircraft structure, a control surface, and, an actuator connected between the aircraft structure and the control surface to support and position the control surface as desired relative to the aircraft structure. The actuator is of a type including a) an upper actuator assembly securely connected to the aircraft structure, including a motor assembly and gear assembly; b) a ball screw assembly operatively connected to the gear assembly; c) a tie-rod assembly positioned within the ball screw assembly; and, d) a lower actuator assembly securely connected to the control surface, wherein actuation of the ball screw provides selected positioning of the control surface. The actuator load path monitoring system includes an upper load sensing assembly positioned in an upper load path between the upper actuator assembly and the aircraft structure.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: October 11, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Abbas M. Charafeddine, Vincent Delacotte
  • Patent number: 8024078
    Abstract: A system on an aircraft used during taxiing or air/ground and ground/air transitions. The system groups together a set of devices for mapping the airport zone presenting the crew with a set of elements catalogued in a database and/or updated as a function of information received dynamically. The system group has control or monitoring of compliance with regulations and other mobile craft, consolidating the airport topological information, the ground control instructions and the applicable operational rules. The system groups have routing, that is preparation of the taxiing phase during an arrival or preparation for takeoff, by depicting the interactions with the ground control for receiving the taxiing instructions, and from the aircraft to the ground control to inform the same of the aircraft capabilities. The system groups have guidance in the form of instructions presented to the crew, and of automatic speed management capabilities, for managing emergency situations.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: September 20, 2011
    Assignee: Thales
    Inventors: François Coulmeau, Bernard Dubourg, Xavier Louis, Nicolas Marty
  • Patent number: 8016243
    Abstract: A method is disclosed for controlling an aircraft when the hydraulic system of the aircraft has been compromised. The method may include resealing at least one gain vector of a digital fly-by-wire, lower-order, full-state feedback control in at least one axis. The gain(s) may then used by a digital control to modulate engine thrust. In this manner, engine thrust modulation may be used for stabilization and control of control-configured aircraft without requiring a substantial change in piloting technique.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: September 13, 2011
    Assignee: The Boeing Company
    Inventor: Henry L. Beaufrere
  • Publication number: 20110210200
    Abstract: Control surface assemblies have a torque tube base. In one embodiment, a method includes moving an aerospace vehicle through a medium; and moving at least a portion of a control surface assembly to generate a force for controlling the vehicle.
    Type: Application
    Filed: January 31, 2011
    Publication date: September 1, 2011
    Inventors: Jeffery D. Russom, Lawrence R. White, James Greenwood
  • Patent number: 7997528
    Abstract: Runway length requirement for take-off and landing of an aircraft is reduced by taking advantage of dynamic lift overshoot, and in some cases, dynamic stall. In take-off and landing, the angle of attack is rapidly increased so that the lift coefficient exceeds the maximum predicted by the steady flow lift curve. By increasing the angle of attack at an appropriate rate, the increased lift coefficient can be maintained, without loss of control, until the aircraft touches down in the case of a landing, or until the aircraft can begin a normal climb, in the case of take-off. A low aspect ratio lifting body is preferred because of its more gradual stall behavior, and the potential to use dynamic stall for further deceleration before touchdown. Vortex fences can be oscillated to delay the onset of stall, and, in cruise, to energize the boundary-layer and reduce drag and/or control roll and/or yaw.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: August 16, 2011
    Assignee: Aereon Corporation
    Inventor: James D. Lang
  • Patent number: 7988101
    Abstract: A flow control system and method especially well adapted for use on a Coanda surface. In one embodiment a plurality of plasma actuators are disposed over a Coanda surface of a wing of an aircraft. The actuators are selectively energized to either delay the onset of boundary layer flow separation from the Coanda surface, or to promote flow separation. One embodiment discloses using dual mode plasma actuators on a Coanda surface. The system and method is applicable to a wide variety of aerodynamic surfaces where control over the separation of a boundary layer flow over a trailing edge surface is desired.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: August 2, 2011
    Assignee: The Boeing Company
    Inventors: Bradley Alan Osborne, Christopher Daniel Wilson
  • Publication number: 20110174920
    Abstract: Flight control systems have plural control subsystems with redundancies organized so as to provide continued but degraded control power over critical aircraft flight operating parameters even if any one complete control subsystem catastrophically fails. One example described in detail for a VTOL craft includes four groups of controls, each group comprising inputs relating to six degrees of freedom of the vehicle, at least one control computer and a plurality of actuators; each group utilizing 25% of required flight control power for the vehicle.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 21, 2011
    Applicant: URBAN AERONAUTICS LTD.
    Inventor: Raphael YOELI
  • Patent number: 7967243
    Abstract: The invention relates to a configuration of engines (3) for aircraft located in the rear part of the fuselage (2) of said aircraft, the engines (3) being attached in a fixed manner by pylons (5) to the structure of the aircraft, said structure comprising a torsion box (14) which traverses the fuselage (2) and is used to attach the pylons (5), the fuselage (2) comprising an opening (4) allowing the passage of the suspension pylons (5) for the engines (3), said configuration further comprising a pivoting area (8), an actuator (7) and a fitting (6) through which the actuator (7) is attached to the suspension pylons (5) and to the torsion box (14) of the aircraft, such that the assembly formed by the actuator (7) and the fitting (6) allow balancing the pylon (5) and engine (3) assembly of the aircraft through the pivoting area (8), thus achieving controllable and optimal thrust vectoring of the aircraft for each flight phase.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: June 28, 2011
    Assignee: Airbus Espana, S.L.
    Inventors: Jorge Pablo Verde Preckler, José Miguel Vizarro Toribio, Raúl Carlos Llamas Sandin, Stephane Viala
  • Patent number: 7969110
    Abstract: The invention relates to an actuator having an (auto)synchronous rotary electric motor and a reversible speed-reducing gearbox coupled to the motor to be driven in rotation thereby An outlet shaft is coupled to the speed-reducing gearbox to be driven in rotation thereby A first angular position sensor and a control circuit are connected to the motor. The circuit delivers a motor power supply signal that varies as a function of a position setpoint signal applied to the control circuit and as a function of signals delivered by the angular position sensor. The gearbox has a plurality of speed-reducing each having a pair of gears mounted to rotate about two parallel axes of rotation.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: June 28, 2011
    Assignee: Eurocopter
    Inventors: Philippe Vincent, Sébastien Pellegrino, Bernard Gemmati
  • Patent number: 7949440
    Abstract: The present invention provides an alternative to the auto-throttle integrated in an aircraft autopilot by restricting the conditions in which the system operates. The proposed system removes the auto-throttle function from the autopilot system and gives it directly to the Full Authority Digital Engine Control (FADEC). A cruise control mode is available to the pilot only under stable flight conditions.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: May 24, 2011
    Assignees: Embraer-Empresa Brasileira de Aeronautica S.A., Pratt & Whitney Canada Corp.
    Inventors: Domingos Candido Wong Ramos, Alex Sander Ferreira Da Silva, Celso Valerio Bastos Casagrande, Salvatore Calandra, Keith Morgan
  • Patent number: 7945353
    Abstract: An adaptive control system is provided that scales both gain and commands to avoid input saturation. The input saturation occurs when a commanded input uc exceeds an achievable command limit of umax. To avoid input saturation, the commanded input uc is modified according to a factor ?.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: May 17, 2011
    Assignee: The Boeing Company
    Inventors: Eugene Lavretsky, Naira Hovakimyan
  • Patent number: 7930074
    Abstract: A flight control system includes a collective position command module for a lift axis (collective pitch) which, in combination with an active collective system, provides a force feedback such that a pilot may seamlessly command vertical speed, flight path angle or directly change collective blade pitch. The collective position command module utilizes displacement of the collective controller to command direct collective blade pitch change, while a constant force application to the collective controller within a “level flight” detent commands vertical velocity or flight path angle. The “level flight” detent provides a tactile cue for collective position to reference the aircraft level flight attitude without the pilot having to refer to the instruments and without excessive collective controller movement.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: April 19, 2011
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Igor Cherepinsky, Michael R. Skaggs
  • Patent number: 7920943
    Abstract: A precision approach guidance system that provides flying craft guidance information during a precision approach to a landing site and methods associated therewith are provided. In one embodiment, the system includes: an inertial navigation system, an onboard ranging sensor, a terrain database storing previously identified position-referenced terrain information associated with the landing site, and a position determining process. The position determining process repetitively determines a corrected position of the flying craft during the precision approach based at least in part on attitude and velocity information from an inertial navigation system, current position-referenced terrain information based on measurements from an onboard ranging sensor, and previously identified position-referenced terrain information from the terrain database.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: April 5, 2011
    Assignee: Ohio University
    Inventors: Jacob L. Campbell, Frank van Graas, Maarten Uilt de Haag
  • Patent number: 7906749
    Abstract: A mechanical deployment and actuation system may comprise a rotation module, a pinion module, a rack module, and a bevel module. The rotation module may be configured to couple to a housing and rotate about the principal axis of the rotation module relative to the housing. The pinion module may be configured to couple to the rotation module and selectively rotate about the principal axis of the pinion module relative to the rotation module. The rack module may be configured to dynamically couple to the pinion module and translate along the principal axis of the rack module in response to rotation of the pinion module. The bevel module may be configured to couple to the rotation module and selectively rotate the rotation module, wherein rotation of the rotation module rotates about the principal axis of the rotation module, the rack module, and the pinion module.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: March 15, 2011
    Assignee: Raytheon Company
    Inventor: Erik A. Fjerstad
  • Patent number: 7896288
    Abstract: A roll steering method subdivides the direction of an aircraft control surface into two elements and, during a roll control operation using ailerons, steers an upper element of the control surface in the roll direction and a lower element in the opposite direction.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 1, 2011
    Assignee: Airbus France
    Inventor: Frederic Sauvinet
  • Publication number: 20110042508
    Abstract: A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in least two dimensions relative to the horizontal during takeoff. An aerial vehicle which uses a rotating platform of engines in fixed relationship to each other and which rotates relative to the wings of the vehicle for takeoff and landing.
    Type: Application
    Filed: September 25, 2009
    Publication date: February 24, 2011
    Inventor: JOEBEN BEVIRT
  • Publication number: 20110029165
    Abstract: According to the invention, during take-off, the aircraft (AC) is given the tail strike attitude (?ts) and the ailerons (6G, 6D) arc deflected fully downwards.
    Type: Application
    Filed: March 30, 2009
    Publication date: February 3, 2011
    Applicant: AIRBUS OPERATIONS (SAS)
    Inventor: Frédéric Sauvinet
  • Patent number: 7869943
    Abstract: The invention provides, in some aspects, flight management systems and methods that generate three-dimensional (3D) graphical representations of airspace in a vicinity of an aircraft (e.g., in flight or during take-off). Such systems can include a display and a processor that drives the display to generate a two-dimensional (2D) or three-dimensional (3D) depiction of flight path. In a first mode, the processor drives the display to generate a flexible highway-in-the-sky (HITS) fight path having an endpoint that is fixed to a destination and having an origin that moves relative to a current location of the aerial vehicle (e.g., a path that “stays” with the vehicle). In a second mode, the processor drives the display to generate a depiction of a fixed HITS flight path that is fixed as to origin and destination and that does not move relative to the craft.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 11, 2011
    Assignee: Honeywell International Inc.
    Inventor: Jeffrey M. Simon
  • Publication number: 20100327107
    Abstract: Vehicles with bidirectional control surfaces and associated systems and methods are disclosed. In a particular embodiment, a rocket can include a plurality of bidirectional control surfaces positioned toward an aft portion of the rocket. In this embodiment, the bidirectional control surfaces can be operable to control the orientation and/or flight path of the rocket during both ascent, in a nose-first orientation, and descent, in a tail-first orientation for, e.g., a tail-down landing.
    Type: Application
    Filed: February 24, 2010
    Publication date: December 30, 2010
    Applicant: Blue Origin, LLC
    Inventor: Mark Featherstone
  • Patent number: 7844373
    Abstract: The present invention relates to a method and a system for monitoring the following of a reference trajectory by an aircraft.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: November 30, 2010
    Assignee: Thales
    Inventor: Guy Deker
  • Publication number: 20100295303
    Abstract: A system for power generation comprises a wing, a turbine, a tether, and a tether tension sensor. The wing is for generating lift. The turbine is coupled to the wing and is used for generating power from rotation of a propeller or for generating thrust using the propeller. One end of the tether is coupled to the wing. The tether tension sensor is for determining a tension of the tether.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Inventors: Damon Vander Lind, Becker Van Niekerk, Corwin Hardham
  • Patent number: 7837143
    Abstract: A method and apparatus are disclosed for disabling on-board pilot operation of an aircraft and transferring aircraft operation to an alternate source of control. The aircraft has at least one manually actuated control device for controlling at least one mechanical actuator, with the actuator causing movement of an aircraft attitude control surface or an aircraft engine throttle. The control device is mechanically connected to the actuator(s). The alternate source of control may be one or more of an autopilot, a flight control system and an off-aircraft human pilot. The method and apparatus for disabling on-board pilot operation provides for (a) receiving a signal indicative of an emergency condition requiring the disabling of on-board pilot control of the aircraft; (b) disconnecting the one or more control devices from their respective actuator(s) in response to the receipt of the emergency condition signal; and (c) connecting the actuator(s) to the alternate source of control.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: November 23, 2010
    Inventor: Jeffrey A. Matos
  • Patent number: 7826937
    Abstract: The control system (1) comprises at least one control panel (P1, Pn) comprising a plurality of operable control means (2) for controllable pieces of equipment (EC1, ECk) of the aircraft, each of which is controlled by first and second computers (3A1, 3Ak, 3B1, 3Bk), and a communication system (4) comprising a first and a second communication channel (5, 6) which are separate from each other and follow different paths (C1, C2), the first communication channel (5) connecting the control means (2) to the first computers (3A1, 3Ak) and the second communication channel (6) connecting the control means (2) to the second computers (3B1, 3Bk), each of said communication channels (5, 6) comprising two different digital communication buses (8, 9; 10, 11).
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: November 2, 2010
    Assignee: Airbus France
    Inventors: William Roux, Jean Yves Vilain
  • Publication number: 20100252690
    Abstract: An unmanned aerial vehicle (UAV) in the form of a “tail sitter” flying wing adapted for vertical take off and landing and transitions between flight as a helicopter and wing-borne flight. The vehicle is electrically powered from onboard batteries and equipped with rotors on miniature helicopter rotor heads at the tips of the wing for both lift, during take off and landing, and forward thrust. In planform the wing comprises, to each side of its longitudinal axis, an inner section with swept back leading and trailing edges, and an outer section with a leading edge more perpendicular to the longitudinal axis, being only mildly swept back or substantially unswept, and a swept forward trailing edge.
    Type: Application
    Filed: November 20, 2008
    Publication date: October 7, 2010
    Applicant: QINETIQ LIMITED
    Inventors: Inderpal Singh Hothi, Jon Robert Stoackley, Steven John Stoackley
  • Publication number: 20100230546
    Abstract: A control system and method for control of a cyclical flying system which uses lift segments, which may be airfoils, which rotate around a central hub, similar to the mechanics of an autogyro. The airfoils may achieve speeds significantly above the wind speed feeding the system. The airfoils may be linked to the central hub by flexible radial tethers which stiffen considerably as the speed of the airfoil increases. The central hub may be linked to the ground with an extendible main tether. Power generation turbines may reside on the airfoils and utilize the high apparent wind speed for power generation. The generated power may travel down the radial tethers and across a rotating power conduit to the main tether and to the ground. The airborne assembly may have the rotational speed of the airfoils, its altitude, and its attitude controlled by using control surfaces linked to the airfoils, or by control of the angle of attack of the airfoils relative to a central hub, or relative to each other.
    Type: Application
    Filed: September 25, 2009
    Publication date: September 16, 2010
    Inventors: Joeben Bevirt, Jeffrey K. Gibboney, Giles M. Biddison, David D. Craig, Allen Harris Ibara
  • Patent number: 7796055
    Abstract: Systems and methods for runway status indication and related traffic information displays and filtering are disclosed. In one embodiment, the method for displaying runway status includes defining a monitored volume for each of one or more runways, determining a runway status for each of the one or more runways based on at least one of a state of at least one traffic vehicle and a monitoring vehicle state with respect to each monitored volume. The method continues with selecting at least one runway status for display based on the state of the monitoring vehicle. The method then presents the at least one runway status within the monitoring vehicle. In an additional embodiment, each monitored volume is based on a length of a corresponding runway, a width of the corresponding runway, and a predetermined altitude above the corresponding runway.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: September 14, 2010
    Assignee: The Boeing Company
    Inventors: Samuel T. Clark, Michael P. Snow, Roglenda R. Bowe, Howard F. Au
  • Patent number: 7774106
    Abstract: The present invention provides an alternative to the auto-throttle integrated in an aircraft autopilot by restricting the conditions in which the system operates. The proposed system removes the auto-throttle function from the autopilot system and gives it directly to the Full Authority Digital Engine Control (FADEC). A Cruise Control mode is available to the pilot only under stable flight conditions.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 10, 2010
    Assignee: Pratt - Whitney Canada Corp.
    Inventors: Salvatore Calandra, Keith Morgan
  • Patent number: 7770842
    Abstract: A flight control surface actuation system includes a plurality of smart actuators to move aircraft flight control surfaces between extended and retracted positions. The system includes a high availability network between the flight control avionics and the smart actuators, and between each of the smart actuators. The system configuration allows network nodes associated with each smart actuator to monitor and control one another, under higher level control of the aircraft flight control avionics, to provide multiple levels of health monitoring, control, and shutdown capability.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: August 10, 2010
    Assignee: Honeywell International Inc.
    Inventor: Dwayne M. Benson
  • Publication number: 20100187369
    Abstract: A ducted fan air-vehicle having alternative methods of control is described. The ducted fan air-vehicle includes an air duct, a fan, a center body, a plurality of control vanes. Each control vanes includes a separate servo for independent control of each control vane, and is therefore able to operate the control vanes in a non-traditional manner to provide maximum control authority.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Jonathan Fleming
  • Patent number: 7765037
    Abstract: A method for displaying a runway incursion for an aircraft includes electronically gathering traffic information data from a traffic information system, employing a runway incursion algorithm to the traffic information data to detect a collision hazard, automatically calculating incursion data, and displaying the incursion data. A runway incursion detection system has a display unit, a computer and a software product that enables methodology herein.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 27, 2010
    Assignee: Rockwell Collins, Inc.
    Inventors: Charles J. Bagge, Donald J. Whalen
  • Publication number: 20100170982
    Abstract: My innovated aircraft doesn't need pilots to fly in the designated airport; rather, it needs air worthy aircraft and airport's communication/navigation systems. By responding with the communication/navigation system of the airport and inbuilt system of my innovated aircraft, it can do all the jobs of the present aircraft but without requiring any pilot to fly. Therefore, aircraft accident due to pilot error, hijacking etc can be controlled on the aircraft and air transport will be safer than that of present aircraft.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 8, 2010
    Inventor: Ruchit Kumar Regmi
  • Patent number: 7751948
    Abstract: Methods and apparatuses for displaying and receiving tactical and strategic flight guidance information are disclosed. A method in accordance with one aspect of the invention includes displaying at least one first indicator to an operator of the aircraft, with a first indicator corresponding to a first instruction input by the operator for directing a first aircraft behavior and implemented upon receiving an activation instruction from the operator. At least one second indicator corresponding to a second instruction for directing a second aircraft behavior at least proximately the same as the first aircraft behavior is displayed, with the at least one second instruction to be automatically implemented at a future time. The at least one second indicator is at least approximately the same as the at least one first indicator. Indicators can be hierarchically organized to simplify presentation and reduce pilot training time.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 6, 2010
    Assignee: The Boeing Company
    Inventors: Daniel J. Boorman, John C. Griffin, III, Peter D. Gunn, Randall J. Mumaw
  • Patent number: 7739043
    Abstract: System for displaying on a first moving object a position indication dependent on a position of a second moving object. The system (1) comprises measurement means (2) for carrying out position measurements relating to at least one position dependent on the second moving object, processing means (3) mounted on the first moving object, and connected to the measurement means (2), and intended for the processing of said position measurements so as to produce a characteristic position, a display device (4) mounted on the first moving object, connected to the processing means (3), and presenting on a viewing screen (6), on a display illustrating at least partially the environment of the first moving object, a position indication which is situated at said characteristic position, and triggering means (7) for triggering the implementation of measurements by said measurement means (2).
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: June 15, 2010
    Assignee: Airbus France
    Inventors: Guillaume Fouet, Didier Menras, Nicolas Pellatiero, Falk Winkler
  • Patent number: 7725215
    Abstract: A real-time multi-tasking digital control system with rapid recovery capability is disclosed. The control system includes a plurality of computing units comprising a plurality of redundant processing units, with each of the processing units configured to generate one or more redundant control commands. One or more internal monitors are employed for detecting data errors in the control commands. One or more recovery triggers are provided for initiating rapid recovery of a processing unit if data errors are detected. The control system also includes a plurality of actuator control units each in operative communication with the computing units. The actuator control units are configured to initiate a rapid recovery if data errors are detected in one or more of the processing units. A plurality of smart actuators communicates with the actuator control units, and a plurality of redundant sensors communicates with the computing units.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: May 25, 2010
    Assignee: Honeywell International Inc.
    Inventors: Kent Stange, Richard Hess, Gerald B Kelley, Randy Rogers
  • Publication number: 20100096490
    Abstract: The invention is an unmanned flying helicopter aircraft platform (“aircraft platform”) that can be powered by either interchangeable electric motors or by fuel powered internal combustion engines. The aircraft platform is surrounded by a lightweight exoskeleton cage that protects the rotor blades from coming into contact with external objects. The aircraft platform uses a weight located on the bottom side of the aircraft platform that can be remotely moved to adjust the center of gravity in order to navigate in any direction. The aircraft platform has a place on its bottom side where attachments can be added or removed which allows the aircraft platform to be used for multiple different purposes. The aircraft platform can be flown and operated either remotely using a hand held control unit or it can be flown and operated by an onboard pilot located in the human carrying attachment.
    Type: Application
    Filed: October 18, 2008
    Publication date: April 22, 2010
    Inventor: Kevin Patrick Gordon