Polarizing Patents (Class 250/225)
  • Patent number: 8785837
    Abstract: A photoelectric barrier apparatus is provided, which comprises a transmitting device for light, a reflecting device and a receiving device for reflected light with at least one photodetector, wherein the at least one photodetector is arranged at an acute angle to an optical axis, wherein the at least one photodetector has a receiving face for light and the acute angle lies between the optical axis and a normal of the receiving face.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 22, 2014
    Assignee: BALLUFF GmbH
    Inventors: Stefan Hilsenbeck, Alexander Forkl
  • Patent number: 8772704
    Abstract: Methods and systems for a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed. The CMOS chip may comprise a laser, a microlens, a turning mirror, and an optical bench, and may generate an optical signal utilizing the laser, focus the optical signal utilizing the microlens, and reflect the optical signal at an angle defined by the turning mirror. The reflected optical signal may be transmitted into the photonically enabled CMOS chip, which may comprise a non-reciprocal polarization rotator, comprising a latching faraday rotator. The CMOS chip may comprise a reciprocal polarization rotator, which may comprise a half-wave plate comprising birefringent materials operably coupled to the optical bench. The turning mirror may be integrated in the optical bench and may reflect the optical signal to transmit through a lid operably coupled to the optical bench.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: July 8, 2014
    Assignee: Luxtera, Inc.
    Inventors: Michael Mack, Mark Peterson, Steffen Gloeckner, Adithyaram Narasimha, Roger Koumans, Peter De Dobbelaere
  • Patent number: 8759742
    Abstract: A two-dimensional solid-state image capture device includes pixel areas arranged in a two-dimensional matrix, each pixel area being constituted by multiple sub-pixel regions, each sub-pixel region having a photoelectric conversion element. A polarization member is disposed at a light incident side of at least one of the sub-pixel regions constituting each pixel area. The polarization member has strip-shaped conductive light-shielding material layers and slit areas, provided between the strip-shaped conductive light-shielding material layers. Each sub-pixel region further has a wiring layer for controlling an operation of the photoelectric conversion element, and the polarization member and the wiring layer are made of the same material and are disposed on the same virtual plane.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: June 24, 2014
    Assignee: Sony Corporation
    Inventor: Sozo Yokogawa
  • Patent number: 8748805
    Abstract: A polarization diversity detector includes at least one optical fiber having a first end for receiving a beam of light and a second end for transmitting the beam of light. A collimator receives the beam of the light from the optical fiber and outputs a collimated beam. A polarization diversity element includes a birefringent material which is positioned for receiving the collimated beam and resolving the collimated beam into a first beam having a first polarization and a second beam having a second polarization different from the first polarization. The first beam and second beam are angled relative to one another. At least one photodetector array pair includes a first photodetector array positioned to receive the first beam and a second photodetector array positioned to receive the second beam.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: June 10, 2014
    Assignee: Gooch and Housego PLC
    Inventor: Alexander Rosiewicz
  • Patent number: 8670124
    Abstract: An apparatus, method and computer program wherein the apparatus includes at least one interferometer where the at least one interferometer is configured to cause interference of an electromagnetic input signal; wherein the at least one interferometer is configured to receive at least one sensor input signal from at least one sensor such that the sensor input signal controls the interference of the electromagnetic input signal by the at least one interferometer; wherein the at least one interferometer is configured to provide a plurality of outputs where each of the plurality of outputs is provided by the at least one interferometer responding to the at least one sensor input signal with a different sensitivity; and at least one detector configured to detect the plurality of outputs of the at least one interferometer and provide a digital output signal indicative of the at least one sensor input signal.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 11, 2014
    Assignee: Nokia Corporation
    Inventors: Antti Niskanen, Hongwei Li
  • Patent number: 8664583
    Abstract: An apparatus, system, and method are disclosed for nonlinear optical surface sensing with a single thermo-electric detector. In particular, the system includes at least two signal sources that are co-aligned to propagate photons to the same location on a surface. The system also includes at least one focusing element that focuses a sequence of photons that is reflected from the location on the surface. In addition, the system includes at least one frequency selective electromagnetic detector that detects the sequence of photons that are focused from the focusing element(s). When the frequency selective electromagnetic detector senses a photon, the frequency selective electromagnetic detector emits an electrical pulse that has a voltage that is proportional to the energy level of the photon. Additionally, the system includes a processor that processes the electrical pulses, and de-multiplexes the sequence of emitted electrical pulses based on the electrical pulse voltage of the electrical pulses.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: March 4, 2014
    Assignee: The Boeing Company
    Inventors: Jeffrey H. Hunt, John H. Belk
  • Publication number: 20140034819
    Abstract: The invention relates to a transmission and reception unit for the detection of a rotary angle, having a light transmitter for the transmission of transmitted light to a dimensional scale and having a light receiver which lies on a support, the light receiver having a front side for the reception of reception light influenced by a dimensional scale disposed opposite the front side and having a rear side which is supported on a support transparent for the transmitted light. In order to provide a new assembly concept for the positioning of the light source and of the receiver and in particular to provide an arrangement which is as symmetrical as possible it is suggested that the transparent support is arranged between the light receiver and the light transmitter and that a light deflection apparatus is provided for the deflection of the transmitted light.
    Type: Application
    Filed: July 26, 2013
    Publication date: February 6, 2014
    Applicant: SICK STEGMANN GmbH
    Inventors: Reinhold MUTSCHLER, David HOPP
  • Publication number: 20140001347
    Abstract: An optical system may include a polarization beam splitter having an input that receives multiple optical signals, a first output and a second output. The first output may provide components of the multiple optical signals having a first polarization. The second output may provide components of the multiple optical signals having a second polarization. The optical system may include a rotator having an input that receives the components to rotate the first polarization such that each of the components has the second polarization, and an output to supply components as rotated components. The optical system may also include an optical circuit including a substrate. The rotator may be separate from the substrate. The optical circuit may include an optical demultiplexer circuit provided on the substrate to receive the rotated components and the components.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: INFINERA CORPORATION
    Inventors: Radhakrishnan L. NAGARAJAN, Masaki Kato, Jeffrey T. Rahn, Alan C. Nilsson, Kuang-Tsan Wu
  • Patent number: 8614415
    Abstract: A method for forming an image of an object includes: illuminating sequentially a surface of the object arranged in the same shooting area using each of N (N is natural number equal to or more than two) polarized light beams, each of which has different property; scanning the surface using the each of N polarized light beams; and outputting the each of N polarized light beams reflected by the surface, the each of N polarized light beams passed-through the object or the each of N polarized light beams scattered by the surface, as an image signal.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: December 24, 2013
    Assignee: NEC Corporation
    Inventors: Hideyuki Moribe, Kenichi Matsumura
  • Publication number: 20130313416
    Abstract: A display device includes an upper substrate, a lower substrate disposed opposite to the upper substrate, a photosensor disposed between the upper substrate and the lower substrate, a polarizer disposed on the upper substrate, and a retarder disposed on the polarizer, where light of elliptical polarization from outside is converted by a ?/4 phase difference, and transmitted to the photosensor sequentially through the retarder and the polarizer.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 28, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Kwang-Hyun KIM, Seung Beom PARK, Min Su KIM, Ji-Hoon KIM, Na Young SHIN
  • Publication number: 20130306845
    Abstract: The invention relates to a transmission and reception unit for the detection of an angle of rotation comprising a light transmitter (20), a light receiver (22) and a transparent support (24) which is arranged therebetween and which lies areally on the light receiver (22) and covers it, wherein the light transmitter (20) is attached to the support (24) and irradiates in a direction (28) away from the light receiver (20), wherein the light transmitter (2) is arranged centrally above the light receiver (22) such that received light (32) can be incident past the light transmitter (22) on the light receiver (32) and to a rotary encoder comprising such a unit.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 21, 2013
    Applicant: SICK Stegmann GmbH
    Inventors: David Hopp, Reinhold Mutschler, Stefan Basler
  • Patent number: 8587780
    Abstract: Measuring the twist of a rotating shaft by means of a laser beam and polarizing filters. The measurement device includes a laser beam generator, two polarizing filters secured to the shaft and spaced apart from each other, and a laser radiation receiver receiving the laser beam after it has passed through both filters.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: November 19, 2013
    Assignee: SNECMA
    Inventors: Francois Gallet, Stephane Rousselin
  • Patent number: 8575539
    Abstract: A detector apparatus and method for detecting radiation emitted from a target comprising: a first transmissive polarizer (302) for polarizing radiation incident on the target; a second transmissive polarizer (304) for polarizing the radiation emitted from the target (303) and absorbing any remaining light polarized by the first polarizer; and at least one reflective polarizer (306) arranged between the first and second transmissive polarizers.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: November 5, 2013
    Assignee: Molecular Vision Limited
    Inventors: Alan Mosley, Gihan Ryu, Hongjin Jiang
  • Publication number: 20130270425
    Abstract: The present invention relates conductive nanostructured copolymer materials, such as thin film. In particular, the nanostructured copolymer material comprises plurality of chains substantially parallel to each other, each conductive chain comprising a plurality of conductive polyacetylene polymer blocks positioned along the chain and a plurality of polar poly(vinyl alcohol) polymer blocks in between the polyacetylene polymer blocks to form a pattern of alternatively repeating polyacetylene polymer blocks and poly(vinyl alcohol) polymer blocks and a ratio of polyacetylene polymer to poly(vinyl alcohol) polymer to provide the nanostructured copolymer material with conductivity of at least 1 S/cm. In some aspects, the invention relates to photoelectric devices comprising a nanostructured copolymer material and capable to convert light to electrical current.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Applicant: Energy Materials Corporation
    Inventors: Stephan DeLuca, Sitaraman Krishnan
  • Publication number: 20130272740
    Abstract: The optical sensor includes a light-emitting element configured to emit light to a light emitted surface, a light-receiving element configured to receive reflection light from the light emitted surface, the reflection light including light emitted from the light-emitting element and reflected at the light emitted surface, a circuit board including a mounting surface on which the light-emitting element and the light-receiving element are mounted, and a housing fixed to the circuit board. The housing includes a light shielding portion provided between the light-emitting element and the light-receiving element, and the light shielding portion is engaged with a hole formed in the circuit board at a position between the light-emitting element and the light-receiving element.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 17, 2013
    Inventors: Ken Nakagawa, Daisuke Kaneko
  • Patent number: 8550348
    Abstract: An optoelectronic device for detecting marks with defined contrast patterns includes a transmitter to emit polarized light beams, a receiver to receive light beams and having an output to produce receiving signals representing the received light beams, and a an evaluation unit to which the receiving signals are fed and in which the contrast pattern of a mark is detected with the aid of the receiving signals present at the receiver output. A thin-film polarization filter is arranged in front of the receiver to filter out a share of the received light beams specular reflected back by the mark.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 8, 2013
    Assignee: Leuze Electronic GmbH + Co. KG
    Inventor: Joerg Droemer
  • Patent number: 8547621
    Abstract: A laser light source having a semiconductor laser light source which emits a laser beam, a laser medium excited by the semiconductor laser light source to emit light, two reflectors configured to work as a resonator to confine the light emitted by the laser medium, and a holder which holds the laser medium, wherein stress is generated in the laser medium formed of a ceramic material situated in the resonator so as to control a polarization direction of the light emitted by the laser medium.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 1, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Furuya, Nobuyuki Horikawa
  • Patent number: 8537356
    Abstract: Provided herein are new methods and apparatus for quantitative measurement and analysis of particles, including new apparatus systems to process and detect nanoparticles in suspension. By focusing a laser beam at the center of a reservoir, nanoparticles are concentrated by optical energy, and fluorescent intensity at the focal point of the laser is measured to quantify particle concentration in the reservoir. The techniques may be applied to the analysis of suspensions of nanoparticles, including natural particles (e.g., microorganisms including whole viruses, bacteria, animal cells, and proteins) and synthetic particles (e.g., colloidal latexes, paints, pigments, and metallic or semiconductor nanoparticles) for medical and industrial applications, among others.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 17, 2013
    Assignee: Lehigh University
    Inventors: H. Daniel Ou-Yang, Xuanhong Cheng
  • Publication number: 20130228674
    Abstract: An optical sensor includes an irradiation system emitting linearly polarized light of a first polarization direction toward a surface of an object from an incident direction inclined with respect to a normal to the surface; a first light detection system including a first light detector placed on a light path of light emitted from the irradiation system and specularly reflected by the object; and a second light detection system including a separation optical element placed on a light path of light diffusely reflected by the object, on a plane of incidence of the object, and extracting a linearly polarized light component of the first polarization direction included in the light diffusely reflected by the object, a second light detector receiving the linearly polarized light component of the first polarization direction extracted by the separation optical element and a third light detector receiving the light diffusely reflected by the object.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 5, 2013
    Applicant: RICOH COMPANY, LTD.
    Inventors: Yoshihiro Oba, Satoru Sugawara, Toshihiro Ishii, Fumikazu Hoshi
  • Publication number: 20130221210
    Abstract: An apparatus, system, and method are disclosed for a frequency selective electromagnetic detector. In particular, the frequency selective electromagnetic detector includes a nanowire array constructed from a plurality of nanowires of different compositions. At least one nanoparticle-sized diameter thermoelectric junction is formed between the nanowires of different compositions. When a nanoparticle-sized diameter thermoelectric junction senses a photon, the nanoparticle-sized diameter thermoelectric junction emits an electrical pulse voltage that is proportional to an energy level of the sensed photon. In one or more embodiments, the frequency selective electromagnetic detector is a frequency selective optical detector that is used to sense photons having optical frequencies. In at least one embodiment, at least one of the nanowires in the nanowire array is manufactured from a compound material including Bismuth (Bi) and Tellurium (Te).
    Type: Application
    Filed: April 15, 2013
    Publication date: August 29, 2013
    Applicant: THE BOEING COMPANY
    Inventor: THE BOEING COMPANY
  • Publication number: 20130221209
    Abstract: The present invention provides a measuring method comprising the steps of holding a specimen on a flat-plate periodic structure, applying a linearly-polarized electromagnetic wave to the periodic structure, and measuring characteristics of the specimen based on change of the electromagnetic wave scattered forward or backward by the periodic structure, wherein the periodic structure is structured such that plural unit structures having the same shape are two-dimensionally and periodically interconnected in a direction of one reference plane, the unit structure has at least one aperture penetrating therethrough in a direction perpendicular to the reference plane, the electromagnetic wave is applied from a direction perpendicular to the reference plane, and the unit structure has a shape that is not mirror-symmetric with respect to an imaginary plane orthogonal to a polarizing direction of the electromagnetic wave.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 29, 2013
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: MURATA MANUFACTURING CO., LTD.
  • Publication number: 20130214137
    Abstract: A photoelectric encoder includes an irradiation unit configured to apply first and second irradiation light beams having a first linear polarization direction, a scale configured to produce first and second diffraction light beams having the first linear polarization direction by diffracting the first and second irradiation light beams, respectively, the scale having a glass plate whose front surface has a grating shape, a polarizing unit configured to convert the first diffraction light beam into a third diffraction light beam having a second linear polarization direction which is perpendicular to the first linear polarization direction, to produce first and second composite light beams by combining the second diffraction light beam and the third diffraction light beam, and to convert the first composite light beam into a circularly polarized third composite light beam, and a light receiver configured to receive the second composite light beam and the third composite light beam.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 22, 2013
    Applicant: MITUTOYO CORPORATION
    Inventor: Mitutoyo Corporation
  • Publication number: 20130206963
    Abstract: Methods, systems, and devices are provided that may facilitate multibeam coherent detection and/or speckle mitigation. For example, some embodiments provide for multiple simultaneous independent speckle realizations in light reflected from an actively illuminated target while also may simultaneously provide reference beams inherently aligned to each speckle. These tools and techniques may facilitate coherent detection of light returned from a target. In some cases, this may provide the basis for substantial speckle mitigation. With the addition of illumination phase or frequency modulation and/or intelligent algorithmic methods, some designs may utilize the multiple speckle returns to actively mitigate speckle noise, and can further be used to separately measure speckle phase to implement interferometric resolution surface tilt measurement and/or surface imaging. These tools and techniques may be utilized for other purposes related to multibeam coherent detection and/or speckle mitigation.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: LIGHTWORKS II, LLC
    Inventor: LightWorks II, LLC
  • Publication number: 20130153756
    Abstract: An information acquiring device is provided with a laser light source, a diffractive optical element which is disposed in such a direction as to be away from an optical axis of the laser light source, a photodetector which is disposed to face the diffractive optical element with respect to the optical axis, and an optical path separating portion which guides laser light emitted from the laser light source to the diffractive optical element, and guides the laser light reflected on the diffractive optical element to the photodetector. The diffractive optical element irradiates a target area with the laser light having a predetermined pattern. The photodetector receives a part of the laser light diffracted and reflected on the diffractive optical element.
    Type: Application
    Filed: December 31, 2012
    Publication date: June 20, 2013
    Applicant: Sanyo Electric Co., Ltd.
    Inventor: Sanyo Electric Co., Ltd.
  • Patent number: 8466408
    Abstract: Provided is a surface film for a polarizing plate in which transparent patterns having a non-visible light reflective regularity are printed on a surface of a substrate and in which a reflection preventive layer or an antiglare layer is formed thereon or on a back side thereof, wherein an ink constituting the above transparent patterns contains a material reflecting a non-visible light. Capable of being provided is a surface film which can suitably be used for providing additional informations to an image display medium in such a manner that data are input by handwriting directly on a display device and in which the function described above is built-in from the beginning without making it necessary for the user to stick later a sheet having the above function.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 18, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Yuichi Miyazaki, Yasuki Suzuura, Satoko Maenishi, Keiko Tazaki
  • Patent number: 8462435
    Abstract: An imaging apparatus includes a light receiving device array having light receiving devices two-dimensionally arranged in both a row direction and a column direction, and a light transmissive filter disposed in front of the light receiving device array, wherein the light transmissive filter includes plural types of band-shaped light transmissive sections having respective, different light transmissive characteristics, and the plural types of band-shaped light transmissive sections are arranged in sequence in a width direction thereof.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: June 11, 2013
    Assignee: Ricoh Company, Ltd.
    Inventor: Shin Aoki
  • Publication number: 20130134309
    Abstract: This invention provides devices and methods for broad-band amplification of non linear properties. This invention provides devices comprising optically non linear material that is in contact with a slit array. The slit array causes enhancement of the electromagnetic field within the non linear materials. The enhancement of the electromagnetic field within the optically non linear material results in an amplified non linear response exhibited by the optically non linear materials. This invention provides detectors and imaging systems based on devices and methods of this invention.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 30, 2013
    Applicant: Yissum and Research Development Company of the Hebrew University of Jerusalem LTD.
    Inventor: Yissum and Research Development Company of t
  • Patent number: 8440989
    Abstract: Methods and systems for a light source assembly for coupling to a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed. The light source assembly may comprise a laser, a microlens, a turning mirror, and an optical bench, and may generate an optical signal utilizing the laser, focus the optical signal utilizing the microlens, and reflect the optical signal at an angle defined by the turning mirror. The reflected optical signal may be transmitted out of the assembly to grating couplers in the photonically enabled CMOS chip. The assembly may comprise a non-reciprocal polarization rotator, comprising a latching faraday rotator. The assembly may comprise a reciprocal polarization rotator, which may comprise a half-wave plate comprising birefringent materials operably coupled to the optical bench. The turning mirror may be integrated in the optical bench and may reflect the optical signal to transmit through a lid operably coupled to the optical bench.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 14, 2013
    Assignee: Luxtera Inc.
    Inventors: Michael Mack, Mark Peterson, Steffen Gloeckner, Adithyaram Narasimha, Roger Koumans, Peter De Dobbelaere
  • Publication number: 20130105674
    Abstract: A multichannel polarization stabilizer including a mixing device responsive to a sample beam and a reference beam that provides an in-phase signal including the mixed sample beam and reference beam having a relative phase of 0° and a quadrature phase signal including the mixed sample beam and reference beam having a relative phase of 90°. The stabilizer also includes a photodetector responsive to the quadrature phase signal that converts the quadrature phase signal to a quadrature phase electrical signal. A polarization demultiplexer circuit receives the quadrature phase electrical signal and measures the amplitude of a frequency tone in the sample beam and provides a polarization amplitude signal. A polarization controller receives the polarization amplitude signal and controls the reference beam to maximize the polarization amplitude signal.
    Type: Application
    Filed: March 13, 2012
    Publication date: May 2, 2013
    Applicant: Northrop Grumman Systems Corporation
    Inventors: Gregory D. Goodno, Mark E. Weber, Stanley Benjamin Weiss, IV
  • Patent number: 8421000
    Abstract: An optical beam shaper comprises a polarization-dependent phase adjustment member which applies a phase pattern of equal magnitude and opposite sign to two orthogonal polarization states. In a preferred embodiment the beamer shaper is a dif tractive element made of a birefringent material, such as a photo-polymerizable liquid crystal polymer frozen in a uniaxial alignment, said dif tractive element comprising a plurality of zones, each zone having a stepped thickness defining a plurality of steps. The beam shaper can be used to introduce astigmatism to a polarized light beam or to undo the astigmatism to a beam with an orthogonal polarization state. The beam shaper is advantageously used within a detection device, such as a fluorescence scanner.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: April 16, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Erik Martinus Hubertus Petrus Van Dijk, Sjoerd Stallinga, Dirk Leo Joep Vossen, Marius Iosif Boamfa
  • Patent number: 8411146
    Abstract: A single aperture polarimetric color imaging system includes a color filter array including a plurality of RGB filter elements in a path of received radiation that includes color band and near IR light. A linear polarizer array includes a plurality of polarization filter elements that provide a plurality of different polarization orientations that are optically aligned with the RGB filter elements. A single common pixel array includes a plurality of photodetector pixels for transducing the color band or near IR light into electrical signals after processing by the color filter array and linear polarizer array. A band select switching device switches between selectively transmitting the near IR band and color band or color band including light. A signal processor is coupled to receive and process the electrical signals from the common pixel array and generates polarimetric image data from the near IR band light and color image data from the color band or color band including light.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 2, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: David Twede
  • Patent number: 8395372
    Abstract: A method of measuring a current of a current carrying cable teaches the first step of providing an optical sensor assembly comprising a base unit, and an optical current sensor mounted on the base unit for transmitting a beam of polarized electromagnetic radiation to an optical fiber. A light detector is also provided having a first channel that operably connecting the light detector to an analog to digital converter through a programmable gain amplifier, a second channel that operably connects the light detector directly to the analog to digital converter, and a processor operably connected to the analog to digital converter. The optical sensor assembly is mounted adjacent the current carrying cable, and the fiber optic is operably connected to a light detector. A plurality of factors are then evaluated from rotation information from the light detector, by using the first and second channels for analog to digital conversion operably connected with the processor.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: March 12, 2013
    Assignee: Optisense Network, LLC
    Inventors: Joseph Yossi Harlev, Rhad Veazey, Leonard Johnson, Theodore Konetski
  • Patent number: 8395106
    Abstract: An optical semiconductor device includes a lower electrode layer formed over a semiconductor substrate, an infrared absorption layer formed over the lower electrode layer 26, and an upper electrode layer 38 formed over the infrared absorption layer 36. The infrared absorption layer includes a quantum dot having dimensions different among directions stacked, and is sensitive to infrared radiation of wavelengths different corresponding to polarization directions.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: March 12, 2013
    Assignees: Technical Research & Development Institute Ministry of Defense of Japan, Fujitsu Limited
    Inventors: Minoru Doshida, Mitsuhiro Nagashima, Michiya Kibe, Hiroyasu Yamashita, Hironori Nishino, Yusuke Matsukura, Yasuhito Uchiyama
  • Patent number: 8384012
    Abstract: A photodiode includes a photosensitive area and a polarizing grating located in front of the photosensitive area. The polarizing grating is formed by a plurality of galvanically conducting filaments.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: February 26, 2013
    Assignee: Infineon Technologies AG
    Inventor: Jaime Estevez
  • Patent number: 8374685
    Abstract: A system (40) for diagnosis and staging of early stages of cancer in the tissue of a patient is provided. The system—is configured to combine information from a Polarized Light Scattering Spectroscopy measurement (70) having a first probe depth, and a Differential Path Length Spectroscopy measurement (60) having a second probe depth, wherein the second probe depth is set larger than' the first probe depth. By comparing the results of the Polarized Light Scattering Spectroscopy and Differential Path Length Spectroscopy measurements early stages of cancer, such as dysplasia may be detected. Also hyperplasia, carcinoma in situ, and carcinoma may be detected. A computer-readable medium, method and use are also provided.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: February 12, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Antonius Theodorus Martinus Van Gogh, Bernardus Hendrikus Wilhelmus Hendriks, Hans Zou, Maarten Marinus Johannes Wilhelmus Van Herpen
  • Patent number: 8350211
    Abstract: Systems and methods are described for processing quantum entity states by utilizing interference phenomena, and more specifically self-interference outcomes. The quantum entity states are embodiable in fermions and/or bosons, expressly including photons. Certain embodiments can utilize input quantum entity states that encompass one or more separable quantum entities and can be arranged to produce predictable outcome differences that are alterable in accordance with differences and/or similarities between separate input quantum entities. Additional outcome alterations are effectible via static and/or dynamic quantum entity state influencing constituents. Even further outcome alterations are effectible by associative quantum state influencing constituents that are additionally utilizable for interrelating separable embodiments.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: January 8, 2013
    Inventor: Daniel S. Klotzer
  • Publication number: 20130001407
    Abstract: An apparatus, system, and method are disclosed for nonlinear optical surface sensing with a single thermo-electric detector. In particular, the system includes at least two signal sources that are co-aligned to propagate photons to the same location on a surface. The system also includes at least one focusing element that focuses a sequence of photons that is reflected from the location on the surface. In addition, the system includes at least one frequency selective electromagnetic detector that detects the sequence of photons that are focused from the focusing element(s). When the frequency selective electromagnetic detector senses a photon, the frequency selective electromagnetic detector emits an electrical pulse that has a voltage that is proportional to the energy level of the photon. Additionally, the system includes a processor that processes the electrical pulses, and de-multiplexes the sequence of emitted electrical pulses based on the electrical pulse voltage of the electrical pulses.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Jeffrey H. Hunt, John H. Belk
  • Patent number: 8345239
    Abstract: An imaging system with an imaging mechanism which includes polarization analyzers, which may be crossed polarization analyzers, positioned to provide birefringence images of particles in the fluid passing through the flow chamber. Captured images are of high resolution and may be used in comparison to known images of a library of images. The system and related method enhance the accuracy and sensitivity of particle monitoring by utilizing birefringence imaging combined with particle analysis and the detection of each particle's characteristic features, such as crystalline features. The system includes a scatter detector used to trigger backlighting of the flow chamber and capture images of particles therein.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: January 1, 2013
    Assignee: Fluid Imaging Technologies, Inc.
    Inventors: Christian K. Sieracki, William H. Nelson
  • Publication number: 20120267551
    Abstract: Technologies are generally described for systems and methods for detecting chiral properties of materials and separating materials based on their chiral properties. A chiral vector is constructed from anisotropy properties of a polarization-dependent output signal from a sample. Different types of molecules from the sample can be differentiated based on a magnitude of the chiral vector. Chiral properties of the sample can be detected based on an angle of the chiral vector. The output signal can be a fluorescent emission from the sample and can be used to detect chiral properties of a substantially opaque sample.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 25, 2012
    Inventors: Anjan Kr. Dasgupta, Sarita Roy
  • Publication number: 20120267517
    Abstract: The invention refers to a compact multispectral scanning system comprising a primary mirror (1) and secondary mirror (2), wherein the mirrors face each other, are adapted to be rotated at the same angular speed in opposite directions, and are tilted with respect to their rotation axes. The primary mirror is concave, the secondary mirror is smaller than the primary mirror and the rotation axes of both mirrors are aligned. This arrangement makes the system more compact than prior art devices and avoids the dependency of the system on the operation frequency.
    Type: Application
    Filed: March 18, 2010
    Publication date: October 25, 2012
    Applicant: Alfa Imaging, S.A.
    Inventor: Carlos Callejero Andres
  • Patent number: 8294081
    Abstract: A surgical lamp includes a light source, a camera, at least one rotatable polarization filter, and a control device that controls the polarization filter according to the results of an evaluation of the image which is captured by the camera.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: October 23, 2012
    Assignee: Trumpf Medizin Systeme GmbH + Co. KG
    Inventors: Rouven Rosenheimer, Willibald Hiemer, Martin Schenk
  • Patent number: 8283622
    Abstract: A method and apparatus for testing a magnetic medium. The method comprises applying a magnetic field of a time-varying strength; directing a polarized optical beam towards a portion of the medium that is in the magnetic field, wherein the optical beam is reflected by a surface of the medium at a point of incidence in the magnetic field; moving the medium relative to the optical beam so as to cause the point of incidence to repeatedly traverse each of a plurality of sectors along a track on the surface; obtaining a series of Kerr signal measurements of the reflected optical beam; grouping measurements into ensembles such that the measurements in an individual ensemble are those obtained while the point of incidence was in a corresponding one of the sectors; and determining at least one magnetic property of at least one of the sectors from the measurements in the corresponding ensemble.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: October 9, 2012
    Assignee: Agency for Science, Technology and Research
    Inventors: Chengwu An, Kaidong Ye
  • Patent number: 8269160
    Abstract: Provided is an image capturing system comprising an irradiating section that sequentially irradiates an observed position with a plurality of types of irradiation light having different polarizations; a polarization filter section that includes a plurality of polarization filter units, which each include a plurality of returned polarized light filters that each pass light having a different polarization, the polarization filter section passing returned light from the observed position having each of the plurality of polarizations; and a light receiving section that receives the returned light passed by the polarization filter section having each of the plurality of polarizations.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: September 18, 2012
    Assignee: Fujifilm Corporation
    Inventors: Takashi Murooka, Hideyasu Ishibashi
  • Publication number: 20120205524
    Abstract: Methods and systems for a light source assembly for coupling to a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed. The light source assembly may comprise a laser, a microlens, a turning mirror, and an optical bench, and may generate an optical signal utilizing the laser, focus the optical signal utilizing the microlens, and reflect the optical signal at an angle defined by the turning mirror. The reflected optical signal may be transmitted out of the assembly to grating couplers in the photonically enabled CMOS chip. The assembly may comprise a non-reciprocal polarization rotator, comprising a latching faraday rotator. The assembly may comprise a reciprocal polarization rotator, which may comprise a half-wave plate comprising birefringent materials operably coupled to the optical bench. The turning mirror may be integrated in the optical bench and may reflect the optical signal to transmit through a lid operably coupled to the optical bench.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Inventors: Michael Mack, Mark Peterson, Steffen Gloeckner, Adithyaram Narasimha, Roger Koumans, Peter De Dobbelaere
  • Patent number: 8238026
    Abstract: A polarization-sensitive infrared image sensor (also termed a snapshot polarimeter) utilizing a 2-D array of polarizers to filter infrared light from a scene according to polarization, and a 2-D array of photodetectors (i.e. a focal plane array) to detect the filtered infrared light and generate polarization information which can be used to form a polarization-sensitive image of the scene. By forming each polarizer on an optical fiber in a fiber optic faceplate, the polarizers can be located facing a 2-D array of retarders to minimize diffraction effects of the infrared light. The optical fibers also guide the filtered infrared light to the photodetectors to reduce cross-talk in the polarization information. The polarizers can be formed as wire grid polarizers; and the retarders can be formed as subwavelength surface-relief gratings.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Sandia Corporation
    Inventors: Shanalyn A. Kemme, Alvaro A. Cruz-Cabrera
  • Patent number: 8220930
    Abstract: An integrated opto-electronic device, a portable reflective projection system and a method for in situ monitoring and adjusting light illumination are provided. The device includes a reflective polarizing composite film (150) configured to receive a source light (210) at a desired non-normal incident angle (221), polarizes and reflects a first portion (211) of said source light (210) as polarized illumination light (16) at a reciprocal angle (222) to said desired non-normal incident angle (221); and a photovoltaic cell (180), adhered to an opposite side of said reflective polarizing composite film (150) to said source light (210), configured to receive a second portion (212) of said source light (210) that passes through said reflective polarizing composite film (150) and transform said second portion (212) to photogenerated charge. Unused illumination can be collected in order to re-store and reuse recovered energy.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 17, 2012
    Assignee: Shanghai Lexvu Opto Microelectronics Technology Co., Ltd.
    Inventor: Deming Tang
  • Publication number: 20120154268
    Abstract: Remote control systems that can distinguish predetermined light sources from stray light sources, e.g., environmental light sources and/or reflections are provided. The predetermined light sources can be disposed in asymmetric substantially linear or two-dimensional patterns. The predetermined light sources also can be configured to exhibit signature characteristics. The predetermined light sources also can output light at different signature wavelengths. The predetermined light sources also can emit light polarized in one or more predetermined polarization axes. Remote control systems of the present invention also can include methods for adjusting an allocation of predetermined light sources and/or the technique used to distinguish the predetermined light sources from the stray light sources.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: APPLE INC.
    Inventor: Brett G. Alten
  • Publication number: 20120145926
    Abstract: A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Applicant: VISIONGATE, INC.
    Inventors: Eric J. Seibel, Alan C. Nelson, Mark E. Fauver, J. Richard Rahn
  • Patent number: 8199323
    Abstract: The invention relates to a method of characterizing a scattering medium. According to the invention, the processing on the electromagnetic radiation scattered by the scattering medium is carried out for an unpolarized signal. In this way, only the anisotrophic incoherent transport of radiation induced by the scattering medium is obtained in the characterization according to the invention. According to the invention, the data representative of the angular variation of the first image representing the unpolarized scattered radiation is representative of the purely isotrophic part of the scattering. Having obtained this purely isotrophic part, it is then possible, according to the invention, to calculate a second image representative of the non-isotrophic part of the scattering. This non-isotrophic part represents the anisotrophic transport of radiation induced by the medium at the moment of scattering.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: June 12, 2012
    Assignee: Centre National de la Recherche Scientifique—CNRS
    Inventors: Christophe Baravian, François Caton, Jérôme Dillet
  • Patent number: RE44007
    Abstract: A spectroscopic ellipsometer comprising a light source (1) emitting a light beam, a polarizer (2) placed on the path of the light beam emitted by the light source, a sample support (9) receiving the light beam output from the polarizer, a polarization analyzer (3) for passing the beam reflected by the sample to be analyzed, a detection assembly which receives the beam from the analyzer and which comprises a monochromator (5) and a photodetector (4), and signal processor means (6) for processing the signal output from said detection assembly, and including counting electronics (13). Cooling means (12) keep the detection assembly at a temperature below ambient temperature, thereby minimizing detector noise so as to remain permanently under minimum photon noise conditions. It is shown that the optimum condition for ellipsometric measurement is obtained by minimizing all of the sources of noise (lamps, detection, ambient).
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: February 19, 2013
    Assignee: Fahrenheit Thermoscope LLC
    Inventor: Frederic Ferrieu